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Abstract

This thesis focuses on real-time-capable algorithms that can perform single-target
discrimination from 3D data collected using a 32×32 Single Photon Avalanche Diode
(SPAD) rectangular planar array 3D flash direct Time-of-Flight (dToF) Light Detection
and Ranging (LiDAR) system. Different algorithms are presented for data collected
in different environments.

For data collected in air, a real-time target classification algorithm is implemented
on the Nvidia Jetson TX2 module to classify live data of four different model air-
planes. The algorithm achieves an overall classification accuracy of 99.35% and an
F1-score of 0.99 when using 64 convolutional filters. The algorithm has an execution
time of 65.07 ms and its power usage with a live data acquisition module is 5.1 W.

For data collected in obscured environments, the focus of the presented algo-
rithms shifts from target classification to depth image reconstruction as a necessary
step towards target classification. In particular, the presented algorithms process
collected data to reconstruct images for subsequent target detection.

Two image-reconstruction algorithms, the detection threshold and median algo-
rithm and the histogram averaging algorithm, are applied to three separate datasets
of different targets collected in different real and simulated natural water environ-
ments. The detection threshold and median algorithm can reconstruct simple shapes
obscured by water turbidity levels up to 3.43 attenuation lengths (ALs). The min-
imum overall shape classification accuracy is 95% when using the images recon-
structed by this algorithm for different sediment-only conditions, which are up to
a sediment concentration of 5.62 mg/L (3.29 ALs for 532 nm wavelength). The
histogram averaging algorithm performs better for above-water imaging, where it
reconstructs a 4.5 m submerged Secchi Disc (SD) in clear water conditions in the
Defence Science and Technology Group (DSTG) indoor freshwater tank. However, it
can only reconstruct a white disc submerged down to 2 m at the Port Adelaide River.

Image reconstruction and target classification are demonstrated for fog-obscured
data. The range gate and process algorithm reconstructs range-gated data of frigate
silhouettes at a fog level of 3.69 ALs (at 532nm) and its images produce 93% over-
all silhouette classification accuracy. Without range-gating, the finite mixture model
algorithm is used instead to reconstruct images of simple shape obscured by a fog
level of up to 1.14 ALs. These images provides 100% overall shape classification ac-
curacy. At a higher fog level of 2.28 ALs (at 532nm), the Fourier descriptor algorithm
achieves better global localisation accuracy than the previous algorithm. A simple
conversion of the algorithm’s binary images results in reconstructed images. Target
classification is possible using the shape uniqueness of Fourier descriptors.

At the conclusion of this thesis, future research directions are suggested to over-
come the limitations of the presented results.
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Chapter 1

Introduction

Protecting a military unit from hostile threats is essential for the safety of personnel,
the security of equipment, and the success of the mission. For this reason, the iden-
tification of hostile threats needs to be performed quickly and at a distance. Rapid
assessment of the military operation areas assists the military unit to react in real
time to hostile threats. Performing surveillance and reconnaissance from a distance
allows the military unit to identify and locate hostile threats without compromising
its own position and safety.

One way of conducting remote surveys is to use a distributed network of small
and mobile platforms such as Uncrewed Autonomous Vehicles (UAVs), satellites or
Remotely Operated Vehicles (ROVs) and then transmit all their information to one
central node. The military can survey safely from a distance by placing the central
node in a safe location far away from potential hostile threats. However, such a
system architecture requires a high data-transmission bandwidth. This poses several
challenges for data security and transmission reliability.

Edge computing is a computing paradigm that brings computation and data stor-
age closer to where data is generated, specifically in applications where real-time
processing of data is required [3]. In the context of a distributed network, data is
generated by the sensor on board the distributed node’s platform. The application
of edge computing means the sensor data is processed on-board in real time at the
distributed node, instead of being transmitted before being processed centrally. This
provides significant reduction in response time and transmission bandwidth [3]. One
possible approach to on-board processing is to employ an embedded board.

One implementation of the edge computing paradigm is performing autonomous
target discrimination. Target discrimination is defined as "A process in which an ob-
ject is assigned to a subset of a larger set of objects based on the amount of detail
perceived by the observer" [68]. The mobile platform can transmit target-specific in-
formation instead of a stream of data to the central node. This reduction in transmis-
sion information changes the data transmission from a long-term data rate scheme
to an occasional small data package transmission. This reduces the susceptibility of
the transmission to being compromised.

For imaging targets in a scene, 3D imaging is generally preferred over 2D be-
cause it allows targets to be distinguished based on their distances, making it easier
to segment them from other clutter or obscurants [40]. Light Detection and Ranging
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2 Introduction

Figure 1.1: A long tunnel filled with fog. The fluorescent light and green laser on the
right illustrates how light is scattered and absorbed in the fog.

(LiDAR) is a widely used 3D imaging technique in remote sensing [110, 107, 157]. It
offers some advantages over other 3D imaging solutions for long range imaging in
challenging conditions, such as fog or smoke in the air or turbidity in natural water
environments, where obscurants can hinder image clarity and degrade overall image
quality. For fog obscured conditions (such as the scene shown in Figure 1.1), Radio
Detection And Ranging (RADAR) is a common sensing technique [139]. However,
for long-distance sensing scenarios such as remote surveillance on an Uncrewed Au-
tonomous Vehicle (UAV), LiDAR offers finer distance and spatial resolution imaging
than RADAR [139]. For natural water environments, Sound Navigation and Rang-
ing (SONAR) is traditionally used for sensing underwater targets at fine distance
resolution and at long ranges. However, when it comes to conducting remote sens-
ing water environments from air, LiDAR is more suitable because more light can
travel through the air-water interface compared to sound waves. For these reasons,
LiDAR is an excellent candidate as a complementary sensor to enhance existing re-
mote sensing capability.

This thesis presents a collection of real-time-capable algorithms that can perform
static single-target discrimination using 3D data collected from a Complementary
Metal-Oxide-Semiconductor (CMOS) silicon 32×32 Single Photon Avalanche Diode
(SPAD) rectangular planar array within a 3D flash direct Time-of-Flight (dToF) LiDAR
system. For simplicity, this thesis will henceforth refer to this type of system as the
SPAD array flash LiDAR system. In this thesis, real-time-capable means that the al-
gorithm has been demonstrated to require an execution time that either matches or is
less than the time to acquire the amount of data required to execute one instantiation
of the algorithm.

In this thesis, the real-time capability of the presented algorithms are demon-
strated via either a real-time implementation or computational demand analysis. A
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real-time implementation of an algorithm means the algorithm finishes its execution
before the next batch of SPAD LiDAR frames is acquired. A computational demand
analysis examines the computational operations required by an algorithm in order
to demonstrate that the algorithm is real-time capable when optimised in its imple-
mentation. The algorithms’ implementation is assumed to be optimised for execution
on an embedded board that contains a graphical processing unit (GPU), such as the
Nvidia Jetson TX2 module.

The imaging system and algorithms are chosen with the low Size, Weight and
Power (SWaP) requirement in mind, ensuring they can be mounted on a mobile plat-
form for real-time target discrimination on a distributed node. The imaging system,
being a SPAD array flash LiDAR system, can be engineered to have a low SWaP
requirement. The presented real-time-capable algorithms is intended for execution
on an embedded board, which has low SWaP. In addition, because the algorithms
have been designed to have low computational demand, the implementation can be
designed to execute on an embedded board using low amounts of power.

The functionality of the presented algorithms is demonstrated using data col-
lected from different types of environments that are commonly encountered by the
military, which includes air, natural water, and fog. Different algorithms are used to
process data collected from different environments. The imaged scenes are mostly
in indoor laboratory locations, and in one instance, the imaged scene is a real-world
natural water location. The data is collected with various SPAD array flash LiDAR
systems.

The visible range is selected as the laser wavelength for all imaging presented in
this thesis. This is because this wavelength range can be used for imaging through
various different environments, including fog and natural waters. While Short-Wave
Infrared (SWIR) exhibits less attenuation through fog compared with the visible
range [158, 157], SWIR radiation cannot penetrate natural water environments.

Despite LiDAR having advantages for long range imaging in obscured environ-
ments such as fog and natural waters, obscurants still pose a challenge for accurately
localising targets and producing well-reconstructed 3D images using LiDAR data.
In particular, the quality of LiDAR images degrades due to the light scattering in
fog [183] and water [88]. This makes it difficult to perform target discrimination us-
ing the collected LiDAR data. In this thesis, SPAD is selected as the detector in the
LiDAR system because it has single photon sensitivity. This means it’s able to detect
the sparse number of photon returns from the obscured target.

Target discrimination can be divided into several different levels: detection, orien-
tation, classification, recognition and identification. The level of target discrimination
depends on the amount of detail it provides about the target, where a higher level
of target discrimination provides more detail. Currently, there are no consistent def-
initions of these terms in the literature. Therefore, I present my definitions of these
terms in Figure 1.2, which I use for this thesis. These definitions are inspired by the
different definitions of these terms provided by the authors in [126] (as cited in [163]),
[83], and [17]. The figure also contains an example of each target discrimination level
in the context of discriminating a car target.



4 Introduction

Figure 1.2: Different levels of target discrimination.

The application of the algorithms presented in this thesis can be divided into two
main focus areas: target detection and classification. In particular, this thesis only
considers scenarios in which target detection and classification operate on images. In
order for these tasks to be successful, the target needs to be discernible in the images.
This requires effective image reconstruction of the data collected by the SPAD array
flash LiDAR system. This thesis focuses only on the reconstruction of depth images
and not the reconstruction of reflectivity images. However, a simple alteration can be
applied to many of these algorithms to enable them to reconstruct reflectivity images
in addition to depth images.

While an accurately reconstructed image is not a prerequisite for target detection
and classification, it does reduce classification’s computational complexity compared
with a poorly reconstructed image. The increased complexity in target detection
and classification of poorly reconstructed images can hinder real-time execution and
limit the feasibility of using the algorithm for edge computing implementation on a
distributed network.

Machine learning is a possible approach to target detection and classification
without the use of images. It is possible to use machine learning to distinguish
targets by training its system with a large amount of SPAD LiDAR data. The sys-
tem may be able to observe tiny differences in the dToF measurements between an
object and noise (for detection), or associated with different types of targets (for clas-
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sification). However, these types of machine learning systems that operate on raw
data instead of images, such as neural networks, require a larger amount of train-
ing data compared with machine learning systems that process images. Therefore,
this approach is impractical for military applications due to the scarcity of adversary
target images, especially the absence of SPAD LiDAR data. While simulated data
can be obtained, it may be difficult to determine the features of adversary targets
(such as easily customisable commercial off-the-shelf (COTS) UAVs), which can be
fast-evolving during conflict.

Rather than focusing on determining target detection and classification algo-
rithms that are capable of accurately processing inaccurate reconstructed images of
obscured targets, this thesis concentrates on algorithms that accurately reconstruct
images of these targets. By doing so, the reconstructed image can contain a faithful
representation of the target at the additional price of computation, thereby enhanc-
ing the accuracy of subsequent existing target detection and classification operations,
without adding further computation steps.

Following this introduction, Chapter 2 reviews existing work that performs target
discrimination using SPAD LiDAR data. Chapter 3 then presents the motivation and
background of SPAD array flash LiDAR systems, along with a detailed description
of the specifications of the SPAD array flash LiDAR systems used to test the pre-
sented algorithms in this thesis. The remainder of Chapter 3 provides definitions
and explanations of key terms used throughout the thesis.

In this thesis, the presented algorithms have either a focus in target detection or
classification, depending on the type of environment from which the data is collected.

For data collected in air, Chapter 4 presents a real-time algorithm that uses most
of its processing for target classification. Image reconstruction and target detection
are conducted in the initial stage of the algorithm, serving the purpose of checking
there is a target in the image before it is evaluated for classification. This algorithm
is implemented, together with a live SPAD LiDAR data acquisition module, into an
embedded software program for execution on a COTS embedded board called the
Nvidia Jetson TX2 module. The classification and hardware performances of the
embedded software program are evaluated with live data of model airplanes in an
indoor laboratory environment.

For algorithms related to processing data collected in obscured environments
such as fog and natural waters, the algorithms perform image reconstruction to cre-
ate a clear representation of the obscured target for detection. If a target is discernible
in a reconstructed image, then the image can be used for target detection. For some
of these algorithms, target classification performance is evaluated over these recon-
structed images as well.

For data collected in natural water environments, Chapter 5 examines the perfor-
mance of two basic image-reconstruction algorithms—the detection threshold and
median algorithm, and the histogram averaging algorithm—under varying turbidity
and depth conditions. The explanation of these algorithms are accompanied by a
computational demand analysis to demonstrate that these algorithms are real-time-
capable. Target classification performance is also evaluated for reconstructed images
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of data collected in varying amounts of sediments in saltwater. In addition, this
chapter details experiments conducted in both controlled laboratory settings and a
real-world natural water site. For some of these experiments, a novel imaging set-up
is used to conduct above-water imaging into the water.

For data collected in fog-obscured environments, Chapter 6 presents three dif-
ferent image-reconstruction algorithms: range gate and process algorithm, finite
mixture model algorithm, and Fourier descriptor algorithm. The SPAD array flash
LiDAR data used for evaluating these algorithms are collected from an indoor labora-
tory environment and artificial fog is generated using a fog machine and water-based
liquid. To demonstrate the real-time capability of these algorithms, computational
demand analyses are provided.

The reconstructed images from the first two algorithms are also tested separately
for target classification. Reconstructed images from the third algorithm, the Fourier
descriptor algorithm, are not tested for target classification because it is developed to
reconstruct images of a single type of target. However, this algorithm could be easily
extended for target classification in the future. Similar to the algorithms presented
in Chapter 5, a discussion is provided to demonstrate that these algorithms are real-
time-capable.

When target classification is demonstrated for some of these image-reconstruction
algorithms in Chapters 5 and 6, it is apparent that the algorithms can reconstruct a
clear enough representation of the obscured target that it can be used for higher levels
of target discrimination. The image-reconstruction algorithms presented in this thesis
are agnostic to the geometry of the target. Therefore, these image-reconstruction
algorithms can be used to reconstruct other types of targets in the future, in which
their images can be used for target classification.

All of the SPAD array flash LiDAR systems images used in this thesis are 32×32
in pixel size. Currently, researchers in the SPAD community are investigating the
creation of SPAD arrays with larger numbers of SPAD detectors [162, 43, 116]. The
presented algorithms are scalable to enable the classification or reconstruction of im-
ages collected by flash LiDAR system with larger arrays of Single Photon Avalanche
Diodes (SPADs). However, further work will be required to confirm their process-
ing times for larger image spatial resolutions, to confirm that they can execute in
real-time.

1.1 Contributions

My novel contributions in this thesis to the field of employing SPAD LiDAR for
imaging applications are detailed in the three lists below. Each list represents contri-
butions related to data collected in a different environment. A reference is added to
the start of the dot point if a paper has been published related to the contribution.
These papers are listed in Section 1.2 below.

Data collected in air:

• [102, 178] - In Chapter 4, a real-time target classification algorithm for live SPAD
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LiDAR data is implemented for execution on an Nvidia Jetson TX2 module,
which is a COTS board. Part of the implementation leverages the on-board
GPU. To the best of my knowledge, at the time of publication of [102], this
marks the first implementation of such an algorithm on an embedded board for
the real-time target classification of data collected by a SPAD array flash LiDAR
system. Subsequently, related literature has emerged, detailed in Section 2.5 of
Chapter 2.

Data collected in natural waters:

• In Chapter 5, the imaging in this chapter are taken by a SPAD array flash LiDAR
system at the Port Adelaide River (Section 5.6), which is an estuary consisting
a mixture of fresh and saltwater, and the Australian Institute of Marine Sci-
ence (AIMS) indoor saltwater tank containing real sediments and chlorophyll
(Section 5.4) from the ocean. The imaging set-up conducted at AIMS has been
published in [101]. To the best of my knowledge, this is the first time natural
water environments or lab-simulated natural water environments with real ma-
rine constituents have been used for SPAD LiDAR imaging. The details of the
imaging setup at the Port Adelaide River are in Section 5.2.4 and the details of
AIMS indoor saltwater tank is in Section 5.2.2. As a consequence of this novel
type of imaging environment, several other contributions have been made:

– Section 5.2.3 of Chapter 5 presents a novel imaging set-up for above-
water SPAD LiDAR imaging at the Defence Science and Technology Group
(DSTG) indoor freshwater tank, which is a laboratory-controlled water
tank. This novel imaging set-up is used for the outdoor natural water
imaging at the Port Adelaide River presented in Section 5.2.4.

– Section 5.6 of Chapter 5 demonstrates that the histogram averaging algo-
rithm is able to reconstruct discernible images of a submerged target in up
to a depth of 2 m at the Port Adelaide River, which had a water turbidity
level of 3.4m Secchi Disc (SD) depth at the time of data collection.

– Section 5.5 of Chapter 5 demonstrates that the histogram averaging al-
gorithm is able to reconstruct discernible images of a target in a clear
freshwater tank submerged at water depths up to 4.5 m.

– Section 5.4.1 of Chapter 5 demonstrates that the detection threshold and
median algorithm is able to reconstruct discernible images of a target sub-
merged in a saltwater tank containing a mix of sediment and/or chloro-
phyll that is equivalent to a turbidity level of up to 3.43 attenuation lengths
(ALs) with respect to 532 nm.

– [101] - In Chapter 5, Section 5.4.3 demonstrates that the images recon-
structed by the detection threshold and median algorithm can produce an
overall classification accuracy of 95% for data collected at the AIMS indoor
saltwater tank in sediment-only conditions with sediment concentrations
up to 5.62 mg/L (equivalent to 3.29 ALs with respect to 532 nm).
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Data collected in fog:

• [99] - In Chapter 6, Section 6.3 presents an image-reconstruction algorithm
called the finite mixture model algorithm, which is an algorithm developed
during my PhD candidature. Its reconstruction ability is demonstrated in Sec-
tion 6.5.2.1. The algorithm operates by using a probability distribution to model
the likelihood of each possible dToF measurement over a batch of frames. In
the literature, to be discussed in Section 2.3 of Chapter 6, a common approach
involves removing the dToF measurements of detected photons reflected from
fog before modelling those related to the target. However, this algorithm di-
verges from this convention by concurrently modelling dToF measurements
of detected photons reflected from both the fog and the target, employing a
mixture of lognormal and Gaussian probability distributions. This algorithm
stands in contrast to existing modelling approaches, in which a gamma prob-
ability distribution is typically used for modelling the dToF measurements of
detected photons reflected from fog. The divergence arises from the appli-
cation of a phenomenological approach to the dToF measurements rather than
modelling the dToF measurements with the physics of photon propagation and
detection.

• [104] - In Section 6.4 of Chapter 6, the Fourier descriptor algorithm is devel-
oped for the global localisation of a target. This is a novel algorithm developed
during my PhD candidature. I introduce the concept of Fourier shape de-
scriptors, an image feature technique, to localise geometric targets from SPAD
LiDAR data. To the best of my knowledge, the closest the SPAD LiDAR lit-
erature has come to using image features involves applying spatial correlation
between local neighbouring pixels, either as additional regularisation terms
(e.g. in [60] as part of their depth reconstruction optimisation problem) or for
post-reconstruction image processing (e.g. inpainting by [127]). Unlike these
existing algorithms, which exploit correlation between local neighbouring pix-
els, the developed Fourier descriptor algorithm uses Fourier shape descriptors
to analyse all the pixels globally. It obtains information about the target’s shape
by analysing the entire image before calculating a Fourier shape descriptor. Al-
though this Fourier descriptor algorithm is demonstrated for target localisation
only, it has potential applications for future image reconstruction and target
classification. Image reconstruction can be easily computed from the binary im-
age created as part of the algorithm processing, at the target’s localised depth
determined by the algorithm. Target classification is possible because different
geometric shapes correspond to unique Fourier shape descriptors. Hence, tar-
get classification is achieved by comparing the target’s corresponding Fourier
shape descriptor with the different descriptors associated with possible shapes
of the target. To the best of my knowledge, this is the first instance of the intro-
duction of an image feature technique, such as the Fourier shape descriptor, for
the localisation, reconstruction and classification of targets imaged by a SPAD
LiDAR system.
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• [100, 99] - In Chapter 6, target classification of reconstructed images from SPAD
LiDAR measurements of targets obscured by fog is investigated. Specifically,
target classification accuracy is examined for images reconstructed from two al-
gorithms: the range gate and process algorithm (detailed in Section 6.5.1.2) and
the finite mixture model algorithm (discussed in Section 6.5.2.3). The test for
the first algorithm focuses on classifying two different frigate silhouettes, while
the test for the second algorithm is to classify three different simple geometric
shapes. To the best of the author’s knowledge, there exists limited literature on
target classification of SPAD LiDAR images of targets obscured by fog.

1.2 Publications

These papers are published and related to my PhD research. I am the lead author in
all of these papers.

• [102] - J. Mau, S. Afshar, T. J. Hamilton, A. van Schaik, R. Lussana, A. Panella,
J. Trumpf, and D. Delic, “Embedded implementation of a random feature de-
tecting network for real-time classification of time-of-flight SPAD array record-
ings,” in Proc. SPIE, vol. 11005, Baltimore, USA, May 2019, p. 1100505, doi:
10.1117/12.2517875.

• [101] - J. Mau, V. Devrelis, G. Day, J. Trumpf, and D. Delic, “Impact of water
quality on Single Photon Avalanche Diode direct time-of-flight imaging,” in
Proc. Global Oceans 2020: Singapore – U.S. Gulf Coast, Biloxi, MS, USA, 2020,
pp. 1–8, doi: 10.1109/IEEECONF38699.2020.9389293.

• [100] - J. Mau, V. Devrelis, G. Day, G. Nash, J. Trumpf, and D. Delic, “Through
thick and thin: Imaging through obscurant using SPAD array,” in Proc. IEEE
Sensors, Rotterdam, Netherlands, 2020, pp. 1–4, doi: 10.1109/SENSORS47125
.2020.9278706.

• [99] - J. Mau, V. Devrelis, G. Day, J. Trumpf, and D. V. Delic, “The use of
statistical mixture models to reduce noise in SPAD images of fog-obscured en-
vironments,” in Proc. SPIE, vol. 11525, Online Only, 2020, p. 115250P, doi:
10.1117/12.2580251.

• [104] - J. Mau, J. Trumpf, G. Day, and D. Delic, “An image feature-based ap-
proach to improving SPAD Flash LiDAR imaging through fog,” in Proc. SPIE,
vol. 12274, Berlin, Germany, Nov. 2022, p. 1227405, doi: 10.1117/12.2633941.

I am a co-author in the following book chapter:

• [178] - F. Zappa, F. Villa, R. Lussana, D. Delic, M. C. J. Mau, J.-M. Redouté, S.
Kennedy, D. Morrison, M. Yuce, T. Alan, T. Hamilton, S. Afshar, “Microelec-
tronic 3d imaging and neuromorphic recognition for autonomous UAVs,” in
Advanced Technologies for Security Applications: Proceedings of the NATO

10.1117/12.2517875
10.1109/IEEECONF38699.2020.9389293
10.1109/SENSORS47125.2020.9278706
10.1109/SENSORS47125.2020.9278706
10.1117/12.2580251
10.1117/12.2633941
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Science for Peace and Security’Cluster Workshop on Advanced Technologies’,
17-18 September 2019, Leuven, Belgium, C. Palestini, Ed. Dordrecht, The
Netherlands: Springer, 2020, ch. 17, pp. 185–194, Accessed: February 15, 2024,
doi: https://doi.org/10.1007/978-94-024-2021-0_17. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-94-024-2021-0_17

I am involved in the following papers. I am acknowledged but not an author:

• [136] - A. D. Ruvalcaba-Cardenas, T. Scoleri, and G. Day, “Object classification
using deep learning on extremely low-resolution time-of-flight data,” in Proc.
Digit. Image Comput.: Techn. and Appl. (DICTA), Canberra, Australia, Dec.
2018, pp. 1–7, doi: 10.1109/DICTA.2018.8615877. [Online]. Available: https:
//ieeexplore.ieee.org/document/8615877/

• [117] - G. Nash and V. Devrelis, “Flash LiDAR imaging and classification of
vehicles,” in Proc. IEEE Sensors, Rotterdam, Netherlands, Oct. 2020, pp. 1–4,
doi: 10.1109/SENSORS47125.2020.9278655.

These papers were also published during my PhD candidature, but are outside the
scope of my PhD research. I am an author in all of these papers:

• [42] - V. Devrelis, J. Mau, G. Day, and D. Delic, “Estimation of under-
water horizontal visibility for divers and ROVs,” in Proc. Global Oceans
2020: Singapore – U.S. Gulf Coast, Biloxi, MS, USA, 2020, pp. 1–6, doi:
10.1109/IEEECONF38699.2020.9389402.

• E. G. S. Rugai, B. J. Slimming, D. Beniwal, J. Mau, G. Day, V. Devrelis, and D.
Delic. "Development of an experimental setup for measuring ocean property
changes resulting from turbulence," in Proc. SPIE, vol. 12543, Florida, United
States, June 2023, p. 125430B, doi: https://doi.org/10.1117/12.2663302.

• B. J. Slimming, D. Beniwal, V. Devrelis, J. Mau, and D. Delic. "The non-acoustic
signatures of underwater vehicles," in Proc. SPIE, vol. 12543, Florida, United
States, June 2023, p. 1254306, doi: https://doi.org/10.1117/12.2663304.

https://doi.org/10.1007/978-94-024-2021-0_17
https://link.springer.com/chapter/10.1007/978-94-024-2021-0_17
10.1109/DICTA.2018.8615877
https://ieeexplore.ieee.org/document/8615877/
https://ieeexplore.ieee.org/document/8615877/
10.1109/SENSORS47125.2020.9278655
10.1109/IEEECONF38699.2020.9389402
https://doi.org/10.1117/12.2663302
https://doi.org/10.1117/12.2663304


Chapter 2

Related Work

In the research field of utilising direct Time-of-Flight (dToF) measurements from Sin-
gle Photon Avalanche Diode (SPAD) Light Detection and Ranging (LiDAR) systems
for target discrimination purposes, the SPAD LiDAR community primarily focuses
its efforts on target detection. There is less literature addressing the utilisation of
dToF measurements for higher levels of target discrimination that provide a higher
amount of detail about the target (i.e. orientation, classification, recognition, identifi-
cation).

Most SPAD LiDAR literature related to target detection develops techniques to
perform image reconstruction from dToF measurements. Some image-reconstruction
algorithms reconstruct only depth images, while others reconstruct depth as well
as reflectivity images. This review focuses on algorithms that reconstructs depth
images. For algorithms where reflectivity images are also reconstructed, that portion
of the algorithm is omitted if the reflectivity values are not essential for reconstructing
depth images. This is because reflectivity images are beyond the scope of this thesis.

The quality of the reconstructed depth images is often discussed in terms of
whether the target is discernible by visual inspection, which can be interpreted as
a performance assessment for target detection. Currently, there are no consistent
quantitative metrics for assessing the localisation accuracy of the reconstructed dToF
values in reconstructed depth images.

The literature related to image reconstruction can be categorised based on the
environmental conditions under which dToF measurements are collected by a SPAD
LiDAR system. Various environments are of interest to the SPAD LiDAR commu-
nity, and this chapter provides an overview of the literature for each of these envi-
ronments. Firstly, Section 2.1 provides an overview of literature conducted in en-
vironments with no obscurants. Then, Section 2.2 addresses environments partially
occluded by objects such as foliage and camouflage nets. This is followed by a dis-
cussion of image reconstruction in environments obscured by scattering mediums,
including fog or smoke in Section 2.3 and turbid water in Section 2.4.

Subsequently, after discussing literature related to image reconstruction, Section
2.5 presents an overview of SPAD LiDAR literature that conducts higher levels of
target discrimination. Here, some higher levels of target discrimination algorithms
utilise reconstructed reflectivity images in addition to reconstructed depth images.
Discussion of reflectivity images are only included if it is an essential part of the tar-
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get discrimination algorithm. Finally, the chapter concludes with a table organising
the literature discussed by category. The table is based on the different imaging envi-
ronments, level of target discrimination, type of SPAD LiDAR system, and whether
the literature demonstrates the algorithm to be real-time capable, which includes the
algorithm having been implemented in real time, or the algorithm has only been
demonstrated to operate in an offline computational environment.

The literature in the field of SPAD LiDAR imaging continues to expand at a rapid
pace. The cut-off date for inclusion in the discussion of this chapter is 31 May 2024,
as all of the research presented in this thesis had concluded before this date.

2.1 Environments with no Obscurants

For algorithms that reconstruct images from dToF measurements obtained in envi-
ronments with no obscurants, most literature can be categorised based on the type
of SPAD LiDAR system that is used to collect these measurements. These systems
fall into two distinct categories: SPAD scanning LiDAR, which encompasses the use
of single SPADs and linear SPAD arrays, and SPAD array flash LiDAR, which solely
utilises rectangular arrays of SPAD. A more comprehensive explanation of the dif-
ferences between these configurations is provided in Section 3.2 of Chapter 3. These
categorisations are essential as they reflect the distinct research focuses within the
SPAD LiDAR community for each configuration.

2.1.1 SPAD Scanning LiDAR

The image-reconstruction literature on SPAD scanning LiDAR systems primarily fo-
cuses on of dToF measurements collected by a single SPAD detector, with an empha-
sis on long-range targets situated in the order of kilometres. Several studies demon-
strate the quality of the reconstructed images from dToF measurements collected by
these single SPAD scanning LiDAR systems to provide centimetre-resolution images
of targets. One such study shows reconstructed images of dToF measurements of a
target at a distance of up to 201.5 km [81]. An extended review of the image recon-
struction literature for long-range targets imaged by SPAD LiDAR systems (including
systems other than scanning types) is included in [54].

A major challenge in real-time display of SPAD scanning LiDAR imagery is the
lengthy data acquisition time required by the imaging system to accumulate suf-
ficient photon counts for effective image reconstruction [124], especially to achieve
centimetre depth resolution [106]. For instance, reconstructing an image of a 201.5-
km target [81] requires a total data acquisition time of approximately 8.5 hours due
to the long acquisition time per pixel. This extended acquisition time prompts the
literature to explore methods for reducing data acquisition times.

One common approach to reducing data acquisition time is the development of
algorithms capable of reconstructing images from data collected by a SPAD scanning
LiDAR that have sparse photon returns [175, 81, 80, 36, 15, 30, 56, 31, 16, 14]. These
algorithms aim to use fewer photon counts for image reconstruction, thus requiring
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less data, which reduces acquisition time. However, despite the reduced acquisi-
tion time, image-reconstruction algorithms that utilise this type of data often have
long execution times (in the order of 10–100 seconds), rendering them ineffective for
real-time display of SPAD scanning LiDAR imagery [158]. Nevertheless, recent ad-
vancements have demonstrated real-time reconstruction of images of moving targets
[36], showing promising progress in reducing acquisition time.

Another approach to reducing acquisition time is to optimise the data acquisition
protocol of single SPAD scanning LiDAR systems, where the authors in [73, 55] offer
two different protocols. Alternatively, instead of using a single SPAD detector, one
study uses linear SPAD arrays instead in the SPAD scanning LiDAR system, which
reduces acquisition time by acquiring data for multiple pixels simultaneously and
requiring less scanning [85].

Beyond reducing acquisition times, the image reconstruction literature explores
improving the depth resolution of dToF values in reconstructed images of SPAD scan-
ning LiDAR system. The authors in [74, 146] demonstrate that the depth resolution
can be enhanced to sub-picosecond timing precision.

Another research area in the literature focuses on improving the quality of recon-
structed images in environments where the dToF measurements have a low Signal-to-
Noise Ratio (SNR) in addition to having sparse photon returns [172, 171, 121, 46, 127].
The algorithms developed for dealing with this type of dToF measurements can be
applied in scenarios where a SPAD LiDAR system with a low-powered laser im-
ages long-range outdoor targets under bright sunlight, where sunlight-generated
noise may overwhelm the sparse photon returns [127]. Additionally, this type of
algorithm can be applied for image reconstruction of targets obscured in scattering
environments such as fog and smoke. The literature related to SPAD LiDAR image
reconstruction in scattering environment is discussed in Section 2.3.

Recently, a paper by authors in [32] has proposed a real-time image-reconstruction
algorithm that processes single SPAD scanning LiDAR data. However, when it comes
to evaluating on empirical data, it has only been demonstrated for a short-range tar-
get at an imaging distance of 2 m.

2.1.2 SPAD Array Flash LiDAR

Image reconstruction of dToF measurements collected by SPAD array flash LiDAR
systems is also a subject of investigation in the literature. Similar to SPAD scanning
LiDAR systems discussed earlier, image reconstruction has been demonstrated for
this system’s dToF measurements of long-range targets [87, 173, 176, 84, 29, 174]. An
extended review of image reconstruction literature for long-range targets imaged by
all types of SPAD LiDAR systems is included in [54].

A primary challenge in the reconstructed images from SPAD array flash LiDAR
system is its lower pixel resolution compared to SPAD scanning LiDAR systems.
The main approach to resolving this issue is in the development of Complemen-
tary Metal-Oxide-Semiconductor (CMOS) silicon SPAD planar arrays, where there
is significant research in increasing the number of SPAD detectors (pixels) within a
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microchip to enhance spatial resolution [34]. The advancement of SPAD planar array
research only experienced a notable acceleration in the early 2000s when it became
possible to use standard CMOS silicon technologies for its fabrication [25]. The initial
CMOS silicon SPAD planar array had a resolution of 4x8 [129, 34].

Two major challenges impede the creation of large planar arrays. Firstly, a higher
power consumption is necessitated for transmitting digital signals to all pixels’ tim-
ing circuitry in a large planar array of Single Photon Avalanche Diodes (SPADs) [34].
Secondly, when accommodating a significant number of SPAD detectors, the pixel
area, initially dedicated solely to SPAD detectors, must now also house digital cir-
cuitry for SPAD operation [34]. This diminishes the fill factor of the SPAD detector in
the pixel area, thereby reducing the probability of photon detection by the SPAD. For
further exploration and discourse on CMOS silicon SPAD planar array development,
comprehensive reviews can be found in [166, 122, 34, 50].

In addition to the pursuit of developing planar arrays with increased numbers of
SPAD detectors, the SPAD LiDAR community also explores other avenues to increase
the pixel resolution of SPAD array flash LiDAR images. One line of effort investi-
gates conducting scanning with the planar array in the image plane to enhance pixel
resolution [135, 87, 168, 169, 93]. Another line of effort is in increasing pixel resolu-
tion via image reconstruction [115, 59, 160, 22, 133, 158], which is a well-researched
problem in computer vision [158]. In particular, the authors in [115] have demon-
strated a real-time-capable super-resolution image-reconstruction algorithm, where
the algorithm’s execution time matches or is less than the acquisition time of the
input batch of frames.

Despite the lower pixel resolution, SPAD array flash LiDAR systems boast faster
data acquisition times than SPAD scanning LiDAR systems [153]. Therefore, when it
comes to achieving real-time display of a SPAD array flash LiDAR imaged scene, data
acquisition is not creating the bottleneck; it is the image reconstruction instead [153].
Performing fast image reconstruction becomes more difficult with the development
of higher resolution SPAD arrays, which generate larger amounts of output data with
each laser pulse cycle, adding to the processing load for image reconstruction algo-
rithms [94]. Therefore, real-time image reconstruction of data collected by a SPAD
array flash LiDAR system is an area of research in the SPAD LiDAR community.

Among the few studies that have investigated real-time image reconstruction of
SPAD array flash LiDAR dToF measurements, most of them demonstrate that their
algorithms are real-time-capable. These real-time-capable algorithms have not been
demonstrated via real-time implementation, as their execution times are typically
measured offline using collected dToF measurements. The algorithm proposed in
[79] demonstrates real-time capability, utilising a graphical processing unit (GPU)
for parallelisation and achieving high reconstruction rates for dynamic scenes. The
algorithm can produce 500 or 1,000 reconstructed images per second, depending on
the scene’s complexity. Regardless of the scene, the algorithm is able to reconstruct
one image from the amount of data that can be collected over the time of one execu-
tion of the algorithm.

Another approach to enabling real-time image display of data collected by a SPAD
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array flash LiDAR system is to engineer the SPAD array camera to output a more
compact form of raw data. This reduction in data volume may alleviate the compu-
tational burden on image reconstruction algorithms, enabling faster execution. For
instance, the authors in [63] designed a SPAD chip that outputs either a null result or
the timing measurement of a detected photon. This compact form of data output has
facilitated real-time and real-time capable imaging of underwater targets in existing
studies [94, 124]. The algorithms employed in these studies overcome challenges as-
sociated with dToF measurements collected from an underwater environment and
they will be discussed in detail in Section 2.4.

Recently, the authors in [123] proposed a real-time capable image reconstruction
algorithm which is demonstrated to create a reconstructed image from the same
SPAD LiDAR data collected by the authors in [51]. The SPAD LiDAR data is collected
by a reconfigurable 256×256 SPAD chip. The chip is different to the traditional SPAD
planar arrays; its details and differences are presented at the beginning of Section
2.5.1. Their proposed algorithm consists of image reconstruction and de-noising. For
image reconstruction, it uses Maximum Likelihood Estimation (MLE) to create the
depth and reflectivity images from the collected data. For de-noising, the authors
adapt the multi-scale approach proposed by the authors in [58]. The adaptation
is to change the algorithm from requiring a histogram as input to only requiring
one depth and one reflectivity image. The multi-scale approach uses the multi-scale
versions of these depth and reflectivity images to reject outliers and fill holes in these
images. The algorithm is implemented using Compute Unified Device Architecture
(CUDA), a parallel programming language, and C++ on a GPU. It is demonstrated to
be real-time capable when using 3×5 sized filters to reconstruct images with 64×64
pixels. Its execution time is 0.6 ms and the data acquisition time is 2ms (deduced
from 500 fps).

Detailed discussions of image reconstruction algorithms for dToF measurements
collected by SPAD LiDAR systems in other types of environments are provided in
subsequent sections, focusing on addressing challenges introduced by occlusions or
obscurants.

2.2 Partially Occluded Environments

The SPAD LiDAR community has shown interest in image reconstruction of dToF
measurements of targets in partially occluded environments. Examples of these are
semitransparent materials such as windows [144] and distributed reflective media
such as foliage [87] and camouflage net [61]. In these environments, multiple surfaces
may reflect photons to the same SPAD pixel, creating multiple peaks in the histogram
of dToF measurements [170]. For instance, a study has demonstrated image recon-
struction of a single SPAD scanning LiDAR’s dToF measurements of a mannequin
through a partially reflective material similar to a window [144]. Another study has
demonstrated image reconstruction of a similar single SPAD scanning LiDAR sys-
tem’s dToF measurements of a mannequin placed behind a wooden fence [170].
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Limited literature exists on reconstructing images of SPAD LiDAR dToF measure-
ments collected through foliage. In one study [87], the authors presents an image
of an obscured mannequin head that is reconstructed from dToF measurements ob-
tained by a SPAD array flash LiDAR system. However, there is no standardisation for
measuring the density of foliage, making direct comparisons challenging. Another
study [64] used a single SPAD scanning LiDAR system to collect dToF measurements
of a person behind foliage.

For camouflage net, the authors in [153] presents a real-time-capable image-
reconstruction algorithm, which reconstructs scenes with moving people behind the
net using a SPAD array flash LiDAR system. The algorithm reconstructs an image
every 20 ms for dynamic scenes, with each reconstruction using a batch of 3,008
frames, which also takes 20ms to acquire. This synchronous processing renders the
algorithm real-time-capable. Additionally, the reconstructed images exhibit an in-
creased resolution of 96x96, achieved through the application of super-resolution as
part of the reconstruction process. Leveraging parallelisation computational tech-
niques, the algorithm is implemented on a GPU to enable a short execution time.

Offline image reconstructions of stationary targets behind camouflage net are
reported in [155, 152, 61], with various reconstruction algorithms employed and their
offline reconstruction performances compared. These algorithms’ performance are
reported for reconstruction of dToF measurements of mannequin heads or a person,
situated within 1 m of the camouflage net. The authors in [61] proposed the L21+TV
approach while the authors in [155] utilised the L21+TV approach, and the authors in
[152] proposed the ManiPoP approach. In [152], the authors concluded that ManiPoP
provided superior reconstruction compared to L21+TV, with performance assessed
based on the visual quality of the reconstructed image.

The next section explores the reconstruction of SPAD LiDAR dToF measurements
collected through fog or smoke, which are obscurants potentially occluding the tar-
get.

2.3 Imaging Through Fog and Smoke

A branch of SPAD LiDAR literature focuses on reconstructing images of targets ob-
scured by scattering environments such as fog [158] and smoke [147]. These envi-
ronments exhibit high levels of scattering, which adversely affects the propagation
of LiDAR laser pulses [157], resulting in sparse photon returns and lower SNR in
the reconstructed image [60]. Image reconstruction of dToF measurements collected
through fog and smoke is particularly relevant for improving remote sensing, as
conventional cameras struggle to produce clear images in such environments with-
out extensive processing [157]. A significant review is be provided in this section on
this topic because it is central to the contributions of this thesis.

Currently, there is limited image-reconstruction literature for dToF measurements
collected through smoke using SPAD LiDAR systems. Existing research reconstructs
dToF measurements of an indoor scene obscured by white canister smoke [157] and
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measurements of outdoor targets obscured by piezo-ignited smoke [147], where out-
door targets are obscured by piezo-ignited smoke. Additionally, the authors in [181]
reconstructed images of smoke-obscured targets in an indoor lab environment, but
details on smoke generation are unclear. Existing image-reconstruction literature re-
lated to smoke-obscured targets employs similar reconstruction techniques for dToF
measurements as image-reconstruction literature for fog-obscured targets, such as
the algorithms investigated by [157]. Therefore, this section discusses image recon-
struction techniques for dToF measurements collected through smoke and fog collec-
tively.

2.3.1 Performance Metrics

In the current literature, the design of image-reconstruction algorithms is indepen-
dent of the SPAD LiDAR system configuration. Reconstruction performance is pri-
marily assessed based on the ability to use the reconstructed image to visually dis-
tinguish targets. Authors often describe reconstruction capability in terms of the
maximum number of attenuation lengths (ALs) at which the target is discernible in
the reconstructed image. Number of ALs is a measure dependent on wavelength, as
demonstrated by the authors in [158]. The calculation of this value is described in
detail in Section 3.6.1 of Chapter 3. Most literature present the number of ALs for
a maximum of two different wavelengths, with one of these wavelengths being the
one used by the SPAD LiDAR system in the experiments reported by the literature.
This value cannot be calculated for an alternative wavelength based solely on the
number of ALs provided for a specific wavelength, as the calculation requires either
measuring the power or knowing the beam attenuation coefficient of that wavelength
in the specific imaging environment.

Quantifying the quality of reconstructed images lacks a standardised metric and
often relies on pixel-wise assessments. One common approach is to evaluate the
percentage of pixels within a predefined threshold distance from the ground truth
value. This is employed in different formats in [158] (using depth absolute error
(DAE)) and [183] (employing Target Recovery (TR)). Another approach is a geometric
metric that involves computing the root mean square error (RMSE) between pixel
values and their corresponding ground truth values. It is referred by different names;
[86] discusses it as the average error range while [181, 183] refers to it as relative
average ranging error (RARE). Signal processing perspectives are also utilised to
quantify the reconstruction quality, with metrics such as Signal-to-Reconstruction
Error (SRE) applied in [157] and Peak Signal-to-Noise Ratio (PSNR) employed in
[70]. Additionally, for algorithms employing statistical modelling for a collection
of dToF measurements, some produce an uncertainty map to provide the standard
deviation of the fitted statistical distribution [158].
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2.3.2 Modelling each Pixel’s dToF Measurements with a Gamma Proba-
bility Distribution

A prevalent approach in reconstructing images of obscured targets is to model each
pixel’s distribution of dToF measurements as a per-pixel probability distribution.
The model in each pixel is used to inform the new depth value for the reconstructed
image.

Many studies utilise a gamma distribution to model the probability distribution
of a pixel’s dToF measurements associated with photons detected from fog or smoke
[139, 86, 181, 183, 182]. There are various algorithms within this modelling frame-
work to extract the target’s location at each pixel, forming the dToF value for the re-
constructed image at the corresponding pixel. The most common approach involves
estimating a probability distribution from the dToF measurements in a pixel and fit-
ting a gamma distribution to it using MLE. Subsequently, the gamma distribution
is subtracted from the estimated probability distribution. A Gaussian distribution
is then fitted to the residual probability distribution, with its mean representing the
new location of the target, which becomes the dToF value of the pixel in the recon-
structed image [139, 86, 181].

The physics model of photon propagation and interaction with atmospheric par-
ticles provide a rationale for the use of gamma distributions to model the dToF mea-
surements of detected photons reflected from fog or smoke. A histogram of dToF
measurements can be interpreted as the probability of a certain number of photon
detections at various distances. The major factor that influence the probability of
photons from each distance to reach the SPAD camera after multiple scattering in
the obscurant is the probability of photon transmission through fog or smoke [181].
Specifically, a photon’s transmission time can be modelled as the sum of scattering
event times, with the probability of an individual scattering event being modelled by
an exponential distribution [181]. The probability of photons transmitting through
fog or smoke is the sum of the probabilities of their total number of scattering events
[181]. Since the sum of any number of independent exponential random variables
is gamma distributed, the probability of photons transmitted through fog or smoke
follows a gamma distribution [181]. Therefore, the probability distribution of dToF
measurements of detected photons reflected from fog or smoke can be modelled by
a gamma distribution. A more detailed mathematical derivation explaining why the
gamma distribution is used can be found in [181]. Despite the authors in [181] fo-
cusing on smoke in their modelling, the derivation applies to fog as well because the
equation for modelling scattering is the same, except for differences in the attenua-
tion coefficient values.

The differences between image-reconstruction algorithms that use the probability
of dToF measurements play a crucial role in their performance and applicability.
The first application of this approach by the authors in [139] laid the groundwork,
utilising MLE for fitting gamma and Gaussian distributions. The authors in [181]
found this algorithm found this algorithms from [139] can reconstruct up to 3.6 ALs
(based on 1,064 nm) of smoke, which is higher than the equivalent number of ALs
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found by the authors in [139]. However, the algorithm is not real-time capable due to
its execution time being longer when compared with the data acquisition time. The
authors in [86] used a similar approach. Rather than employing the approach of [139]
in estimating two different parameters called shape and rate parameters, the authors
in [86] estimated only the shape parameter, leveraging the attenuation coefficient
of fog to calculate the rate parameter. However, the authors in [181] found that this
algorithm from [86] can only reconstruct up to 1.2 ALs (based on 1,064 nm) in smoke,
which is at a lower fog level than the algorithm in[139]. The authors in [181] refines
this algorithm from [86] by integrating Continuous Wavelet Transform (CWT) for
rate parameter estimation, achieving enhanced reconstruction capability up to 3.6
ALs in smoke at 1,064 nm. Despite its advancements, the smoke generation process
is unclear from [181].

In [183], the authors presents a refined approach to the utilisation of gamma dis-
tribution fitting by performing the process three times. MLE is first applied to fit a
gamma distribution to the dToF measurements (which they refer to as the original
histogram data), aiming to approximate the fog distribution and use the residual
dToF measurements to calculate a preliminary depth estimation of the target. These
preliminary estimations serve multiple purposes, including background noise sup-
pression and correction of the dToF measurements for the SPAD’s pile-up effect. The
second fitting of a gamma distribution uses MLE for better estimation. Then, the least
squares method is used for the third fitting of a gamma distribution. This iterative
refinement process enables the reconstruction of a target up to 1.4 km away under
1.7 km visibility in outdoor fog conditions, showing the algorithm’s robustness and
effectiveness in challenging real-world scenarios.

The authors in [184] employ the algorithm described in [183] within a multi-scale
framework. This approach combines histograms of groups of pixels’ dToF measure-
ments into a single histogram of dToF measurements to create superpixels for each
dataset at each level of the multi-scale framework. The number of pixels in each
group is determined by the number of pixels that constitute a superpixel at each
level. The algorithm developed by the authors in [184] involves three steps applied
to each dataset at every level of the multi-scale framework.

Firstly, the algorithm from [183] is applied to obtain the target’s depth and re-
flectivity, as well as the dToF measurements’ associated histogram peak’s echo pulse
width. Secondly, the output from the previous step is analysed to identify spatial
similarity features, which are then used to denoise the reconstructed image at each
level. Finally, object edges are detected in each image at each level to further denoise
the reconstructed images.

The algorithm proposed in [184] demonstrates its capability to reconstruct scenes
similarly to [183], with the target being up to 1.4 km away under outdoor fog visibil-
ity of 1.7 km. It reconstructs an image with only 800 frames, a significant reduction
from the 20,000 frames required in [183], while maintaining similar image quality.
This demonstrates that less data acquisition time is required to collect enough frames
for image reconstruction using the algorithm proposed by the authors in [184].

In [182], an alternative approach to utilising the gamma distribution is explored.
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The authors apply Principal Component Analysis (PCA) and K-clustering to the
residual probability distribution after fitting and subtracting the gamma distribu-
tion. This algorithm aims to distinguish between different photon detections reflected
from various sources such as the target (ship), sea surface, and secondary reflections
from both the sea surface and ship. The authors hypothesised that the distribution of
dToF measurements of secondary reflections might exhibit a similar probability dis-
tribution shape to the dToF measurements from the ship, hence the need for a more
sophisticated algorithm to differentiate them. Despite not accounting for fog in their
image-reconstruction algorithm, the authors demonstrated this algorithm to recon-
struct images of ships that are mildly obscured by sea fog. However, no quantitative
measures are provided for the fog level in the scene during imaging.

2.3.3 Modelling each Pixel’s dToF Measurements with a Poisson Probabil-
ity Distribution

The preceding discussion in this section has primarily focused on modelling the
probability distribution of each dToF measurement across a batch of frames using a
gamma distribution. An alternative approach commonly adopted for image recon-
struction involves utilising a Poisson distribution.

The Poisson distribution is derived from a different perspective on photon trans-
mission physics. The gamma distribution models the number of photons from the
sum of photon scattering events. In contrast, the Poisson distribution models the
number of photon returns directly, where the distribution’s mean is defined to be the
theoretical number of photons returns that the SPAD camera registers as a function
of depth [143].

Using the Poisson distribution for modelling the number of photon returns is
commonly employed for analysing dToF measurements collected in environments
without obscurants. In such scenarios, where it is assumed that only one surface
is present per pixel, the theoretical count of detected photons is computed as the
product of the single surface’s reflectivity and the SPAD LiDAR’s system impulse
response at the depth of the surface, with the addition of the background noise and
dark counts of the SPAD detector [127, 143, 15].

For scenarios involving multiple surfaces per pixel, the Poisson distribution’s
mean is defined as the summation of the products of each potential surface’s reflec-
tivity and the SPAD LiDAR’s system impulse response at the corresponding depth of
the surface, along with the background noise and dark counts of the SPAD detector
[61, 152, 60].

When utilising the Poisson distribution to model the probability distribution of
dToF measurements across a batch of frames acquired in environments obscured by
fog, the Poisson distribution’s mean parameter is adjusted to incorporate the light
propagation characteristics through fog. In the literature, two distinct adaptation
approaches have been identified.

In the approach outlined in [137], an adaptation is made to the mean parameter
of the Poisson distribution and it is defined as the sum of the mean count of the



§2.3 Imaging Through Fog and Smoke 21

target signal and the background noise. The target signal mean is further defined as
the convolution of the laser pulse profile with two different terms, each representing
the fog and the target’s reflectivity and depth, respectively.

The first term encapsulates the fog, expressed as the product of the fog’s attenu-
ation factor and a unit step function denoting the depths at which the fog is present.
The unit step function is employed under the assumption of a uniform fog distribu-
tion. The second term represents the target, calculated as the product of the target’s
attenuation factor and the Dirac delta function localised at the depth value of the
target.

By employing MLE, they fit only the fog portion of the Poisson model to a set
of dToF measurements, where they approximate the Poisson distribution as a Gaus-
sian distribution for easier computation. The computation is further aided by an
Expectation-Maximization (EM) algorithm to expedite the process. Subsequently, the
estimated fog model is subtracted from a separate probability distribution derived
from the histogram of the same set of dToF measurements. The Generalised Likeli-
hood Ratio Test (GLRT) is then applied to calculate a likelihood value for each bin of
the residual histogram, determining which bin contains the target. [137]

The authors in [137] verified the algorithm’s capability to reconstruct images of
fog-obscured targets, although the precise measure of the fog level remains unclear.
The algorithm is capable of reconstructing one pixel every 50 ms. However, the
SPAD scanning LiDAR system necessitates 64 ms per pixel for acquisition. Conse-
quently, although the reconstruction algorithm operates faster than data acquisition,
the imaging system’s scanning speed renders it impractical for real-time imaging
applications.

The second distinct application of the Poisson distribution’s mean parameter is
proposed for the Median-based Multi-scale Restoration of 3D images (M2R3D) algo-
rithm detailed in [158]. In the M2R3D algorithm, the mean of the Poisson distribution
follows a similar definition to the scenario discussed earlier where there is only a sin-
gle surface without obscurants. Specifically, it is determined as the product of the
single surface’s reflectivity and the SPAD LiDAR’s system impulse response at the
depth of the surface. However, instead of incorporating the background noise and
dark counts of the SPAD detector, the noise is adjusted to be either the background
noise or the noise from detected photons reflected from fog, depending on which
value is greater.

The noise attributed to fog is characterised by the tail end of an exponential
distribution. This is feasible because the dToF measurements collected by the SPAD
LiDAR system in [158] utilises a range gate, which restricts dToF measurements to
only a narrow depth range of 3 m. Since the targets being imaged are located at a
minimum distance of 50 m away, the SPAD primarily detects photons reflected from
further into the fog, rather than the entire fog span along the imaging range.

To fit the model to the data, the authors employ a Bayesian framework with prior
distributions of depth, reflectivity and hyperparameters. These hyperparameters are
used to preserve the edges of the target in the reconstructed image. The optimisation
problem is represented using a Maximum a-Posteriori (MAP) method, incorporating
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multi-scale information into the likelihood function. For computational efficiency, a
coordinate descent algorithm is utilised.

With this approach, the algorithm demonstrates the ability to reconstruct images
for dToF measurement collected in up to 5 ALs of oil-based vapor, with respect to
a wavelength of 1,550 nm. Moreover, the algorithm is implemented on a GPU and
utilises parallel computing techniques, enabling real-time reconstruction of frames
of a moving target obscured by oil-based vapor up to 3 ALs (based on 1,550 nm).
These frames are captured using a SPAD array flash LiDAR system. Additionally,
the authors show that the algorithm can reconstruct images offline at a rate of 10
images per second, demonstrating real-time capability.

2.3.4 Use of Prior Distributions in a Bayesian Model

The ManiPoP algorithm, introduced in [152], employs a Bayesian model for fitting
the data. While not originally intended for reconstructing fog- or smoke-obscured
targets, this algorithm was adapted by [60] to reconstruct images of dToF measure-
ments collected in a water-based fog scenario at 2.8 ALs, with respect to a wavelength
of 1,550 nm. This algorithm does not use the Poisson distribution’s mean to account
for effects from fog.

The ManiPoP algorithm structures the reconstruction problem as a Bayesian model
and incorporates prior distributions. These prior distributions capture two key prop-
erties of the data. Firstly, one prior distribution accounts for spatial correlations
between pixels in the image to enhance their depth values. It assumes that pix-
els belonging to the same surface are generally close in distance range. Secondly,
another prior distribution accounts for light propagation properties, assuming that
depth values collected for the same pixel should be segregated into groups based on
their distances. This assumption arises from the algorithm’s design for imaging mul-
tiple surfaces, thereby anticipating photon returns from different surfaces to occur
at varying depths. To solve the optimisation problem, the algorithm also employs a
MAP method, similar to [158]. It leverages the Bayesian framework to estimate the
most likely depth values given the observed data and prior distributions.

2.3.5 Use of Regularisation Terms in Optimisation Problems

In contrast to modelling light propagation properties using known probability distri-
butions, an alternative approach is to incorporate regularisation terms directly into
the optimisation problem. This approach does not involve estimating the parameters
of probability distributions but rather focuses on estimating the depth of the target
directly for image reconstruction. This is achieved by designing the optimisation
problems to incorporate a Poisson distribution model, which models the number of
photons detected at each possible dToF value for each pixel. The Poisson distribution
used here is for the case where there are no obscurants, so it only accounts for the
depth and reflectivity of the target as well as background noise and dark counts of
the SPAD detector. Multiple algorithms employ this technique [60, 61, 56], where the
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regularisation terms used in the optimisation problem are what differentiate these
algorithms from each other. These regularisation terms are designed to capture the
known light propagation properties and characteristics of SPAD LiDAR data.

One such algorithm utilising this approach is the M-NR3D algorithm, as de-
scribed in [60], which is specifically designed for reconstructing images of fog-obscured
targets. Additionally, TV-l21 [61] and RDI-TV [56] algorithms, though not originally
intended for fog or smoke-obscured targets, have been adapted for this application
in [60] and [157]. All of these three algorithms utilise Alternating Direction Method
of Multipliers (ADMM) to compute the solution to the optimisation problem.

In M-NR3D, two regularisation terms are employed to account for reflectivity and
sparse photon returns [60]. TV-l21 utilises regularisation terms for spatial correlation
of pixels and to handle the large number of empty bins when the dToF measure-
ments are arranged into a histogram, due to the SPAD camera having a fine depth
resolution. By contrast, RDI-TV incorporates total variation (TV) and sparsity of the
discrete cosine transform (DCT) coefficients as regularisation terms.

The M-NR3D algorithm, specifically designed for fog-imaging applications, has
demonstrated the best performance out of these three algorithms, capable of recon-
structing targets obscured by up to 3.8 ALs (with respect to 1,550 nm) in water-based
fog [60]. Similarly, TV-l21 has been assessed in the same study, demonstrating its
ability to reconstruct targets obscured by up to 3.1 ALs (based on 1,550 nm) in water-
based fog [60]. RDI-TV has been evaluated in [157], proving its effectiveness in
reconstructing targets within similar conditions, up to 3.1 ALs (based on 1,550 nm)
of water-based fog or glycol-based smoke.

Out of the three algorithms, only the execution time of RDI-TV has been mea-
sured. Its execution time is in the range of tens of seconds, suggesting its impracti-
cality for real-time applications [157].

2.3.6 Use of Convolutional Kernel in Signal Processing Approach

Treating the effect of fog or smoke on light propagation as a convolutional kernel on
the system’s impulse response presents another approach to reconstructing images
of obscured targets [161]. In this algorithm, the histogram of dToF measurements is
regarded as a signal of total number of photons detected for each possible distance
(i.e. possible dToF measurement), and the authors assume the measured signal is a
convolution of the impulse response of their employed SPAD LiDAR system with a
power propagation loss model of light in fog. In the power propagation loss model,
the authors assume the fog is uniformly spanned across a pre-defined depth range.
The impulse response is assumed to be the signal containing the dToF measurements
of an unobscured target by their employed SPAD LiDAR system. The aim of this ap-
proach is to determine the impulse response signal, which provides the reconstructed
dToF value of the target. The authors employed two approaches to compute it. One is
employing deconvolution calculations and the other is utilising morphological filters
presented by the authors in [72]. The maximum obscurant level that these algorithms
can reconstruct images at is unclear from [161].
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A similar convolutional kernel approach is adopted in [82], where spatial and
temporal effects are represented. Although not specifically designed for reconstruct-
ing obscured targets, this approach is applied in [70] for reconstructing a building
at 13.4 km in up to 2.7 ALs (with respect to 1,550 nm) of environmental fog. The
authors in [70] claim the reconstruction performance should be readjusted to 5.2 ALs
(with respect to 1,550 nm) to account for the effect of geometric attenuation. The al-
gorithm’s model consists of a 3D matrix containing all pixels’ reflectivity and depth
values, which is convolved with spatial and temporal kernels [70]. An inverse de-
convolution process is applied to determine the dToF values for the reconstructed
image.

2.3.7 Machine Learning Algorithms

Machine learning algorithms have been explored for reconstructing images of ob-
scured targets. Specifically, a non-local network for reconstructing images, originally
proposed by [121], has been applied in [70] to reconstruct dToF measurements of
obscured targets. The network accounts for long-range temporal and spatial correla-
tions to distinguish between objects and noise as part of its image reconstruction pro-
cess. The network is trained on simulated dToF measurements of unobscured indoor
targets by [121] and tested on empirical dToF measurements of outdoor obscured
targets by [70]. Although not initially designed for reconstructing fog-obscured tar-
gets, the authors in [70] claim that the reconstruction performance of this algorithm
is also 2.7 ALs (with respect to 1550nm) with an additional 2.5 ALs from geometric
attenuation, using the same imaging scene for testing [82]. Moreover, the network is
real-time capable if implemented on a GPU, as demonstrated by [70].

2.3.8 Unmixing Algorithm

All of the discussed algorithms utilise the distribution of dToF measurements for
image reconstruction. However, the unmixing algorithm by [127], which has been
applied for fog and smoke imaging in [157, 60], does not use distributions as part
of its processing. Instead, it processes a list of dToF measurements arranged in
order of detection by the SPAD camera. This algorithm employs an iterative cycle
of processing to ensure there are enough dToF measurements for depth estimation.
Depth is estimated by solving a constrained MLE problem using the list of photon
detection times.

The iterative cycle involves windowing to remove dToF measurements that do
not belong to a potential cluster of dToF measurements and reflectivity estimation.
A variation of superpixels is used to add dToF measurements to pixels that do not
have enough photon counts for depth estimation. This superpixels process repeats
until all pixels have enough dToF measurements for depth estimation or there are not
enough neighbouring pixels available to utilise for adding more dToF measurements
to the pixel.

Moreover, the unmixing algorithm incorporates depth information from other
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pixels and performs inpainting after depth estimation is calculated. Although not
designed for the reconstruction of fog-obscured targets, it has been demonstrated to
work in different types of fog-obscured environments [157, 60]. Its highest recon-
struction performance is 3.8 ALs (with respect to 1,550 nm) of water-based fog [157].
However, its execution time for reconstructing one image has been measured in [157]
to be in the order of seconds (over different numbers of frames, ranging between 156
to 46,800), making it not real-time capable.

In summary, most of the image-reconstruction algorithms proposed in the litera-
ture have not been demonstrated to be able to real-time-process live feeds of SPAD
LiDAR data. However, a few studies [158, 70] have demonstrated algorithms that
are real-time capable. This means each of the algorithms’ execution time is equal to
or lower than their corresponding SPAD LiDAR system’s data acquisition time, such
that the algorithm is able to produce reconstructed images in real time if fed with a
live stream of frames.

In the next section, literature related to image reconstruction in turbid water is
discussed.

2.4 Imaging Through Turbid Water

Turbid water presents another challenging environment for conducting image recon-
struction of dToF measurements collected through it using a SPAD LiDAR system.
Similar to fog and smoke, turbid water also causes scattering, leading to sparse pho-
ton returns [94]. In addition, there is a lower number of detected photons reflected
from the target compared with the background [124], which in turn lowers the SNR
for the reconstructed image.

Despite turbid water sharing similar scattering properties with fog and smoke,
image-reconstruction literature related to turbid water in the SPAD LiDAR commu-
nity appears to be distinct from that related to fog and smoke. There has been limited
literature that applies image-reconstruction algorithms for dToF measurements from
fog or smoke to dToF measurements from turbid water, and vice versa.

To the best of my knowledge, the current literature predominantly focuses on
the reconstruction of images derived from dToF measurements acquired within con-
trolled freshwater tank environments, particularly under simulated turbid condi-
tions. The common practice entails the utilisation of Maalox as a standard chemical
agent for emulating turbidity [89, 88, 92, 95]. Maalox is chosen in the literature
because the authors in [88] shown that water with 0.003% of Maalox has a similar
attenuation length (AL) spectrum (over wavelengths between 500–900 nm) as 15-
hours-settled sea water.

The current image-reconstruction literature related to reconstructing dToF mea-
surements of water environments are evaluated with data collected by different SPAD
LiDAR systems. This includes single SPAD scanning LiDAR systems [88, 89, 91, 57,
90], linear SPAD array scanning LiDAR system [92], and SPAD array flash LiDAR
system [91, 95, 94, 138]. Traditionally, dToF measurements are collected with these
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systems positioned external to the water tank while the target remains submerged.
However, recent advancements have led to submerging these systems within the wa-
ter tank for collecting dToF measurements of submerged targets [94].

Similar to image-reconstruction algorithms created for fog or smoke environ-
ments, image-reconstruction algorithms for turbid water environments are also as-
sessed in terms of the maximum number of ALs at which the target is discernible
in the reconstructed image. Section 3.6.1 of Chapter 3 describes how the number
of ALs can be calculated. The number of ALs is a measure dependent on wave-
length, as demonstrated by [88]. In the existing literature, most related literature
employs a wavelength in the visible light range for the SPAD LiDAR system. Most
literature related to imaging in turbid water present the number of ALs for the wave-
length used by the literature’s employed SPAD LiDAR system. The AL value cannot
be calculated for an alternative wavelength based on the number of ALs provided
for a specific wavelength, as the calculation requires either measuring the power or
knowing the beam attenuation coefficient of that wavelength in the specific imaging
environment.

Currently, image reconstructions can achieve a quality where the target is dis-
cernible for up to 9.2 ALs (with respect to 690 nm) with single SPAD scanning LiDAR
systems [89], up to 8.3 ALs (with respect to 670 nm) with linear SPAD array scanning
LiDAR systems [92], and up to 7.5 ALs (with respect to 532 nm) with SPAD array
flash LiDAR systems [94].

For real-time image reconstruction, the literature proposes algorithms capable
of real-time processing of dToF measurements of underwater targets collected by a
SPAD array flash LiDAR system [94, 124], as mentioned at the end of Section 2.1.

In [124], the authors demonstrate the real-time capability of their algorithm for re-
constructing dynamic scenes with targets moving in water. They employ a 128×128
SPAD array flash LiDAR system to capture the scene. Leveraging parallelised com-
putational techniques and GPU implementation, the algorithm achieves execution
times ranging from 1 to 6.3 ms on simulated data of a 128×128 SPAD array flash
LiDAR system, where the time variation depends on the number of employed filters.
Processing a batch of 64 frames at a time, the execution time is shorter than the data
acquisition time of 128 ms.

Real-time image reconstruction of live SPAD array flash LiDAR dToF measure-
ments has been demonstrated by [94], which, to the best of the author’s knowledge,
is one of the few studies that demonstrate real-time reconstruction of live SPAD
LiDAR data. In [94], the authors develop a 192×128 SPAD array flash LiDAR system
designed for underwater imaging. By porting existing image-reconstruction algo-
rithms onto a GPU for real-time processing, they evaluate three different algorithms:
cross-correlation, RT3D [153], and ensemble method [44]. All three algorithms can
be parallelised. Cross-correlation and ensemble method can naturally be adapted
for parallel computation due to their pixel-wise processing approach, while RT3D
incorporates point cloud denoising techniques from the computer vision commu-
nity to enable parallel computation. These algorithms are reported by the authors in
[94] for their real-time reconstruction performance of dynamic scenes, including a T-
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connector submerged in water rotating in two different orientations. The algorithms’
execution times across different levels of obscurants in the water (ranging from 0.5
to 6.6 ALs) varies between 0.91 to 1.27 ms for cross-correlation, 28.14 to 34.67 ms for
RT3D, and 29.47 to 35.23 ms for the ensemble method. The authors in [94] found that
higher obscurant levels resulted in reduced execution times. Importantly, all these
execution times are below the 50 ms data acquisition time for 50 frames, enabling
real-time reconstruction at a speed of 10 frames per second using the built SPAD
array flash LiDAR system.

The literature overview related to image reconstruction in the SPAD LiDAR com-
munity concludes here. The subsequent section discusses literature proposing clas-
sification algorithms for SPAD LiDAR data.

2.5 Higher Levels of Target Discrimination

Besides conducting image reconstruction for target detection, algorithms for higher
levels of target discrimination (i.e. orientation, classification, recognition, identifica-
tion) are developed for data collected by SPAD LiDAR systems. For these higher
levels of target discrimination, the current literature mainly focuses on single targets
imaged by SPAD LiDAR systems without the presence of obscurants.

The primary performance metric used in the literature for these higher levels of
target discrimination algorithms is overall accuracy. However, for target classification
algorithms that specifically uses machine learning, some authors include additional
performance metrics adopted from the machine learning community. These metrics
include precision, recall, and F1-measure, which are employed in [136, 113]. A back-
ground explanation of these target classification metrics is provided in Section 3.7 of
Chapter 3.

The design of these higher levels of target discrimination algorithm remains in-
dependent of the SPAD LiDAR system configuration. Typically, these algorithms
begin by collecting dToF measurements from the target, then the measurements are
processed for image reconstruction to generate depth and, in some cases, reflectivity
images. This is followed by image processing techniques to transform these depth
and reflectivity images into discernible representations of the target, where the target
can be detected in these images. Subsequently, these images are used for high levels
of target discrimination.

When it comes to reconstructing images of unobscured targets for higher levels
of target discrimination, the widely used basic technique of the TCSPC is applied to
reconstruct images. In [117], only reconstructed depth images are utilised for classi-
fication, by using the TCSPC technique. The reconstructed dToF value is only used
in the reconstructed depth image only if the number of photons detected exceeds a
certain threshold. Each reconstructed depth image is generated from 15–50 frames
[117]. Alternatively, some approaches involve SPAD LiDAR systems outputting an
array of histograms of dToF measurements for each pixel, with TCSPC applied on-
chip [134]. In such scenarios, depth and reflectivity images can be automatically
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generated from these histograms.
One classification approach bypasses TCSPC to reconstruct depth images, directly

utilising SPAD LiDAR data to produce a discernible image. This involves aggregating
all dToF measurements from all pixels into a histogram to discern the distances of the
target, background, and foreground. Subsequently, these distance values are utilised
during the image-processing step to reconstruct a discernible depth image of the
target for classification [136].

The approach proposed by the authors in [142] diverges from utilising recon-
structed images for classification. Instead, it explores an event-based 8×8 SPAD
LiDAR system, and demonstrates classification capability on a set of simulated 8×8
event-based SPAD LiDAR data of digits 0–9. The classification algorithm for this
data type employs a neuromorphic system [142].

Various image-processing techniques are applied to make the target more dis-
cernible in the reconstructed image before it is used for target classification. In [117],
the author employs coordinate transformation on the reconstructed depth images
to generate images of the same targets but captured from a different angle. Addi-
tionally, silhouette images are generated from these transformed depth images to
provide additional data for classification [117]. The authors in [136] apply various
image-processing techniques, including a shot noise removal algorithm, to create a
single 2D binary mask of the target from the reconstructed depth image [136]. An-
other approach involves employing neural networks. In [134], the author trains a
network to enhance the resolution of a set of 4×4 histogram data into a set of 32×32
histogram data for classifying different human poses.

For techniques that perform higher levels of target discrimination, machine learn-
ing is a prevalent approach [136, 134]. In [136], authors evaluated a 2D image
Convolutional Neural Network (CNN) and a 3D image CNN, achieving 95% av-
erage precision and recall for categorising three different targets (airplane, chair, and
Uncrewed Autonomous Vehicle (UAV)). Each target is imaged under various indoor
and outdoor conditions, with the data having an image resolution of 64×64 pixels.
However, the extensive data processing involved to create a discernible image for
target classification renders this approach non-real-time capable. Another machine
learning approach is presented in [134], where it conducts classification of different
human poses, using a neural network trained on 32×32 pixel-wise histogram data
(from previous image processing) and reflectivity data collected by the same 4×4
SPAD sensor. The author integrates this neural network with the image-processing
network for training, creating three networks based on the number of people’s poses
being estimated (up to 3) and training them with either 7,000 or 9,500 frames, de-
pending on the number of people. Additionally, the authors demonstrate real-time
pose estimation, with the total execution time (including image processing and pose
estimation) approximately 0.134 seconds per frame, although it is unclear for which
of the three networks this measurement is taken.

In contrast, a different machine learning approach is tested in [117]. PCA is
utilised to extract target features, and then the authors investigated three different
target classification algorithms: Gaussian Naïve Bayes classifier, nearest-neighbour
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classifier, and CNN. The CNN achieves the highest classification accuracy of 86.3%.
The closest example of higher levels of target discrimination of obscured targets

imaged by a SPAD LiDAR system is [182]. In [182] (discussed in Section 2.3, the au-
thors utilise PCA and K-clustering algorithms to classify different waveform returns
received from the scene. This classification is tested to differentiate detected photons
reflected from the ship compared with secondary reflections of the ship from the sea
surface or direct reflections from the sea surface.

The authors in [66] developed a machine learning algorithm that deviates from
this traditional structure. The authors utilise a deep learning network to perform tar-
get discrimination on the SPAD LiDAR data directly, specifically to determine target
orientation and perform target classification. The input data to the deep learning net-
work is in the form of histograms of dToF measurements. The authors train a deep
learning network using two different synthetic SPAD LiDAR datasets: one compris-
ing 45 different classes of targets, and the other consisting of 24 different view angles
of a target "bunny". The deep learning network’s classification accuracy of two tar-
gets (jet vs bunny) imaged at 3 m varies between 67% and 100%. For evaluating the
algorithm in determining the orientation of the target, the algorithm’s accuracy in
determining different imaged perspectives of a bunny in the laboratory ranges from
64.58% to 100%. Both classification and orientation accuracies depend on the differ-
ent SNR levels of the collected data. When used to determine different orientation of
a flying drone imaged outdoors at a distance of 200 m, the classification accuracy is
79.20%.

2.5.1 Algorithms using Data from a Reconfigurable 256×256 SPAD Chip

Recently, there has been an influx of new algorithms for higher levels of target dis-
crimination [114, 112, 113, 140] designed for targets imaged by a SPAD LiDAR system
[53] that uses a reconfigurable 256×256 SPAD chip [69]. This chip can be configured
to detect multiple photon events per laser pulse cycle, marking a departure from the
conventional SPAD LiDAR setup where only the first photon detection is registered
per laser pulse cycle [51, 113]. The reconfigurable nature of the chip allows it to
group its 256×256 SPAD pixels into 4×4 groups, effectively converting the detec-
tor into a 64×64 array of macropixels that can detect multiple photons in one laser
pulse cycle. Photon detection from each SPAD detector in the 4×4 macropixels is
combined to provide a single histogram of dToF measurements, thereby generating a
multi-event histogram for each of the 64×64 macropixels [69, 51]. This capability to
detect multiple photons in one laser pulse cycle introduces significant differences in
the histogram’s behaviour, especially in high ambient light conditions [51]. The new
higher-levelled target discrimination algorithms based on machine learning neural
networks take advantage of this unique feature of the reconfigurable SPAD chip,
representing a departure from the traditional structure discussed in the previous
section for the higher levels of target discrimination for SPAD LiDAR data.

In addition to multi-event histogramming, this reconfigurable 256×256 SPAD
chip introduced by [69] can be reconfigured for photon counting mode. In this mode,
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it generates a 256×256 reflectivity image. In addition, this chip can seamlessly switch
between this photon-counting mode and the timing frames (which produces multi-
event histograms) for high-speed imaging. This means reflectivity and depth images
can be obtained concurrently by using this chip. This is demonstrated by the au-
thors in [51, 52] with imaging events such as a fast-rotating fan, man juggling a ball
indoors and outdoors, an apple shattered by a hammer [51], balloon bursting and a
ball thrown into a plate of milk [52].

The algorithms proposed by the authors in [140] for target identification and de-
termining the target’s orientation take advantage of this mode-switching capability
to access both photon counting and multi-event histogram information. Specifically,
the proposed neural network requires only the multi-event histogram of dToF mea-
surements and the reflectivity images as input, eliminating the need for creating a
reconstructed depth image to conduct target discrimination. This improves compu-
tation efficiency.

Another feature of this 256×256 SPAD chip is its ability to be configured to
utilise only half of its SPAD pixel rows. Consequently, the chip operates with a
reduced array size of 256×128 SPADs instead of its full 256×256 array. This config-
uration results in images having 64×32 macropixels instead of 64×64, where each
macropixel still consists of 4×4 SPADs [112, 113]. Some classification algorithms
[112, 113] exploit this feature to enhance computational speed, as less time is spent
on data throughput. This represents an effective compromise, trading off reduced
image resolution and field-of-view (FOV) for faster classification speed.

These recent higher-levelled target discrimination algorithms have found applica-
tions in various domains, including classifying hand gestures under different lighting
conditions and background objects [112], human activity recognition (e.g. running,
waving, jumping, standing up) [114], identifying drone type, and determining its
orientation [140], and classifying six different targets (e.g. bucket, chair, duck, foot-
ball, box, statue) [113]. Some algorithms [112, 140] have achieved overall accuracy
above 90% when utilising both the multi-event histogram and reflectivity data. The
authors in [112] claim their network’s execution time is under 25 ms for each frame,
with image acquisition time in the millisecond range. Therefore, the proposed clas-
sification regime by [112] qualifies as a real-time-capable system, meaning it has not
demonstrated real-time classification for live feed of images, but has the capability to
do so.

Alternatively, [113] found that using solely the multi-event histogram data re-
sulted in better overall accuracy, albeit the improvement being relatively small com-
pared with using both the multi-event histogram and reflectivity values. Therefore,
the decision to use reflectivity values will depend on the specific context in which
the network is deployed. The use of reflectivity values may lead to a smaller neural
network in scenarios where the number of bins in the structure of the histogram data
exceeds 16 bins [113]. The authors claim that the execution time of their network,
with or without using reflectivity values, is less than 1 ms per frame. Even when
including the data acquisition time from the SPAD LiDAR system, the total data ac-
quisition and execution time remains in the millisecond range. Consequently, this



§2.6 Chapter Summary 31

classification network and the SPAD LiDAR system proposed in [113] constitute a
real-time-capable classification system.

Recently, the authors in [114] presented a real-time-capable classification system
that uses solely the multi-event histogram data. This system utilises a deep learning
network to classify seven different classes of human activity, such as crouching, idle,
waving, and running. The network consists of two parts: the first part segments
the human figure from a 64×32 SPAD LiDAR reconstructed depth image, while the
second part classifies the human activity.

Synthetic SPAD LiDAR data, in the format of dToF measurements instead of
multi-event histograms, is used to train the network. The segmentation part of the
network is trained on 80,000 examples of reconstructed depth images from scenes
containing one or two humans and various objects at different locations, with 10%
of the data used for validation. For the classification part, 7,600 reconstructed depth
image sequences are used, with each sequence showing a human performing one
class of activity. Similarly, 10% of this set is used for validation. The deep learn-
ing network is trained and tested on a desktop computer with GPU assistance and
processes a set of 32 frames for each classification.

The empirical data configures the 256×256 SPAD chip to collect data at 64×32
pixel resolution. The imaging scene consists of a human and other objects in an
outdoor environment at a stand-off distance of 30–40 m. The data acquisition speed
is 50 frames per second. The deep learning network is tested on 1,237 batches of
32 frames, achieving a weighted average accuracy of 89%. Some misclassifications
occur due to some sets of frames containing the human transitioning between two
classes of activities. The network processes data at 66 frames per second with GPU
assistance, making it real-time capable. However, this is contingent on each block
of 32 frames being resampled from 64 raw frames, with the first half of the 64 raw
frames extracted from the latter half of the previous block of 64 raw frames.

This concludes the overview of the related literature for the application of dToF
measurements from SPAD LiDAR systems for reconnaissance purposes. A summary
of the literature discussed in this chapter is presented in Table 2.1 in Section 2.6
below.

2.6 Chapter Summary

An overview of the related work discussed in this chapter is provided in Table 2.1.
It organises the literature discussed by category. The table is based on the different
imaging environments, level of target discrimination, type of SPAD LiDAR system,
and whether the literature demonstrates the algorithm to be real-time capable, which
includes the algorithm having been implemented in real time, or the algorithm has
only been demonstrated to operate in an offline computational environment. The
cells highlighted in blue in Table 2.1 are the research areas directly contributed to by
this thesis. Entries in bold represent my own published articles, as listed in Section
1.1 of Chapter 1.
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Chapter 3

Background

This chapter introduces the key concepts used in this thesis. It starts with an expla-
nation and motivation for using the various elements in a Single Photon Avalanche
Diode (SPAD) array flash Light Detection and Ranging (LiDAR) system for collect-
ing 3D empirical data reported in this thesis (Section 3.1). Next, the operation of the
SPAD array flash LiDAR systems is explained (Section 3.2). Section 3.3 covers Time-
Correlated Single-Photon Counting (TCSPC), a fundamental technique underlying
all the algorithms presented in this thesis. The technical specifications of the SPAD
array flash LiDAR systems are provided in Section 3.4. Then, Section 3.5 clarifies
the version of the Beer-Lambert Law employed in this thesis to calculate the beam
attenuation coefficient. Metrics for measuring the level of obscurant in water and
fog are outlined in Section 3.6, including the number of attenuation lengths (ALs)
(Section 3.6.1), Secchi Disc (SD) depth (Section 3.6.2), and visibility (Section 3.6.3).
Finally, Section 3.7 presents the performance metrics for evaluating different target
classification algorithms. While SI units are used throughout the thesis, other units
may occasionally appear in some equations.

3.1 Motivation for Using a SPAD Array Flash LiDAR System
for 3D Imaging

All data that are presented in this thesis are collected by a Complementary Metal-
Oxide-Semiconductor (CMOS) silicon 32×32 SPAD rectangular planar array within
a 3D flash direct Time-of-Flight (dToF) LiDAR system. This thesis refers to this type
of system as SPAD array flash LiDAR system.

All imaging in this thesis takes place in the visible range. Despite SWIR exhibiting
less attenuation through fog compared with the visible range [158, 157], SWIR radi-
ation cannot penetrate natural water environments. Therefore, the laser wavelengths
reported in this thesis are in the visible range because of its broad applicability for
imaging through fog and natural waters.

LiDAR obtains 3D measurements of objects using the Time-of-Flight (ToF) tech-
nique. There are two types of ToF techniques: direct Time-of-Flight (dToF) and
indirect Time-of-Flight (iToF) techniques [38]. The distinction between these two

35
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techniques is seen in how the arrival time of the return light signal is recorded. In
dToF, an accurate timer measures the ToF from the emission of the laser pulse to its
detection upon return. Figure 3.1 in Section 3.2 illustrates a schematic representation
of the laser pulse propagation path for a dToF system. By contrast, iToF calculates the
ToF by measuring the phase shift of the return signal relative to the emitted signal
[38].

dToF is used for the LiDAR systems in this thesis. This is because the range
accuracy of iToF measurements diminishes with range and sunlight, whereas dToF
measurements maintain high accuracy for imaging distances extending up to hun-
dreds of kilometres, even in the presence of sunlight [113].

The LiDAR imaging results that are reported in this thesis rely on a SPAD cam-
era. This is because SPAD’s single photon sensitivity makes it a strong candidate for
sensing through obscurants, which is in the imaging scene of a majority of the em-
pirical SPAD LiDAR data presented in this these. Its extremely high sensitivity also
means that the LiDAR system can use a laser with a lower Size, Weight and Power
(SWaP) requirement [120]. The SPAD camera itself can be engineered to have a low
SWaP requirement as well, making the entire SPAD array flash LiDAR system suit-
able for smaller platforms. A lower laser power also makes the system eye-safe and
operational in low-light conditions [26]. To further reduce noise in these images, the
SPAD cameras reported in this thesis uses optical filters such that the SPAD sensor
only detects light with a wavelength close to the laser’s wavelength.

There are other single photon detection technologies such as Photo-Multiplier
Tube (PMT) and Micro-Channel Plate (MCP), but they are not used because SPAD
cameras are much smaller in size, making them more suitable for mounting onto a
mobile platform for a distributed network surveillance application. Both PMTs and
MCPs use a tube to collect photons and convert them into electrons using different
processes. A PMT uses one large tube [149] while an MCP uses a plate that contains
many tiny tubes [5]. In contrast, the SPAD camera reported in this thesis is a small
unit containing multiple SPAD detectors, a Field-Programmable Gate Array (FPGA)
board and a breakout board. The small size of the SPAD camera makes it suitable to
be mounted on a mobile platform for the distributed network application discussed
in this thesis introduction.

SPAD is also referred to as Geiger-Mode Avalanche Photodiode (GM-APD), which
represents one of the two types of Avalanche Photodiodes (APDs), the other being
Linear-Mode Avalanche Photodiode (LM-APD). APDs are semiconductor devices
capable of generating an electrical current upon photon impact [39]. Comprising a
semiconductor with a pn-junction functioning as a diode [39], the distinguishing fac-
tor between GM-APD and LM-APD lies in their electrical biasing. GM-APD operates
at a voltage exceeding breakdown, while LM-APD operates slightly below break-
down [39]. Consequently, GM-APD is used in the research reported in this thesis
because of its single photon sensitivity; where it can generate a detectable electronic
current upon impact by a single photon. In contrast, LM-APD requires a minimum
of 50–100 photons to produce a detectable current [39]. For a comprehensive analysis
of APDs and a detailed comparison between GM-APD and LM-APD, refer to [39]. In
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the context of this thesis, the single-photon sensitivity of GM-APD renders it more
suitable for imaging through obscurants.

Single Photon Avalanche Diodes (SPADs) can be used as a single detector, a linear
array of detectors or in a rectangular array of detectors. For the arrays, each SPAD
detector corresponds to each pixel in the image. The SPAD LiDAR data in this thesis
are collected with a rectangular array because their measurements can form a recon-
structed image faster than the other types of detectors. Rectangular array SPADs can
be used in a flash LiDAR configuration, where the scene is flood-illuminated and the
array detects the first photon return for each pixel. This means all pixels are able to
make a dToF measurement with one laser pulse cycle. In contrast, single and linear
array SPADs perform imaging in a scanning LiDAR configuration, where the dToF
measurement for a single pixel (for a single SPAD) or a line of pixels (for a linear
array SPAD) is only available after multiple laser pulse cycles. The use of more than
one laser pulse cycle means it takes a longer time for a scanning LiDAR system to
collect dToF measurements for all pixels. In addition, the use of scanning or beam
steering in LiDAR systems for single or linear array SPADs causes problems such as
mechanical wear, vibration, and/or motion blur [12, 19, 38].

The SPADs that are discussed in this thesis are SPAD rectangular planar arrays
fabricated using the CMOS process on silicon. This is because SPADs fabricated
from silicon have been demonstrated to effectively detect photons in the visible range
[39, 167]. Also, CMOS processes offer cost-effective production of SPAD planar arrays
[130].

Most importantly, the CMOS fabrication process facilitates the integration of dig-
ital circuitry alongside SPAD detectors on the same planar microchip [130, 25, 34].
This integration allowed for the incorporation of digital circuitry capable of photon
counting or timing directly on the chip [25]. The inclusion of timing circuitry on
the chip eliminates the need for an additional timing module in SPAD array flash
LiDAR systems. Typically, an electronic module is utilised to measure the time in-
terval between laser emission and SPAD camera photon detection, as demonstrated
in [106, 88]. With the addition of a timing module on the chip, the SPAD camera
can directly connect to the laser, ensuring synchronisation between SPAD’s detection
window and laser pulse emission. This configuration is demonstrated in [165, 158].
This reduces the SPAD array flash LiDAR system to a smaller size.

For the SPAD cameras that are reported in this thesis, the photon timing circuits
are integrated on the same planar chip as the SPAD detector. Section 3.4 provides
details of the different SPAD array flash LiDAR systems that are reported in this
thesis.

In the next section, an explanation is provided for the operation of the SPAD
array flash LiDAR systems that are reported in this thesis.
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3.2 SPAD Array Flash LiDAR Systems

All imaging that is reported in this thesis is conducted using a CMOS silicon 32×32
SPAD rectangular planar array within a 3D flash dToF LiDAR system operating in
the visible wavelength. This thesis refers to this type of system as SPAD array flash
LiDAR system. Figure 3.1 shows a schematic of the components of such a system and
how it operates for imaging a target. Even though different systems are reported in
this thesis, they all contain these components or some variation of this configuration.

Figure 3.1: A schematic of a bistatic SPAD array flash LiDAR system that measures
dToF of a target. The green triangle represents a laser pulse’s flood illumination of
the target. The dotted arrow represents the trajectory of any reflected photons that
can reach the SPAD camera. The sizes of each component are not representative of

their sizes relative to each other.

The LiDAR configuration used in this thesis is bistatic, where the SPAD camera
and laser are aligned side by side and positioned at an equal distance from the target.

The SPAD camera consists of several components: the FPGA, breakout board,
SPAD microchip and optics. The SPAD microchip is mounted on a breakout board,
which is connected to an FPGA. The breakout board is an electronic board used to
enable the FPGA to connect to the pins of the SPAD microchip. The SPAD detectors
are manufactured onto the SPAD microchip. For the SPAD cameras that are reported
in this thesis, the photon timing circuits are integrated on the same planar chip as
the SPAD detectors.

The authors in [50] provide a flow chart on the typical electronic signal sequence
for a SPAD LiDAR to measure a detected photon’s dToF [50, Figure 6]. These authors
in [50] also discusses the typical timing artefacts caused by the limitations from the
SPAD detectors and associated electronics. In addition, these authors in [50] present a
review of various electronic implementations of this sequence, which they categorise
based on the extent of on-chip signal sequence implementation.
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The FPGA downloads the data from the SPAD microchip and transfers it to the
computing module. It also is responsible for operating the LiDAR system, where it
sends a repetitive laser driving signal to enable the laser to send pulses to the target.
Along with this signal, it also sends a corresponding signal to the SPAD microchip
to enable on-chip dToF measurements.

The computing module in Figure 3.1 represents where the dToF measurements
are processed. In this thesis, the computing module is either a PC or an embedded
board called the Nvidia Jetson TX2 module.

The components of the SPAD array flash LiDAR system are fixed and do not move
during imaging. Figure 3.1 shows that during imaging, the laser flood illuminates
the target (i.e. flash). Then each SPAD detector of the SPAD microchip records the
dToF measurement of the first photon it detects. All dToF values in this thesis are
presented in terms of clock cycles.

Figure 3.2 shows a photo of one of the SPAD array flash LiDAR systems that
is reported in this thesis. The photo shows the laser and SPAD camera mounted
together on the black plate, where the SPAD camera is the silver container below
the plate and the laser’s components are all mounted above the plate. Details of
the different SPAD array flash LiDAR systems that are reported in this thesis are
discussed in Section 3.4.

Figure 3.2: DST built SPAD array flash LiDAR system in the laboratory (System C in
Table 3.1).

A common method to determine the depth of the target from collected dToF
measurements is to first aggregate them into a histogram of dToF values using the
TCSPC technique. Section 3.3 provides more detail of this technique and how its
output is used for depth estimation.

3.3 Time-Correlated Single-Photon Counting (TCSPC)

The TCSPC technique is a common method used by the SPAD LiDAR community
to aggregate dToF measurements obtained by a SPAD LiDAR system. The TCSPC
technique employs statistical sampling to measure the dToF of photons based on their



40 Background

arrival times relative to a synchronisation signal [38]. In the context of this thesis,
the synchronisation signal corresponds to the emission time of the laser pulse. By
accumulating the dToF measurements of detected photons, TCSPC organises these
measurements into a histogram [38]. This histogram is referred to as the histogram
of dToF measurements throughout this thesis. Initially developed for fluorescence
decay analysis [21], TCSPC was first adapted for SPAD imaging as outlined in [96]
and [97].

The effectiveness of the TCSPC technique relies on several assumptions. It re-
quires low signal intensity, high repetition rate, and the rarity of multiple signal
occurrences within a single period [20]. These characteristics make it particularly
suitable for application in SPAD LiDAR systems employing low-powered lasers.
Consequently, such SPAD LiDAR systems can generate fine depth-resolution 3D im-
ages despite their low power output [153]. Additionally, the TCSPC technique offers
picosecond-level timing resolution for dToF measurements, facilitating detailed sur-
face reconstruction even across the long ranges that SPAD LiDAR systems are capable
of imaging, spanning from hundreds of metres to kilometres [153, 25]. The synergy
between the high depth resolution achieved through TCSPC and the low power de-
mands inherent in SPAD LiDAR systems, coupled with their extensive imaging range
capability, positions the SPAD LiDAR system as a highly promising option for remote
sensing applications.

The resulting histogram from TCSPC allows for high-resolution depth informa-
tion to be extracted. Various algorithms exist for depth estimation from the aggre-
gated histogram, with the cross-correlation approach being a commonly employed
fundamental technique [95, 157].

In the SPAD LiDAR community, the set of dToF measurements aggregated by
the TCSPC method can be for photons detected at the pixel level or over the entire
array of a SPAD camera. When dToF measurements are examined for each pixel,
their aggregation is usually related to image reconstruction. For example, TCSPC
and cross-correlation can be iteratively applied on each pixel of the SPAD camera to
reconstruct an image [38]. When dToF measurements over all pixels are aggregated
into a histogram using TCSPC, it is usually conducted in order to use the histogram
for a rough depth estimation of the target.

The next section provides the specifications of different SPAD array flash LiDAR
systems used in this thesis.

3.4 SPAD Array Flash LiDAR System Specifications

The details of different SPAD array flash LiDAR systems that are reported in this
thesis are provided in Table 3.1. Appendix A presents additional details about Sys-
tems B and C’s laser. The timing corrections and minimum operating distances for
Systems B and C are mentioned in the following subsections. The timing corrections
affect the calculation of distance measurements from the dToF measurements when
used to discuss algorithm performance in this thesis.
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3.4.1 Timing Corrections and Minimum Operating Distance for System B

System B has a timing delay of 40 ns (as shown in Table 3.1) between the high-speed
detector detecting a laser pulse and triggering the SPAD camera. This is because it
uses a high-speed detector (Newport 818-BB-21) to trigger the SPAD camera to start
timing. The high-speed detector is used to overcome the large jitter of the Bright
Solutions laser.

This timing delay of 40 ns means System B’s dToF measurements are 12 clock
cycles less than the theoretical dToF value. In this thesis, the reported dToF measure-
ments, expected dToF values and range gate minimum and maximum dToF values
related to System B do not compensate for this timing delay. However, the equivalent
distance values discussed in this thesis correct for this timing delay.

In addition, this timing delay means System B has a minimum operating distance
of 6 m in air.

3.4.2 Timing Corrections and Minimum Operating Distance for System C

The FPGA controller for System C delays the SPAD window opening by 13.3 ns (as
shown in Table 3.1). This timing delay means System C’s dToF measurements are
4 clock cycles less than the theoretical dToF value. In this thesis, the reported dToF
measurements, expected dToF values and range gate minimum and maximum dToF
values related to System C discussed in this thesis do not compensate for this timing
delay. However, the equivalent distance values discussed in this thesis correct for this
timing delay.

In addition, this timing delay means System C has a minimum operating distance
of 2 m in air.

3.5 Beer–Lambert Law

The Beer–Lambert Law is utilised in this thesis for calculating the beam attenuation
coefficients to measure the level of obscurants in an environment using the number
of ALs (to be presented in Section 3.6.1). For the experiments reported in this thesis,
the attenuation of light is assumed to be uniform in all fog and water conditions.
Therefore, the Beer–Lambert Law can be used to calculate the beam attenuation co-
efficient.

The beam attenuation coefficient is defined as the limit of the spectral attenuation
to the distance of photon travel as that distance becomes vanishingly small [108]. This
coefficient is used to understand the amount of laser power at different transmitted
distances [45]. The literature often uses the terms beam attenuation coefficient and
attenuation coefficient interchangeably.

There are currently different versions of the Beer–Lambert Law used in the liter-
ature. The version used in this thesis is commonly used in electro-optics. A different
version is used in spectroscopy and it is not formulated in terms of the beam attenu-
ation coefficient [150, 159].
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The Beer–Lambert Law used in the electro-optics field is given in [45], and it is
represented in this thesis as follows:

µ = −1
x

log(
I
I0
), (3.1)

where µ (given in m−1) is the beam attenuation coefficient, x is the path length (in
m), I is the power intensity of the transmitted laser beam (in W) and I0 is the power
intensity of the incident laser beam (in W) [131, 71, 47].

In the field of spectroscopy, the Beer–Lambert Law is usually presented in the
form given in [150, 159] and is presented in this thesis as follows:

A = −log
I
I0

= σxC, (3.2)

where A is absorbance, σ is the extinction coefficient, C is the substance’s concentra-
tion in the sample and the remaining variables have the same meaning in Eq. (3.1).
Eq. (3.1) will be the version that is used in this thesis.

From Eq. (3.1) and Eq. (3.2), we deduct that there is a linear relationship between
the beam attenuation coefficient and the concentration of a substance [101]:

µ = σC (3.3)

3.5.1 Path Length Value for Imaging Set-ups

When applying this law to calculate the beam attenuation coefficient for an obscured
environment used in the imaging set-ups reported in this thesis, the path length
x is altered to be only the distance travelled by the laser through the obscurant.
This excludes any path length where there is no obscurant in that path’s area. This
alteration is applied in this thesis because the attenuation of the laser through air is
assumed to be negligible compared to attenuation by obscurants.

When the obscurant is fog, the fog’s average span is used as the path length
x. The average span is calculated as the average of the maximum and minimum
span of the fog observed by human eye. The fog’s average span is used instead of
its maximum span for the path length x because fog varies in distribution and the
Beer–Lambert law assumes any obscurants are uniform in distribution in order to
calculate the beam attenuation coefficient. In this thesis, I assume using the average
span approximates the fog to be uniform over this distance.

3.6 Measuring the Level of Obscurant

The different metrics used in this thesis for quantifying the level of fog and water
turbidity are discussed in this section. They are used in this thesis to quantitatively
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describe the level of fog and water turbidity in the imaging set-ups reported in this
thesis. The number of ALs is most commonly used metric for quantifying both fog
and water turbidity levels. The SD depth is an alternative metric used for quantifying
the turbidity level of water while visibility is an alternative metric for quantifying the
fog level.

3.6.1 Number of Attenuation Lengths (ALs)

Number of attenuation lengths (ALs) is a common measure of the level of water
turbidity and fog when discussing SPAD LiDAR imaging through fog [158, 157, 156,
60] and water [89]. The definition of one attenuation length is the distance at which
the transmitted light power is reduced by a factor of 1/e of its initial value [60]. The
attenuation length is thus calculated as:

NAL = µd = −d
x

ln
(

P
P0

)
, (3.4)

where µ is the beam attenuation coefficient and d is the distance between the SPAD
detector and the target. x is the path length travelled by the laser through the obscu-
rant (here is either fog or water) to reach the power meter. µ is calculated using the
Beer–Lambert Law as discussed in Section 3.5 and its equation expansion follows Eq.
(3.1) in Section 3.5. Following the discussion in Section 3.5.1, the average span of fog
is used as the path length x in Eq. 3.4.

In the literature, various laser wavelengths are employed to measure the number
of ALs. The choice of wavelength significantly influences the measured number of
ALs due to different transmission characteristics through the obscurant. Therefore,
care must be taken when comparing results for different SPAD LiDAR systems oper-
ating at different wavelengths. The value of the number of ALs cannot be calculated
for an alternative wavelength based on the number of ALs for a given wavelength, as
the calculation requires either measuring the input and output powers at the begin-
ning and end of the obscurant, or knowing the beam attenuation coefficient of that
wavelength in the specific imaging environment. In this thesis, all measurements
related to the number of ALs are for a wavelength of 532 nm.

3.6.2 Secchi Disc (SD) Depth

The SD depth measurement (measured in m) is defined as the maximum depth at
which the SD can be seen by the naked eye. A SD is a 30 cm-diameter circular disc
with black and white quadrants. The function of an SD is to provide a simple visual
index for visibility [125].

Even though the number of ALs is more commonly used in the SPAD LiDAR
community for quantifying the water turbidity levels tested, it is difficult to measure
the amount of transmitted power through natural waters when it comes to conduct-
ing field trials. The laser power at the target’s location cannot be measured without
the use of specialised equipment. Therefore, SD depth is a more pragmatic measure-
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ment in this scenario. In Chapter 5, SD depth is used to describe the water turbidity
level of outdoor natural water locations.

3.6.3 Visibility in Metres

Even though the number of ALs is a common measure for quantifying fog levels in
the SPAD LiDAR community, it is not the standardised way of measuring fog levels.
An additional measure called visibility is used in this thesis to attempt to provide a
more comprehensive view of the level of fog used in the data collection.

Visibility describes how far the naked eye can see from the start of the fog. Visibil-
ity is calculated by measuring the transmittance of a continuous 532 nm laser beam.
This is possible by using the formula for visibility:

V =
1
µ

ln
(

C0

Cth

)
, (3.5)

where µ is the attenuation coefficient, C0 is the target contrast (C0 = 1 in this thesis),
Cth is the threshold contrast and ln denotes the natural logarithm. In this thesis,
Cth is set to 0.05 according to the CIE’s (International Commission on Illumination)
definition of the human eye’s minimal perceptible contrast [157, 145]. The attenuation
coefficient, µ, is calculated using the Beer–Lambert Law (Eq, 3.1) as discussed in
Section 3.5.

Similar to the number of ALs, the visibility measure is also dependent on the
laser’s wavelength used to measure fog level. In this thesis, all measurements related
to the visibility are for a 532 nm wavelength.

3.7 Target Classification Metrics

For evaluating the target classification algorithms in this thesis, the common perfor-
mance metrics from multiclass classification algorithms are used. Multiclass classifi-
cation is where each target can only be classified as one unique object class label and
there are more than two available object class labels for classifying these targets [49].
More details of these metrics can be found in the reference associated with their de-
scription. There are many versions of macro F1 measures [119]; the one listed below
is the one used in this thesis.

The definitions of the classification metrics are based on the following measures
for multi-class classification [148]:

True positive (TP) : both classification and ground truth class equals the class of
interest

False positive (FP) : classification class equals your class of interest, but ground
truth is a different class

True negative (TN) : classification and ground truth classes do not equal the class
of interest
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False negative (FN) : classification class equals a different class, but ground truth is
the class of interest

The definitions of the classification metrics are given below [148].

Overall accuracy This is the average accuracy percentage over all classes. The for-
mula is:

∑l
i=1

TPi+TNi
TPi+FNi+FPi+TNi

l
× 100 (3.6)

where l is the total number of classes [148].

Precision This is calculated as:
TP

TP + FP
(3.7)

for each class. [148]

Macro precision Average precision over all the classes. [148]

Recall This is calculated as:
TP

TP + FN
(3.8)

for each class. [148]

Macro recall Average recall over all the classes. [148]

Error rate This is the average error rate over all classes. It is calculated by:

∑l
i=1

FPi+FNi
TPi+FNi+FPi+TNi

l
× 100 (3.9)

where l is the total number of classes [148]. 100 is used to make the value a
percentage.

Macro F1 measure
2 × macro precision×macro recall

macro precision+macro recall

100
(3.10)

This value ranges between 0 to 1 [119]. The formula has a division by 100
because the macro recall and macro precision values are presented in terms of
percentages in this thesis.

In Chapter 4, Section 4.6.3 employs all of these metrics to evaluate target classifi-
cation performance. However, in Section 5.4.3.4 of Chapter 5 and Section 6.5.1.2 and
6.5.2.3 of Chapter 6, only overall accuracy is utilised. This discrepancy arises due
to the unique nature of the target classification algorithms proposed in these latter
chapters, which incorporate an additional classification class labelled "Undecided".
This class serves to account for instances where targets cannot be classified using
the rules in the classification algorithm. The algorithm in Section 4.6.3 of Chapter 4
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does not introduce this additional class as it is constructed in such a way that it will
always categorise the target into one of the existing classes. Therefore, an Undecided
class is not necessary.

No instances of this Undecided class is used for testing the performance of these
target classification algorithms. This means there are no TPs or FNs for this Un-
decided class. TPs and FNs being zero makes the Recall metric undefined for the
’Undecided’ class, making the macro recall over all the classes not an appropriate
metric. Because of this, it is decided that none of the additional metrics to over-
all accuracy should be used. This is because they should all be presented together
to provide a cohesive understanding of the classification performance. Instead, the
amount of FP classifications in this additional class is presented to provide an idea of
how well the classification algorithm performs. In the thesis, these FP classifications
for this Undecided class is simply referred to as Undecided classifications or by the
phrase "classifying a target as the Undecided class".

3.8 Chapter Summary

Background explanations of various technical aspects related to this thesis are pre-
sented in this chapter. The next chapter will present a real-time target classification
algorithm for live data collected by a SPAD array flash LiDAR system. The algorithm
is also implemented on an embedded board.



Chapter 4

Real-Time Embedded Target
Classification of Live Data

Real-time autonomous target classification becomes integral when applying the edge
computing paradigm to a distributed network of mobile platforms that conducts
surveillance. In contrast to transmitting a continuous stream of data to the central
node for reconnaissance, mobile platforms can transmit only the information related
to the target label. This reduction in transmitted data not only conserves transmis-
sion bandwidth but also minimises power consumption, enhancing reliability and
security. However, the on-board portable battery limitations pose a significant chal-
lenge as they limit the operation time for mobile platforms, in particular Uncrewed
Autonomous Vehicles (UAVs). While a larger battery provides more power, it also
increases the mobile platform’s weight, which reduces operation duration as well.
Therefore, there is a need for onboard sensors and processors to have a minimal Size,
Weight, and Power (SWaP) footprint in order to prolong operation time. To meet
these hardware requirements, a viable solution is to perform real-time classification
on an embedded processing board characterised by low power consumption and
compact size.

To address these hardware constraints, this chapter presents a real-time target
classification algorithm implemented on an embedded board to classify data of dif-
ferent single targets collected by a 32 × 32 Single Photon Avalanche Diode (SPAD)
array flash Light Detection and Ranging (LiDAR) system. The SPAD array flash
LiDAR system’s low SWaP requirements means its implementation on the embed-
ded board can be mounted onto a mobile platform. Moreover, the low data latency
inherent in SPAD cameras enables rapid processing on an embedded board. The tar-
get classification algorithm is implemented with a live data acquisition module into
an embedded software program to execute in real-time on a Nvidia Jetson TX2 mod-
ule [8]. The Jetson TX2 is an embedded System-on-Module (SoM) board with low
SWaP requirements, which means it can be mounted onto a mobile platform with
the SPAD array flash LiDAR system for edge computing application on a distributed
network.

This work marks a significant advancement as the first implementation of a real-
time target classification algorithm for SPAD LiDAR data on an embedded board, as

49
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confirmed by the discussions in Section 2.5 of Chapter 2. Leveraging the graphical
processing unit (GPU) on-board the Jetson TX2 for parallel processing enhances the
computational efficiency of the implementation, enabling real-time execution. The
use of Nvidia’s CUDA programming language further optimises the functions for
execution on the Jetson TX2’s GPU.

The target classification algorithm is called the random feature-detecting network.
It operates on raw images in batches. In this chapter, a raw image is defined as an
image formed with each pixel’s direct Time-of-Flight (dToF) measurement over one
frame. The network initially conducts image reconstruction by creating an average
image from a batch of raw images and then conducts target detection as part of its
tracking module. If a target is detected, the image then undergoes feature extraction
and its features are stored in a vector. Linear classification determines the image
target’s class by multiplying the vector with a classification matrix, with the index of
the highest value determining the target’s class. The random feature-detecting net-
work resembles a single-layer Convolutional Neural Network (CNN) because it uses
convolutional filters to extract some of the image’s features, which together act like a
convolutional layer. In this chapter, the random feature-detecting network’s perfor-
mance is evaluated when it is implemented with different numbers of convolutional
filters (4, 8, 16, 32, 64).

Two different implementations of the random feature-detecting network are pre-
sented in this chapter. One is an embedded software implementation which is used
to execute the random feature-detecting network on the Jetson TX2. This implemen-
tation includes implementing the live data acquisition module with the algorithm,
enabling real-time target classification of live SPAD LiDAR data. The second im-
plementation is an offline software implemented which is used to execute training
and preliminary testing of the random feature-detecting network. Offline training
and preliminary testing are crucial for determining the algorithm’s convolution filter
values empirically.

To demonstrate the real-time execution and classification performances of the
embedded software implementation of the random feature-detecting network, four
different model airplanes serve as classification targets. While model airplanes are
used for testing here, the classifier can be re-trained and tested for diverse targets.
The choice of model airplanes stems from their common complex features, which
provides a sufficiently difficult test for the random feature-detecting network to dis-
tinguish between classes. Offline training and preliminary testing as well as real-time
testing use SPAD LiDAR data of airplanes at different orientations and positions.
Real-time testing has the SPAD array flash LiDAR system connect to the Jetson TX2
and conduct live imaging, where its data is classified by the embedded software im-
plementation of the random feature-detecting network executing on the Jetson TX2.

The chapter begins with a description of the random feature-detecting network in
Section 4.1. Then the offline training and preliminary testing of the random feature-
detecting network are explained in Section 4.2. Section 4.2.5 provides the methodol-
ogy at which the convolutional filters are selected for the network. A more software-
focussed discussion of the embedded software implementation on the Jetson TX2 is
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provided in Section 4.3. This includes a background discussion of the usage of CUDA
software Toolkit for parallel software implementation in Section 4.3.2. Section 4.4 de-
tails the differences between the offline and embedded software implementations of
the random feature-detecting network, highlighting their negligible impact on target
classification performance. The SPAD array flash LiDAR imaging method for col-
lecting SPAD LiDAR data of different airplanes for offline training and preliminary
testing is discussed in Section 4.5. The chapter concludes with Section 4.6 presenting
the obtained results. This is followed by a comprehensive discussion of the classifica-
tion and real-time execution performance of the embedded software implementation
of the random feature-detecting network in Section 4.7.

The research presented in this chapter is based on collaborative work documented
in the publications [102] and [178].

4.1 Random Feature-Detecting Network

The primary objective of the random feature-detecting network is to perform target
classification. It begins by processing a batch of raw images into an average image,
then extracts various features from the average image and store the features’ informa-
tion into one vector. Let X represent the singular vector containing all the features’
information. Details of the feature information stored in vector X are presented in
Section 4.1.2.1. One X is created, then target classification is performed through the
application of linear classification. The equation for linear classification is expressed
as follows:

XZ = Y (4.1)

where Z denotes the classification matrix1. The classification matrix Z is trained
from a collected dataset of images with known target labels. The values in Z are
considered weights for the different feature vectors stored in vector X. Additional
information regarding the computational steps involved in training can be found in
Section 4.2. Each class label is associated with an index in the resulting vector Y.
Target classification is performed by determining the class label that corresponds to
the index with the highest value in vector Y.

The structure of the random feature-detecting network is visually presented in
Figure 4.1. Within this structure, the linear classification module executes the op-
eration in Eq. 4.1. Preceding the linear classification, the modules engage in pre-
processing tasks, generating the vector X from a batch of 16 raw images. The denois-
ing module performs image reconstruction by calculating an average image from the
batch of raw images. This effectively reduces noise compared to an individual raw
image. The tracking module performs target detection, and upon detection, the net-
work advances to the data manipulation module. In the data manipulation module,
feature vectors are created from the average image, and these vectors are concate-

1The classification matrix is written as W in [102]; here it is defined as Z instead.
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Figure 4.1: Function flow of the random feature-detecting network.

nated to form the vector X (from Eq. 4.1). Further details about the tracking and
data manipulation modules can be found in Sections 4.1.1 and 4.1.2 respectively.

4.1.1 Tracking

The tracking module is responsible for target detection. It identifies the top, bottom,
left and right borders that encapsulate the target within each average image. The
random feature-detecting network assumes there is only one object present in each
image, and that the object is the target. Therefore, the primary goal is to exclude
the majority of the background for subsequent computation steps in the random
feature-detecting network.

It is important to note that the removal of pixels outside of these borders does
not occur until the cropping step of the data manipulation module, as described
in Section 4.1.2. The role of the tracking module is solely to identify the values
corresponding to the borders without performing any elimination of pixels beyond
these boundaries.

Provisional border values are derived from the dToF values in the average im-
age. These border values are computed separately for the top and bottom pairs, as
well as the left and right pairs. For the top and bottom pair, pixel values in each
row are summed into a single value, resulting in a vector of row sum values. For
computational simplicity, these sum values are renormalised. Renormalisation in-
volves subtracting each value of original row sum vector from the maximum value
of the row sum vector. After renormalisation, a smoothing operation is applied to the
renormalised row sums to mitigate the impact of sporadic noise pixels on border lo-
cation. Once smoothing is completed, each value of the row sum vector is assessed if
it is above a threshold value. Top and bottom border values are identified as indices
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one index before and after of the indices of the values above the threshold. Simi-
lar calculations are applied to obtain left and right border values, with each column
being summed into a value to create a column sum instead of a row sum.

A threshold is used to determine the border because rows containing the target
exhibit a shorter dToF value sum compared with the background. This is because the
target is assumed to be closer to the sensor than the background. This means that
if an element in the row sum vector is above a threshold, the current and following
rows are considered to contain the target. This same reasoning applies to the column
sum vector. The threshold is determined empirically during algorithm development.

The subsequent computation of border values depends on the existence of a valid
set of border values from the previous average image. In cases where no previous
border values exist, the provisional border values are directly employed as the aver-
age image’s border values.

When there is a set of border values from the previous average image, each border
value of the current average image is determined as a weighted average of its provi-
sional border value and the corresponding value from the previous average image.
This calculation assumes that the border of the subsequent average image is likely to
be in a similar position, considering the sequential order of images corresponds to
the order of the raw images, where each raw image corresponds to one LiDAR cycle.

Following the computation of border values, the size of the block of pixels en-
closed by these borders is scrutinised to ensure it falls within the specified size range.
In the context of classifying airplanes, the block’s side lengths are required to be
within 10–30 pixels for successful detection. Failure to meet this criterion results in
the tracking module deeming the target detection to be unsuccessful for the current
average image.

4.1.2 Data Manipulation

After detecting a target in the average image, the data manipulation module is
utilised to generate different feature vectors from this image, which are then con-
catenated to form vector X for linear classification. The function flow structure of
this module is shown in Figure 4.2. As seen in the figure, the module can be divided
into two distinct branches. Each branch starts with a different processing method
on the image. After applying their various techniques, the images become feature
images. Then both branches crop the feature images, compress them into a feature
vector and then resample the feature vectors.

The first branch on the left begins with renormalising all pixel values of the aver-
age image. Renormalisation is computed by determining the maximum pixel value,
and each renormalised pixel value is obtained by subtracting the original pixel value
from the maximum pixel value.

The second branch on the right applies convolution, using 4×4 filters. The values
for these filters determined empirically using a method detailed in Section 4.2.5.
During performance testing, different numbers of convolutional filters (4, 8, 16, 32,
and 64) are implemented for this convolutional step. This is to assess their impact on



54 Real-Time Embedded Target Classification of Live Data

Average image
detected borders

Renormalising pixel values

Crop feature image

Compress feature image

Resample feature vector

Pad the average image
with a border.

For each filter

Convolution

Split convolved image
into positive- and
negative-valued image

Crop convolved posi-
tive and negative im-
ages

Compress cropped fea-
ture images

Resample feature vec-
tors

Concatenate
all the feature
vectors from
each feature into
vector X

Figure 4.2: Function flow of the data manipulation module.

classification accuracy.
To preserve information on the edges during convolution, the average image is

padded with a 3-pixel wide border before applying the filters. This border, one
pixel less than the filter dimensions, ensures that edge pixels of the convolved image
contain information from the average image’s edge.

Subsequently, the convolved images are divided into positive- and negative-valued
images. This process is found empirically to enhance classification accuracy com-
pared with retaining positive and negative values together.

All feature images (the renormalised and convolved images) are then cropped.
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For the feature images on the first branch, the indices are cropped to the border
indices identified in the tracking module (Section 4.1.1). For the feature images on
the second branch, the tracking module’s border indices are offset by 3 pixels to
account for the 3-pixel padding border introduced in the padding step.

Feature vectors are calculated as the sums of each row and column in these
cropped feature images, and then concatenated to form vector X for linear classi-
fication (Eq. 4.1). The structure of vector X is shown in detail in Section 4.1.2.1.

Maintaining a consistent length for vector X is crucial for linear classification,
as the classification matrix is established during training (described in Section 4.2)
with unalterable dimensions. Given that resulting feature vectors possess different
lengths due to cropping based on the tracking module’s border’s size (detailed in
Section 4.1.1), they are resampled to a fixed length before concatenation. An efficient
resampling algorithm is detailed in Section 4.1.2.2.

4.1.2.1 Structure of Vector X

After each of the feature vectors is resampled, they are concatenated together to
create vector X, which is then used for linear classification (as shown in Eq. 4.1).

• Sum of each row of the cropped and renormalised image

• Sum of each column of the cropped and renormalised image

• Sum of each column of the cropped and positive values of the convolved im-
ages - there are a number of this type of vector and the total number depends
on the number of filters used

• Sum of each row of the cropped and positive values of the convolved images -
there are a number of this type of vector and the total number depends on the
number of filters used

• Sum of each column of the cropped and negative values of the convolved
images - there are a number of this type of vector and the total number depends
on the number of filters used

• Sum of each row of the cropped and negative values of the convolved images -
there are a number of this type of vector and the total number depends on the
number of filters used

4.1.2.2 Resampling

When a vector requires resampling and its length is coprime with the new length, the
upsample factor is determined as the product of the two lengths, while the down-
sample factor is set to the original vector length. However, managing these upsample
and downsample factor values can introduce computational complexity.
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The random feature-detecting network uses a resampling algorithm that artifi-
cially extends or shortens the original vector before applying the necessary upsam-
pling and downsampling operations. Specifically, the original vector’s length is mod-
ified, allowing for significantly lower upsample and downsample factors, thereby re-
ducing the computational complexity of the resampling operation. For an increase
in length, zeros are appended to both ends of the original vector. Conversely, for a
reduction in length, elements are removed from both ends of the original vector.

The determination of the new length x for the original vector involves finding the
minimum of the following function:

f (x) = Penalty function(x) ∗ LCM(x, output vector length), (4.2)

where

Penalty function(x) =1.7−
original vector length0.63

10 × remapping resistance factor

× (x − original vector length)2 + 1
(4.3)

The least common multiple (LCM) in Eq. 4.2 serves as an indicator of the relative
computational cost associated with resampling. Meanwhile, the penalty function
articulated in Eq. 4.32 quantifies the information loss resulting from the removal
of elements or the introduction of additional zeros to the original vector before re-
sampling. The remapping resistance factor plays a crucial role in determining the
acceptable difference in length. A higher value implies lower tolerance. In the spe-
cific application of classifying airplanes using this network, the remapping resistance
factor is configured at 1.25.

The original vectors consist of either the row or column sums of cropped feature
images, as detailed in Section 4.1.2. Consequently, the act of adding or removing ele-
ments from either end corresponds to a modification of the edge information within
the images. Given the inherently noisy nature of the raw images of SPAD LiDAR
data, this algorithm operates under the assumption that modifying the values at the
image edges has a negligible impact on the information contained within the image,
and consequently, it has a negligible effect on the classification performance.

The number of elements to remove or add on the left and right is determined by
the following formulas:

Number of elements to add or remove to the left

=

{
new length−original length

2 if length difference is even
new length−original length−1

2 if length difference is odd

(4.4)

2The penalty function provided in [102] is incorrect and does not contain the first factor reported in
Eq. 4.3, which is the correct equation.
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Number of elements to add or remove to the right

=

{
new length−original length

2 if length difference is even
new length−original length+1

2 if length difference is odd

(4.5)

To summarise the order of steps for this resampling algorithm, when the cropped
feature vectors are created in the data manipulation module, the length of each of
these vectors is scrutinised by the resampling algorithm. For each of these vectors,
their lengths are considered as the original vector length by the resampling algorithm.
The resampling algorithm determines a suitable new length for each cropped feature
vector by determining what value x minimises Eq. 4.2. Subsequently, the resampling
algorithm alters the length of each cropped feature vector using Eq. 4.4 and 4.5 to
determine the number of zeros to append or the number of elements to remove.
Finally, each of these altered vectors are resampled to the same output vector length.

The output vector length the same length as the number of rows in the classifica-
tion matrix Z. This is to facilitate the computation of Eq. 4.1 for classification. In the
specific context of classifying airplanes, the output vector length is consistently set at
363, for both feature vectors related to row sums and column sums.

For this resampling algorithm, the upsampling operation is executed using zero-
order hold. For an upsampling factor of n, each element in the vector is replicated
n times. Downsampling, on the other hand, involves keeping every i + n-th element
for a downsampling factor of n, where i = 1, 2, 3, 4, . . . .

To improve efficiency on an embedded board, the resampling algorithm utilises
a precomputed lookup table. Given that the SPAD array size is consistently 32×32,
the raw image resolution is always going to be 32×32 and the convolved image
will always be 35×35. Therefore, the lengths of cropped feature vectors range from
1–354. Therefore, the lookup table can pre-calculate the number of elements needed
for removal or addition for all potential original vector lengths. This facilitates rapid
computation for resampling.

4.2 Offline Training and Preliminary Testing

Offline training and preliminary testing procedures are executed for the random
feature-detecting network to determine the values of the target classification matrix
Z and assess the classification accuracy of the network using the calculated matrix
Z. Both offline training and preliminary testing involve the use of collected data
from the SPAD array flash LiDAR system, which is of the same targets that will be
classified by the real-time embedded software implementation of the network.

Training and preliminary testing require a SPAD LiDAR dataset of objects from
the different objects classes that the target can belong to. Each batch of raw images in
this dataset is labelled with a one-hot counter corresponding to its class. The method

3Note: The output vector length is erroneously reported as 32 in [102] and [178].
4The reported vector length range in [102] and [178] is incorrect. The correct range of original vector

lengths is 1–35, independent of cropping.
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for allocating raw images to either training or testing depends on the number of
raw images collected for each object class. In each training and testing iteration,
the datasets for training and testing consist of different raw images to ensure the
robustness of the classification.

As training involves the pre-processing modules of the random feature-detecting
network, different convolution filters used in the data manipulation module also in-
fluence the outcome of the training, i.e., the value of the classification matrix Z. The
effect of using different number of convolutional filters (which results in different
numbers of feature vectors) on the classification accuracy is examined in the devel-
opment of the random feature-detecting network. In particular, the number of filters
that are of interest are 4, 8, 16, 32 and 64. For each number of filters, distinct sets
of filter values are employed to train and test the random feature-detecting network,
aiming to identify filter values that yield optimal classification performance. Further
explanation of filter selection is provided in Section 4.2.5.

Both training and testing process the collected data into the vector X, which is the
output of the pre-processing modules in the random feature-detecting network, as
described in Section 4.1. These modules are before the linear classification module.
Given that training and testing share the same pre-processing modules, they are im-
plemented together in the offline software implementation to improve computational
efficiency.

The order of execution of the offline software implementation starts with the pre-
processing modules, then the data is organised into training and testing datasets.
This is followed by training to determine the classification matrix Z. Then the imple-
mentation ends with testing, where the classification accuracy is determined for the
random feature-detecting network with the classification matrix X calculated from
training. The subsections below provide details of each of these steps.

4.2.1 Pre-processing Modules

In the initial step, each batch of raw images from the available dataset are processed
by the pre-processing modules (those that are before the linear classification module,
as detailed in Figure 4.1 in Section 4.1) to generate a collection of vector Xs. For each
vector X, there is an associated ground truth one-hot vector that represents the object
class label. The one-hot vector assigns a value of 1 at the index corresponding to the
object class label.

4.2.2 Allocating Data into Training and Testing Datasets

The pairs of vector X and their corresponding ground truth class label vector are
allocated to either the training or testing dataset. The distribution of these pairs
is randomised during each iteration of training and testing. This randomisation is
essential to ensure the robustness of the random feature-detecting network. Section
4.5.1 provides an explanation of how the airplane data set is divided for training and
preliminary testing of the random feature-detecting network.
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4.2.3 Training

Once the datasets are organised, training is initiated, during which the classification
matrix Z is calculated using the training dataset. All the vector Xs from the training
dataset are gathered into a matrix Xtrain. Subsequently, the classification matrix Z is
calculated using Eq. 4.1 through the following formula:

Z = (XT
train ∗ Yground truth for training)

T(XT
train ∗ Xtrain + b)−1, (4.6)

where b is the regularisation factor added to the diagonal of the matrix product.
Equation 4.6 is derived by using the pseudoinverse of Xtrain and applying the Ridge
regression (also called Tikhonov regularisation) [37]. When calculating the classifica-
tion matrix for the four different airplanes that are imaged (as described in Section
4.5), the regularisation factor is set to 100. This value was found through trial and
error to provide the best classification result.

Yground truth for training is a matrix that consists of one-hot counter target labels. Each
vector in Yground truth for training corresponds to the target label for the corresponding
vector X in Xtrain. These vectors in Yground truth for training are placed in the same order
as their corresponding vector Xs are placed in Xtrain.

4.2.4 Preliminary Testing

Preliminary testing is executed using the calculated classification matrix from train-
ing, and also the testing dataset. The classification output of each vector X is com-
pared with its corresponding ground truth label vector. The classification accuracy
is computed as the ratio of matching classification outputs to the total number of
batches tested. To facilitate a fast comparison between the output vector Y from Eq.
4.1 and the one-hot counter label, the vector Y is converted into a binary vector. The
entry with the maximum value in Y becomes 1, while the rest become 0. If all values
in Y are 0, the vector becomes all 0. If all the values in Y are the same, then all
of its entries become 1. The classification accuracy is used to select the appropriate
convolutional filters, which is discussed in the next subsection (Section 4.2.5).

4.2.5 Convolutional Filter Selection

To demonstrate the real-time classification capability of the random feature-detecting
network, four different types of airplanes are utilised as classification targets.

Various numbers of convolutional filters are employed in the network to assess
the classification performance of the network for airplanes as targets. Specifically,
4, 8, 16, 32, and 64 filters are tested. To determine the best set of filter values for
each number of filters, 10 sets of filter values are generated randomly offline for each
number of filters. The set of filter values that yields the highest classification accuracy
is selected for use in the real-time implementation of the network.

To determine the classification accuracy using each set of generated filter values,
the random feature-detecting network undergoes offline training and preliminary
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testing with each set of filter values. Raw images of airplanes are used to train and
test the network. Groups of raw images are collected in recordings, where each
recording only contains raw images of one type of airplane. Section 4.5 details the
method for collecting raw images of different airplanes. The collected raw images are
split into training and testing datasets based on their associated recording. Section
4.5.1 provides more detail on how the collected raw images are split for training and
testing.

At each instance of preliminary testing, the raw images from 4 randomly selected
airplane recordings are used. Training and testing are repeated 20 times to ensure
that each set of filter values is tested on raw images of each class of airplane. This
is because each recording only contains raw images of one type of airplane and it
cannot be guaranteed that the 4 randomly selected airplane recordings correspond
to the 4 different possible classes of airplanes in the classifier.

Figure 4.3: Mean classification accuracies of different number of filters and filter
values tested over 20 different sets of data [102]

The classification accuracies for the generated sets of random filters are shown
in Figure 4.3. The values used for some sets of filters are shown in this figure via
a colour map, where there is a colour bar on the right. For example, for four sets
of filters, there are four 4×4 colour maps shown. Each ‘+’ data point in the figure
represents the mean accuracy of one set of random filters after conducting training
and testing over 20 random airplane data splits. Therefore, there are 10 ’+’ data points
for each number of filters. Each ‘o’ data point represents the mean accuracy of all
the sets of filters for that number of filters. For each number of filters, the set of filter
values with the highest mean accuracy is selected for the real-time implementation.
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4.3 Embedded Software Implementation

The random feature-detecting network is implemented onto the Jetson TX2 along
with the live data acquisition module, where it obtains SPAD LiDAR data from the
SPAD camera and converts the data into raw images. The random feature-detecting
network uses the raw images from the live data acquisition module for target classifi-
cation. Both the random feature-detecting network and live data acquisition module
are executed on the Jetson TX2 to avoid any additional data transfer time that can be
introduced by having the live data acquisition module run on a different computing
board to the random feature-detecting network. This ensures the SPAD LiDAR data
can be processed and classified in real-time.

The implementation of the random feature-detecting network follows the same
structure detailed in Section 4.1.

In this section, the software design choices for the embedded software implemen-
tation of the random feature-detecting network are discussed in Section 4.3.1 and this
is followed in Section 4.3.2 by an explanation of CUDA, which is a software program-
ming model used by the embedded software implementation to optimise some of the
functions in the random feature-detecting network. The live data acquisition module
is not discussed is this thesis for legal reasons.

4.3.1 Software Design Choices

The embedded software implementation of the random feature-detecting network
and the live data acquisition module adheres to three key software design choices:
multithreading when applicable for performance improvement, leveraging L1 caches
when possible, and offloading specific functions to the Jetson TX2’s on-board GPU
only when concurrent operations would be beneficial. The embedded software pro-
gram utilises multithreading by separating data acquisition and the random feature-
detecting network into two distinct threads. This choice of using multithreading is
based on the fact that data acquisition is quicker than executing the random feature-
detecting network, allowing the SPAD camera to acquire the next batch of data while
the network processes the current batch. Consequently, the random feature-detecting
network only idles during data transfer between threads.

The implementation leverages the 80 kB L1 cache on the Jetson TX2’s ARM Cortex
A57. The cache can accommodate each raw image’s 1,024 numerical values, resulting
in minimal execution time for data transfers between threads. Additionally, cache
hits can be utilised for serial arithmetic functions, which is faster than transferring
data between the central processing unit (CPU) and GPU for concurrent operations
and then transferring the data back to the CPU.

The GPU in the Jetson TX2 is leveraged for embedded software implementa-
tion of the random feature-detecting network. CUDA is used to implement some
of the operations for computation in the Jetson TX2’s on-board GPU. CUDA is a
programming model designed by Nvidia to efficiently utilise the GPU for compu-
tation. CUDA transfers the relevant data between the CPU to GPU such that the
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GPU processed data is transferred back to CPU for further processing. Operations
are parallelised using CUDA only when the reduction in time from concurrent GPU
execution outweighs the additional time spent transferring data to the GPU.

The data transfer between the CPU and GPU extends the time it takes to execute
an operation in the GPU. This makes it unattractive to parallelise certain operations
in the random feature-detecting network. For example, renormalising each of the
pixel values in the data manipulation module (Section 4.1.2) is not implemented in
the GPU. This is because the image is only 32×32 in resolution so iterating the same
operation 1,024 times in series on the L1 cache is faster than moving these values
to the GPU for computation. A similar argument applies to other operations, such
as splitting the convolved image into positive and negative values, and resampling
the feature vector to a fixed length. These operations all require small number of
iterations so their execution time is still shorter than transferring the data to the
GPU for parallel computation. The main reason only small iterations are required is
because the SPAD array size are 32×32 which means any feature images or vectors
resulting from the SPAD camera’s raw images are also small in size.

Convolution, summation of matrices to vectors, and matrix multiplication (used
for computing linear classification Eq. 4.1) are the only operations from the random
feature-detecting network that are implemented in CUDA for execution on the Jetson
TX2’s on-board GPU. In particular, the summation of matrix rows and columns (for
compressing the cropped feature vectors as shown in Figure 4.2 in Section 4.1.2) is
implemented using CUDA warp shuffle functions, which access the image at the
register level for fast summation operations.

Two design steps are implemented to minimise the transfer time of data between
CPU and GPU for operations implemented in CUDA. First, parallelised operations
are called only once. For example, convolution in the implementation is only called
once. This is because the values of its multiple filters are concatenated into a single
array and then the multiple output images are concatenated into another single array.
Second, the GPU’s shared memory is used to store values.

For a detailed explanation of CUDA and its utilisation in the embedded software
implementation of the random feature-detecting network for GPU execution, refer to
Section 4.3.2.

4.3.2 CUDA Programming Model

The embedded software implementation on the Jetson TX2 utilises CUDA to par-
allelise certain operations within the random feature-detecting network. This opti-
mises the execution of these operations. CUDA is a parallel computing platform
and programming model introduced by Nvidia in 2006 [118]. Initially designed to
enhance the processing capabilities for real-time, high-definition 3D graphics render-
ing, CUDA provides a software environment that supports combined CPU and GPU
programming. It is specifically developed to optimise computing performance for
Nvidia graphical processing units (graphical processing units (GPUs)) [118].

The fundamental idea behind CUDA is to enable collaborative work between the
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CPU (referred to as "the Host") and the GPU (referred to as "the Device"). The CPU
functions as the controller, managing data flow and initiating functions, while the
GPU handles the computation of various functions and oversees memory manage-
ment between them. In CUDA, kernels are created to address sub-problems. These
kernels are functions executed in threads within thread blocks. A thread, as defined
in CUDA, represents the execution of a process, and a block consists of 1,024 threads.
These threads are organised into a grid structure [10].

A common structure of a GPU Program follows the process below [10]:

1. CPU allocates storage on GPU (cudaMalloc function)

2. CPU copies input data from CPU to GPU (cudaMemcpy function)

3. CPU launches kernel(s) on GPU to process the data (Kernel launch)

4. CPU copies results back to CPU from GPU

Kernels are executed on threads and blocks because of the structure of the GPU.
The syntax to initialise kernels with multiple threads and blocks is:

«dim(bx,by,bz), dim(tx,ty,tz), shared memory» kernel (kernel
variables);

where dim(bx,by,bz) is the dimensions of the number of blocks that are used to
execute the kernel. dim(tx,ty,tz) is the dimension for the number of threads.
Shared memory is the amount of memory shared between threads; this memory
is managed by the GPU. In the CUDA model, each thread accesses its own local
memory, and shared memory with other threads in the same block. The GPU also
has a global memory that is shared between blocks and communicates with the CPU
memory [10].

Threads are organised into blocks because it is optimal to run threads for the
same kernel in the same Streaming Multiprocessor (SM) of a GPU. The SM creates,
manages, schedules, and executes threads in groups of 32 parallel threads called
warps. It contains multiple simple processors and a memory, which is where the
thread accesses its local and shared memory. The number of Streaming Multiproces-
sors (SMs) in a GPU depends on the particular type of board. One block of threads
must be run in one SM only, but a SM can run multiple blocks if the blocks are small
enough. The number of blocks depends on the memory and register usage of a ker-
nel. The allocation of blocks to SMs are all done by the GPU and this is why it is
important to declare blocks and threads in programs [10].

4.4 Difference between Offline and Embedded Software Im-
plementations

The random feature-detecting network undergoes offline training and preliminary
testing before being implemented as an embedded software program for real-time
operation on the Jetson TX2 [8]. The offline training and preliminary testing follows
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the procedures described in Section 4.2. Offline training and testing are essential
for empirically determining convolution filter values, a process discussed in Section
4.2.5, and classification matrix Z values. Once filter values are selected, they are used
in the embedded software program along with their corresponding classification ma-
trix Z.

Section 4.4.1 details one difference between the offline and embedded software
implementations. Section 4.4.2 details implementation differences for testing the em-
bedded software implementation of the random feature-detecting network for real-
time airplane target classification, compared to the offline software implementation
used for conducing preliminary testing of the target classification performance of
the random feature-detecting network. This difference arises due to the difference in
imaging setup for testing the real-time performance of the embedded software im-
plementation compared with the imaging setup used for collecting data to train and
preliminary test the offline software implementation of the random feature-detecting
network. Despite these variances, airplane classification performance is minimally
impacted, as demonstrated by the classification results in Section 4.6.3.

4.4.1 Denoising of Real-Time Images

In the offline implementation, a moving average of 5 raw images is employed for de-
noising during offline training and preliminary testing. This number is identified as
the minimum required to effectively create an average image and remove noise with-
out compromising the information in each raw image. However, for the embedded
software implementation, a block average of 16 raw images is utilised instead. This
is because a batch of 16 raw images is transferred to the Jetson TX2 at each camera
acquisition.

In the embedded software implementation, camera acquisition operates as a sep-
arate thread from the random feature-detecting network (as detailed in Section 4.3).
The camera halts the acquisition of data while the network performs classification
on a batch of raw images. The SPAD array flash LiDAR System A acquires data at a
much faster rate than the classification thread. Therefore, to optimise the process, it
is practical to process an average of 16 raw images for each execution of the random
feature-detecting network. This approach avoids the camera waiting for the network
to iterate its execution 12 times to classify a moving average of 5 raw images for each
batch of 16 raw images. Processing all 16 raw images enables the network to classify
the target with all available information while allowing the camera to capture the
real-time scene more rapidly.

Given that camera acquisition and classification are implemented in separate
threads in the embedded software program (as explained in Section 4.3.1), calcu-
lating an average of 16 raw images does not risk losing any real-time information
and keeps the processing time brief.
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4.4.2 Additional Check in Embedded Software Implementation

When testing the embedded software implementation of the random feature-detecting
network for classifying airplane models, the imaging environment that is used is
different compared with the original environment used for collecting data that is
utilised for offline training. This variation leads to differences in appearance of the
raw images, used for testing the embedded software implementation, compared with
the raw images used for training. Consequently, an additional check is incorporated
into the random feature-detecting network for the embedded software implemen-
tation. This check is designed to prevent background noise from being mistaken
as a target for classification. The detected target from the tracking module (Section
4.1.1) goes through an additional check where it is only considered to be an airplane
target only if its distance falls within the range where the airplane is positioned in
this new imaging environment. This is determined by evaluating whether the 5th
percentile value of the average image is below a threshold value of 940 clock cycles.
This threshold value is computed from the 5th percentile value of an average image
of an airplane, where the airplane is held at the furthest possible point in the new
imaging environment.

4.5 Airplane Dataset for Training and Preliminary Testing

Figure 4.4: Model airplanes used for imaging [102].

Raw images of airplanes are employed for offline training and preliminary test-
ing (as outlined in Section 4.2.5) of the random feature-detecting network. No raw
images are used for validation. An explanation on the splitting the collected raw im-
ages of airplanes for training and preliminary testing is detailed in Section 4.5.1. The
dataset comprises recordings of model airplanes, namely the Tu-128, Su-35, Su-24,
and MQ-9, dropped in various orientations in front of the SPAD array flash LiDAR
system. Figure 4.4 shows the images of the airplanes. The airplanes are painted
white for standardisation. The dimensions of these model airplanes do not exceed
17 cm×12 cm×2 cm, ensuring they remain within the camera’s field-of-view (FOV)
when imaged at a closer distance.

Figure 4.5 shows the imaging set-up for collecting recordings of these airplanes.
A dropbox is used to catch the airplanes after it is dropped. Each model airplane is
dropped 100 times which produces 100 recordings. This results in a diverse dataset
for training and preliminary testing. Separate recordings are made for each drop,
along with horizontally flipped versions added to double the number of recordings
in the dataset.
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Figure 4.5: Imaging set-up—the black-dotted prism depicts the SPAD camera’s FOV.
[103]

In total, there are 800 recordings in the collected dataset, with 200 recordings
for each airplane type. Each recording, on average, contains 427 raw images. Each
recording is reduced in duration such that the airplane target appears in each of its
raw images. Figure 4.6 shows a sample of the average images, where each image is
from the denoising module processing a batch of 16 raw images.

Figure 4.6: A selection of average images from the training dataset. The airplane
types are (from left to right) Tu-128, Su-35, Su-24 and MQ-9. [102].

The airplanes are dropped in various orientations 40 cm from the front of the
camera, simulating a large airplane flying across the camera’s FOV. This approach
ensures diversity in the dataset, with images of the airplane captured in various ori-
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entations. The SPAD array flash LiDAR system’s laser pulse width is 17 ns, and the
SPAD camera has a timing resolution of 390 ps, resulting in pixel values correspond-
ing to 44 different time bins for the model airplanes.

The specifications of the SPAD array flash LiDAR system used in this chapter,
referred to as System A, are provided in Section 3.4 of Chapter 3. The target is
consistently positioned 400 mm away from the camera, while the laser is located
473 mm away from the target, representing the calculated minimum distance for the
laser.

4.5.1 Allocating Training and Testing Datasets

The allocation of raw images into either offline training or testing is determined
based on the collected recordings. In other words, all the raw images from the same
recording will be used to create images for either the training or testing dataset.
Dividing the raw images based on their recordings is to prevent the training or testing
dataset from containing too many images of an airplane at a certain position of its
trajectory during its drop. Each recording contains raw images of the airplane model
dropping in front of the SPAD array flash LiDAR system once. Therefore, each
recording consists of raw images of the airplane appearing at different points of the
FOV, ranging from top of the FOV, to bottom of the FOV.

As discussed in Section 4.2.5, 20 instances of training and testing are conducted
for each set of filter values. At each instance, 99.5%5 of all the collected recordings
(equivalent to 796 recordings) are randomly selected for training. The remaining
recordings (i.e. 4 recordings) are allocated for testing.

To understand the number of images used in training and testing, a few factors
need to be considered. First of all, the average image reconstructed in the denoising
module of the random feature-detecting network is used here to discuss the number
of images used for training and testing the network. Even though the raw images are
the inputs into the random feature-detecting network, their features are not directly
used for classification. Instead, it is the average image’s features that are used for
classification. Therefore, the number of raw images in the recordings does not reflect
the amount of images used for training and testing because the denoising module
reconstructs an average image from a moving average of 5 raw images (as described
in Section 4.4.1). The number of average images created from the collected recordings
is considered as the number of images used for training and testing.

Secondly, the raw images from different recordings cannot be used together to
create an average image. This is because each recording contains raw images of each
separate airplane drop. Therefore, the total number of average images used in the
training and testing dataset cannot be simply estimated from the total number of raw
images from all recordings. Instead the number of average images must be calculated
from the number of raw images in each separate recording first. Then the number
of average images from each of the recordings for training are summed together to

5[102, Section 1.2] incorrectly reports the recordings are split in half for training and testing.
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determine the total number of average images used in the training dataset. Likewise,
the total number of average images for testing is calculated in the same manner.

Thirdly, the number of average images that can be created from each recording
is different for each recording. Each recording is collected from a separate airplane
drop hence will contain a different number of raw images (corresponding to the
duration of the airplane drop). Therefore, the number of average images from each
recording can only be estimated from the mean number of raw images in each record-
ing. For the airplane recordings, the mean number of raw images per recording is
427. Therefore, each recording can produce 423 average images during training and
testing, given an average image is created from 5 raw images (as described in Section
4.4.1).

By considering all these factors, the number of average images used in training
can be estimated to be 796 × 423 = 336, 708, given 796 recordings are used each
time for training. And the total number of images used for testing is esimated to be
4 × 423 = 1, 692, given 4 recordings are used each time for testing.

4.6 Results

The performance of the embedded software implementation of the random feature-
detecting network on the Jetson TX2 is discussed in this section. A demonstration of
the denoising and tracking modules is shown in Section 4.6.1 and 4.6.2, respectively.
Section 4.6.3 provides the testing methodology and target classification performance
of the embedded software implementation of the random feature-detecting network
using different numbers of convolutional filters. The execution time of one iteration
of the random feature-detecting network in the embedded software implementation
for different numbers of filters is provided in Section 4.6.4. In Section 4.6.5, the target
classification performance of the random feature-detecting network with 64 filters is
provided when the network is used to classify a moving airplane.

4.6.1 Denoising

A comparison between raw images and the average image from the denoising mod-
ule is shown in Figure 4.7. The figure shows that averaging a batch of raw images
significantly increases the amount of details shown in the reconstructed image. Fig-
ure 4.7 consists of a 4×7 grid of images. Each column is for one type of airplane
being classified. The first 6 rows of each airplane are the first 6 raw images taken
from a batch of 16 raw images of each type of airplane. The bottom row is the average
image of the same batch of 16 raw images for each type of airplane. This comparison
shows the significant improvement in the amount of airplane details shown in the
average image in comparison with the raw images.
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Figure 4.7: Effect of averaging 16 raw images. Here the first 6 rows contain the raw
images and the last row contains the averaged images. Section 4.4.1 discusses why
16 raw images are averaged together in the embedded software implementation of

the random feature-detecting network [102].

4.6.2 Tracking

The tracking module detects where the target is in each of the average images. Figure
4.8 shows some example average images where the model airplane is detected by the
tracking module and a bounding box is drawn using the borders computed by the
tracking module.

Figure 4.8: The bounding boxes determined by the tracking module for each airplane
[102].
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4.6.3 Real-Time Classification of a Static Image of a Target

In the embedded software implementation on the Jetson TX2, the random feature-
detecting network undergoes real-time testing with different numbers of filters. The
classification performance for each filter quantity is evaluated with each class of
model airplane being held in three distinct orientations: vertically downwards, an-
gled downwards, and dynamically. The dynamic orientation involves moving the
airplane in a small circular motion to simulate the camera experiencing vibrations
while on a mobile platform such as an UAV. For all three cases, the airplanes are
positioned 40 cm away from the camera, and the dynamic case involves the airplanes
moving within a radius of 1.5 cm from that position.

For each filter quantity and each orientation of holding the model airplane, the
random feature-detecting network’s classification performance with 32 batches of
SPAD raw images is measured. The tracking module, as described in Section 4.1.1,
and the additional detection check outlined in Section 4.4.2, ensure that all input
batches to the random feature-detecting network contain an airplane in the raw im-
age’s FOV.

Figure 4.9 presents examples of average images of each airplane at different ori-
entations used for classification testing. The average images in each column in this
figure correspond to consecutive batches of input raw images acquired by the SPAD
camera. The average images for the dynamic case resembles those for the vertical
case because the dynamic case’s circular trajectory is perpendicular to the SPAD’s
image plane. Therefore, the airplane appears to be moving slightly up and down
relative to the SPAD camera. Despite the airplane model moving in this dynamic
case, the average image of the airplane still appears static.

Figure 4.9: Average images saved from testing the classifier using a live raw image
feed. There are 12 columns of average images. Every fourth column shows average
images of each airplane being held in a different way (starting from the left): a)

vertical, b) angled and c) dynamic (where the airplane is moving in a circle) [102].

Multiclass confusion matrices are used to analyse the performance of the ran-
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dom feature-detecting network with different numbers of filters and orientations of
the airplanes. An example of a multiclass confusion matrix is given in [78]. The
predictions from the set of 32 classifications are recorded and used for calculating
the performance measures in Table 4.16. An explanation of these metrics is given in
Section 3.7 of Chapter 3. The predictions are recorded as percentages for each air-
plane type. A discussion of these results and performance comparison with similar
classification algorithms in the literature will be given in Section 4.7.

Table 4.1: Performance measures for different numbers of filters.

Measures Airplane
Orientation

Number of Filters
4 8 16 32 64

Overall Ac-
curacy (%)

Vertical 95.31 98.44 98.83 99.22 100
Angled 93.75 95.31 97.27 98.44 99.61
Dynamic 91.41 94.53 96.88 97.66 98.44
Average 93.49 96.09 97.66 98.44 99.35

Macro Re-
call (%)

Vertical 90.63 96.88 97.66 98.44 100
Angled 87.50 90.63 94.53 96.88 99.22
Dynamic 82.81 89.06 93.75 95.31 96.88
Average 86.98 92.19 95.31 96.88 98.70

Macro Pre-
cision (%)

Vertical 92.37 97.22 97.77 98.48 100.00
Angled 88.81 92.45 94.91 97.01 99.24
Dynamic 85.99 91.05 94.64 95.86 97.06
Average 89.06 93.57 95.77 97.12 98.77

Macro F1
measure

Vertical 0.91 0.97 0.98 0.98 1.00
Angled 0.88 0.92 0.95 0.97 0.99
Dynamic 0.84 0.90 0.94 0.96 0.97
Average 0.88 0.93 0.96 0.97 0.99

Error Rate
(%)

Vertical 4.69 1.56 1.17 0.78 0.00
Angled 6.25 4.69 2.73 1.56 0.39
Dynamic 8.59 5.47 3.13 2.34 1.56
Average 6.51 3.91 2.34 1.56 0.65

This space is intentionally left blank.

6For Table 4.1, a similar table was presented in [102]. However, in the table in [102], an error was
made where overall accuracy was the same as macro recall. The error is fixed and the re-calculated
overall accuracy values are shown in this table. Also, average error rate in [102] is named as error rate
in this table to match the terminology used in the literature.
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4.6.4 Execution Time

The average execution time of the random feature-detecting network on the Jetson
TX2 for conducting one target classification is presented in Table 4.2. These are the
average execution times when the dynamic case is tested. The overall execution time
is only the time it takes to execute the random feature-detecting network because data
acquisition and the network are implemented in two separate threads, as discussed
in Section 4.3.1.

Table 4.2: Average execution time of the random feature-detecting network in per-
forming one target classification when it is implemented with different numbers of

filters (ms). [102]
Number of Filters

4 8 16 32 64
Tu-128 31.99 30.00 40.61 46.22 64.79
Su-35 28.63 32.39 39.76 48.43 66.45
Su-24 29.06 31.85 35.98 46.79 62.99
MQ-9 31.04 31.38 38.07 49.80 66.04
Average 30.18 31.40 38.61 47.81 65.07

The power consumption of the Jetson TX2 when executing the embedded classi-
fication program is found to be 5.1 W. Other embedded boards in the current Nvidia
Jetson TX2 series have only improved in peripheral, as shown by the specifications in
[8]. The GPU and CPU are the primary hardware that runs the embedded software
program. From the specifications in [8], the GPU and CPU have remained the same
since the time when the embedded software program is developed and implemented
on the TX2 board.

4.6.5 Real-Time Classification of Moving Target

The random feature-detecting network is tested for real-time classification of a mov-
ing target. An airplane is simulated to fly past the camera by fixing the camera on a
gimbal, and the gimbal moves the camera at a constant speed, scanning a static verti-
cal model airplane from bottom to top. This simulates the airplane passing through
the FOV of the SPAD camera.

The camera starts at a position where the airplane is outside its FOV. As the
embedded software program for the random feature-detecting network is manually
started, the gimbal begins moving the camera to scan the airplane and collect images.
The gimbal stops moving, and the embedded software program is manually stopped
when the airplane is outside the FOV. The number of detections during each scan
is recorded, and the random feature-detecting network’s confidence rate for each
airplane type during the midpoint of the scan is shown in Table 4.3:

In each row of Table 4.3, the confidence rate is displayed for each type of plane.
The confidence rate represents the percentage of classifications labelling the image as
a certain type of airplane. Each group of four confidence rates in each row of Table
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4.3 sums to 100. This is because classification is tested for each type of airplane one
at a time. The percentage from the confidence rate is calculated over the number of
classifications performed up to the midpoint of the scan. The number of classifica-
tions conducted by the midpoint of the scan is approximately half the total number
of detections provided in Table 4.3.

Classification accuracy in this scenario is only reported for the random feature-
detecting network with 64 convolution filters. This is because the previous static
test results (as shown in Table 4.1) indicated that this number of filters had the best
performance. A discussion of these results and a performance comparison with
similar classification algorithms in the literature will be provided in Section 4.7. The
right-most column presents the number of successful target detections.

Table 4.3: Target classification performance of the random feature-detecting network
using 64 convolutional filters when the airplane is moving at a constant speed in
FOV. The right-most column presents the number of successful target detections.

[102]

Airplanes
scanned

Confidence rate of the mid-scan’s raw image (%) No. of de-
tections

Tu-128 Su-35 Su-24 MQ-9

Tu-128 91.30 0 8.70 0 44

Su-35 0 86.96 13.04 0 45

Su-24 0 0 100 0 43

MQ-9 0 0 4.76 95.24 40

4.7 Discussion

From Table 4.1 in Section 4.6.3, it is evident that the random feature-detecting net-
work performs best with 64 filters. In this setting, its overall classification accuracy
reaches 99.35%, and its error rate is at its lowest, 0.65%. Its F1 measure is 0.99, given
its recall and precision scores are at 98.70% and 98.77%, respectively. Overall, the
classification accuracy improves with an increasing number of filters. The average
execution time for this classifier with 64 filters is around 65.07 ms. The power con-
sumption for the classifier to execute in real time is 5.1 W. As there is no reported
power consumption in other related work, the power consumption cannot be com-
pared.

At the time of publication of the random feature-detecting network as a real-time
classification algorithm [102], there was limited literature related to the classification
of SPAD LiDAR data. The only known literature at the time was [136].
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Since the publication of the random feature-detecting network in [102], additional
literature for target classification have been published [117, 66, 114, 142, 134, 112, 113]
but their target classification performance will not be compared with the random
feature-detecting network. A review of the literature related to target classification
of SPAD LiDAR data can be found in Section 2.5 of Chapter 4, which includes other
levels of target discrimination, such as determining the orientation of a target, and
performing target recognition and identification.

To provide a more comprehensive performance comparison with the literature at
the time of publication of the random feature-detecting network [102], the random
feature-detecting network is also compared with other target classification algorithms
of 3D point clouds and RGB images. Classification of 3D point clouds is similar
to SPAD LiDAR data, given both provide a 3D representation of a target. As for
RGB images, the target classification algorithms that are selected for comparison are
demonstrated to classify RGB images with pixel resolutions from 32×32 to 256×256,
which is similar to the 32×32 pixel resolution of the SPAD LiDAR data that are
classified by the random feature-detecting network.

The target classification algorithms selected for comparison utilise Convolutional
Neural Networks (CNNs). This type of classification algorithm is chosen because the
random feature-detecting network uses the convolution operation to extract features
from the image, which is similar to how CNNs utilise the convolution operation.
These classification algorithms were state-of-the-art CNNs at the time of publication
of the random feature-detecting network [102]. Coincidentally, the only known liter-
ature related to classification of SPAD LiDAR data also utilises CNNs. Therefore, the
rest of this section will be about comparing the random feature-detecting network
with CNNs.

The classification performance of the random feature-detecting network is com-
parable to CNNs in the selected literature. The performance summary of these CNNs
and the random feature-detecting network is presented in Table 4.4. The table incor-
porates a snapshot of the random feature-detecting network’s performance when
utilising 64 convolutional filters. In each row of performance metrics, the best value
is highlighted in bold. The number of training and testing images used by each
algorithm are provided in Table 4.5.

This space is intentionally left blank.
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In the rest of this section, a discussion will be provided for each algorithm’s
performance compared with the random feature-detecting network.

4.7.1 Comparison with Other SPAD array flash LiDAR Classification Al-
gorithms

The authors in [136] developed a 2D network and a 3D network for target classi-
fication of data collected by a 64×64 SPAD array flash LiDAR system. The SPAD
LiDAR data is converted to a 320×320 2D binary image for target classification by
the 2D network. For the 3D network, the SPAD LiDAR data is converted to a 3D
point cloud. The SPAD LiDAR data used to evaluate the 3D network has the same
dToF measurement for all pixels related to the target. Therefore, the dToF measure-
ment of each pixel is repeated over the z-plane to create a 3D point cloud for the 3D
network [136]. In terms of algorithm processing, the use of point clouds has a differ-
ent data structure to the raw images used for the random feature-detecting network.
The point cloud proposed by the authors in [136] repeats a raw image over several
z-planes while the random feature-detecting network only utilises one raw image.

When the random feature-detecting network utilises 16 or more filters, it results
in higher precision, recall and F1 measure than the 2D network proposed by the
authors in [136]. However, there are a few differences between the 2D network and
the random feature-detecting network. First, the 2D network uses a VGG-16 model
that is pre-trained on 14 million standard images and adds an extra four layers to
fine-tune the network to classify SPAD LiDAR data [136]. This makes a total of 18
layers, which is much larger than the random feature-detecting network. Moreover,
the 2D network here is able to use transfer learning to extend a pre-trained VGG-16
model. This is different from the random feature-detecting network, which is unable
to store memory from previous learning.

The training data used by the 2D network is also different to the random feature-
detecting network. There are 1,923 raw images used for training where the raw
images are partitioned such that there are 641 raw images per class [136]. Another
difference is that the raw images used to test the classification performance of the
random feature-detecting network are 32×32 in size, while the original raw images
used by the authors in [136] are 64×64, which are then scaled up to 224×224 to be
compatible with the VGG-16 model’s input layer [136]. Furthermore, the authors in
[136] classified eight different objects into three classes (airplane, chair, Uncrewed
Autonomous Vehicle (UAV)) [136], while the random feature-detecting network pre-
sented in this chapter is tested to classify four different airplanes into four different
classes, where there is a one-to-one correspondence between each object and a class.

When compared with the 3D network proposed by [136] for SPAD LiDAR data,
the random feature-detecting network has equal classification performance when
using 32 filters and performs better at 64 filters. Despite the 3D network using a
smaller number of training images, its structure is more complex than the random
feature-detecting network. The 3D network is an 11-layered CNN [136], while the
random feature-detecting network can be viewed as a single-layer CNN. The more
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complicated structure implies that the 3D network’s computation time and power
may be more than those of the random feature-detecting network, making it less
efficient to execute on embedded boards.

4.7.2 Comparison with VoxNet: a 3D Point Cloud Classification Algo-
rithm

The random feature-detecting network performs better than VoxNet [98] for all the
different numbers of filters that it has been developed to utilise. The macro F1 mea-
sure of the Multi-Resolution VoxNet is 0.73 [98], while the random feature-detecting
network has a lower macro F1 measure of 0.88 at 4 filters. However, the random
feature-detecting network has only been shown to classify 4 airplane types, while
VoxNet has been demonstrated to classify 14 classes of objects [98]. VoxNet’s train-
ing data size is unknown, so it is difficult to determine whether the random feature-
detecting network is trained on a larger dataset. VoxNet also uses many more layers
than the random feature-detecting network, which can be viewed as a single-layer
CNN. VoxNet’s CNN consists of two identical 5-layer networks working in parallel
and then one final classification layer. The two parallel networks are used to process
the data that is voxelised by two different-sized grids, 0.1 m and 0.2 m. This is to
ensure the classifier is rotationally invariant.

VoxNet executes faster than the random feature-detecting network. The execution
time of VoxNet varies between 1 ms to 0.5 s when executed on a Tesla K40 GPU [98].
The execution time increases with more pixels in the image to be classified. Given the
SPAD LiDAR data has a low image resolution, a fair comparison with the random
feature-detecting network’s execution time will be using the lower bound of VoxNet’s
execution time range. This means VoxNet’s 1 ms execution time is much faster than
the random feature-detecting network’s 65.07 ms execution time. However, a Tesla
K40 GPU is used for VoxNet’s implementation. The different computational hard-
ware can enable the VoxNet to execute faster.

4.7.3 Comparison with RGB Image Classification Algorithms

The random feature-detecting network is compared with four different CNNs that
classify RGB images. They are AlexNet [77], GoogLeNet [151], ResNet50 [62] and
ShuffleNet [180].

The first three networks are extended by the authors in [141] to classify 32×32
RGB images. Therefore, their performances will be discussed together. Table 4.6
shows the average, minimum, and maximum accuracies of these three CNNs at clas-
sifying 20 different classes of objects from the datasets CIFAR-100 and CIFAR-10.
Classes from CIFAR-100 and CIFAR-10 each make up half of the 20 testing classes.

The classification accuracy for each of the classes varies a lot and is much lower
than the random feature-detecting network accuracy (with any number of filters).
Even though the number of testing classes is greater than the number of airplane
types used to test the random feature-detecting network, all three of these CNNs
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Table 4.6: Target classification accuracy of different CNNs by the authors in [141].
AlexNet [77] GoogLeNet

[151]
ResNet50 [62]

Average accura-
cies

40.0875 68.152 68.96
Maximum accu-
racy

95.9 (Truck from
CIFAR-10)

97.1 (Truck from
CIFAR-10)

99.2 (Motorcycle
from CIFAR-10)

Minimum accu-
racy

0 (Bed from
CIFAR-100)

0.84 (Streetcar
from CIFAR-
100)

33.4 (Table from
CIFAR-100)

have far more layers than the random feature-detecting network. AlexNet has 8
layers [77], GoogLeNet has 22 layers [151], and ResNet50 has 50 layers [62]. Also,
the authors take the pre-trained models of these CNNs and further fine-tune these
models with three datasets: CIFAR-100 with 32×32 RGB images, ImageNet with
varying sizes of RGB images, and CIFAR-10 with 32×32 RGB images. Further fine-
tuning is possible because these models allow transfer learning. This is different from
this chapter’s random feature-detecting network as it is unable to store memory from
previous learning.

Furthermore, the minimum accuracy of these three networks is always from one
of CIFAR-100’s object classes and the maximum accuracy always comes from one of
CIFAR-10’s object classes. One possibility for the difference between CIFAR-10 and
CIFAR-100 is that CIFAR-10 only has 10 object classes while CIFAR-100 has 100 object
classes with 20 superclasses. Superclasses are a broader category that encompasses
more than one of the classes, so that each image has two labels, one representing its
class and the other representing its superclass. Hence, each of the training images
from CIFAR-100 contains two labels, which is different from the training dataset used
to test the random feature-detecting network. Only one label is used for each image
in the training dataset for the random feature-detecting network.

Each of these CNNs has been trained by approximately 1.2 million RGB im-
ages. Each training dataset for each CNN has different images, where they are
datasets from different years of the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) [77, 151, 62]. The authors of [141] further fine-tune the network with
the CIFAR-100 dataset, which has 500 RGB images sized 32 × 32 per object class and
100 classes in total, and CIFAR-10 dataset, which has 5,000 RGB images sized 32× 32
per object class and 10 object classes in total.

The random feature-detecting network consistently outperforms ShuffleNet [180]
in terms of error rates across all numbers of filters. With its highest error rate at 6.51%
when using 4 filters, the random feature-detecting network compares favourably
with ShuffleNet, which exhibits a lowest error rate of 26.3% [180]. It is important to
note that ShuffleNet is evaluated on the 224×224 RGB images from the ImageNet
2012 classification dataset [180]. This is different to the random feature-detecting
network, which is assessed using live images of airplanes for real-time classification.
Although ShuffleNet reports multiple error rates based on different filter configura-
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tions, the exact method of error rate calculation is unclear. In contrast, the error rate
in Table 4.1 for the random feature-detecting network is determined by averaging the
percentages of false negatives and false positives for each model airplane.

In terms of execution times, the random feature-detecting network, operating
with varying execution times between 30.18 and 65.07 ms, demonstrates competi-
tive performance based on the number of filters employed. ShuffleNet, implemented
on a single thread using a mobile processor (Qualcomm Snapdragon 820), shows
similar execution times, ranging from 15.2 to 108.8 ms, with the exact duration de-
pending on the configuration used [180]. While both networks are implemented
on mobile processors, the random feature-detecting network leverages three threads
and ShuffleNet uses a single thread. Since both networks have similar execution
times, it is possible that ShuffleNet may have a shorter execution time if it can be
implemented in multiple threads. Furthermore, ShuffleNet has been tested to pro-
cess higher resolution images compared with the random feature-detecting network.
This suggests that ShuffleNet may execute target classification faster than the ran-
dom feature-detecting network, given its execution time similarity to the random
feature-detecting network despite processing higher resolution images.

4.8 Chapter Summary

A target classification algorithm called the random feature-detecting network is im-
plemented on the Jetson TX2 with a live data acquisition module to classify SPAD
LiDAR data in real time. The algorithm’s embedded software implementation pro-
cesses a batch of 16 raw images into an average image, then extracts different feature
from the average image and stores these features’ information into a vector, which is
then processed by linear classification to determine the target’s class. Part of these
features are extracted by convolution filters, whose values are randomly generated.

The classification performance of different versions of the algorithm are evalu-
ated, where each version has a different number of filters. The different numbers
of filters are 4, 8, 16, 32 and 64. For classifying 4 different types of model airplanes
(Tu-128, Su-35, Su-24 and MQ-9), the classifier achieves an overall classification ac-
curacy of 99.35% with an F1 score of 0.99 when using 64 filters, which is better than
the classification performance of the two SPAD LiDAR data classification algorithms
developed by the authors in [136], which was the only literature on target classifica-
tion of SPAD LiDAR data at the time of publication of the random feature-detecting
network in [102]. When compared with other target classification algorithms that
process 3D point clouds and RGB images, the random feature-detecting network
also offers better target classification performance.

The algorithm and live data acquisition module’s total power consumption is 5.1
W. The algorithm’s execution time in the embedded software implementation varies
between 30.18 and 65.07 ms. The execution time depends the number of convolution
filters that the algorithm uses. Despite the ShuffleNet target classification algorithm
demonstrating a faster execution time, the random feature-detecting network was
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the only target classification algorithm that had been demonstrated to perform real-
time classification for SPAD array flash LiDAR images at its time of publication in
[102]. Overall, this chapter has presented a real-time target classifier that executes on
a Jetson TX2 and has a low SWaP requirement, which means it can be mounted on
mobile platforms for remote surveys.

If the classifier is to be implemented on a different embedded board in the fu-
ture, the hardware of the board must meet or exceed the computational performance
capabilities of the Jetson TX2 to ensure that the classifier can maintain real-time exe-
cution.

In addition to imaging in air, remote surveys often encounter environments with
obscurants, such as natural water bodies (e.g. rivers or oceans) and outdoor fog.
Since the target classification algorithm discussed in this chapter has only been tested
on targets imaged in air, it is important to consider these other environments. Ob-
scured environments pose challenges in collecting accurate dToF measurements of
targets, which can complicate target classification. Therefore, the next chapter will
focus on image reconstruction of targets submerged in natural water environments,
where accurately reconstructed images can provide better target classification per-
formance.
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Chapter 5

SPAD Image Reconstruction of
Targets Submerged in Natural
Waters

To increase the sensing versatility of mobile platforms such as Uncrewed Autonomous
Vehicles (UAVs), this chapter focuses on above-water Single Photon Avalanche Diode
(SPAD) Light Detection and Ranging (LiDAR) imaging of submerged targets in nat-
ural waters, which includes rivers and oceans. Natural water environments are com-
mon when performing remote surveillance. The ability to perform target detection
and classification of underwater targets from the air is crucial for effective maritime
operations for the military.

The turbid nature of natural water environments poses significant challenges for
SPAD LiDAR imaging. Suspended particles, organic matter, and water itself induce
light absorption [132] and scattering [109], which can degrade the Signal-to-Noise
Ratio (SNR) of SPAD LiDAR images, complicating target discrimination tasks. This
chapter focuses on algorithms that reconstructs a clear image of the submerged target
for target detection and classification.

As an initial approach, two basic image-reconstruction algorithms for submerged
target are tested in this chapter: the detection threshold and median algorithm, and
the histogram averaging algorithm. Both are simple computational methods that use
data collected from a small number of SPAD LiDAR frames (200–300). These image-
reconstruction algorithms will be presented in detail later in the chapter, along with
their computational demand analysis to demonstrate their real-time capability.

There are two main challenges in using SPAD array flash LiDAR system to collect
above-water data of submerged targets for evaluating the effectiveness of these two
algorithms. First, finding suitable sites for above-water imaging in natural waters is
difficult. Such sites need structures to position the SPAD array flash LiDAR system
above the water, and sufficient depth to separate the submerged target from the floor,
ensuring the algorithm can distinguish between them based on depth information.
Safety precautions further limit the number of viable locations, making outdoor ex-
periments challenging and requiring extensive planning and approvals. If natural
water sites are not used, simulating complex natural water conditions in a laboratory
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tank becomes necessary, involving either transporting natural water or recreating it
with realistic components including sediments and chlorophyll.

Second, creating a mechanical set-up that positions the SPAD array flash LiDAR
system above water while keeping the underwater target within its field-of-view
(FOV) is non-trivial. Fast water currents can displace the target, and turbid water
can obscure its position.

These challenges highlight that effective reconstruction algorithms are not the
only hurdle; reliable data collection of submerged targets using a SPAD array flash
LiDAR system is equally crucial. Therefore, this chapter introduces a novel imaging
set-up for above-water imaging of submerged targets.

In this chapter, three datasets are used to evaluate the performance of these two
image-reconstruction algorithms. They are collected in two different laboratory envi-
ronments and one outdoor natural water location, where different SPAD array flash
LiDAR systems are used. The system specifications will be presented in detail later
in this chapter.

The first dataset, from the Australian Institute of Marine Science (AIMS) indoor
saltwater tank, is used to evaluate the algorithms’ ability to reconstruct images of tar-
gets submerged in various turbidity conditions, created using sediments and chloro-
phyll. As an above-water imaging system would require significant engineering to
create the imaging set-up, this first stage of imaging positions the SPAD array flash
LiDAR system to horizontally image the target within the AIMS indoor saltwater
tank. This dataset serves as an intermittent step where the feasibility of employing a
SPAD array flash LiDAR system for imaging in natural waters is assessed. The recon-
structed images from this dataset are used to gauge image quality in natural waters.
In addition, target classification is evaluated to demonstrate image reconstruction
quality.

To simulate a possible above-water imaging optical set-up, the SPAD array flash
LiDAR system at the AIMS indoor saltwater tank is range-gated to only detect pho-
tons reflected within the water tank, which simulates the imaging of submerged
targets without the interference of the water surface during above-water imaging.
Some preliminary work related to this dataset has been published at a conference
[101].

The collection of data for the second dataset establishes a methodology for imag-
ing targets at various depths using an above-water SPAD array flash LiDAR system.
The data collection location is at the DSTG indoor freshwater tank. A mechanical rig
is constructed to position the LiDAR system above the water for imaging. The per-
formance of the reconstruction algorithms in clear freshwater is evaluated, providing
a baseline for the quality of reconstructed images in natural waters. Due to the labo-
ratory environment mandating the use of multiple ceiling lights during experiments,
the effect of the water surface on imaging is not investigated here because the indoor
lighting condition is not reflective of outdoor lighting conditions at natural water
locations.

The third dataset, from the Port Adelaide River, is used to assess the reconstruc-
tion algorithms for targets submerged in natural water environments. The same me-
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chanical rig from the DSTG indoor freshwater tank is used for the imaging set-up,
and the SPAD array flash LiDAR system is positioned such that it detects photons re-
flected from the water surface. The river, an estuary, consists of a mixture of saltwater
and freshwater.

As discussed in Section 2.4 of Chapter 2, SPAD LiDAR image reconstruction of
submerged targets is typically evaluated using freshwater tanks with Maalox acting
as a turbidity agent. To the best of my knowledge, this is the first evaluation of
image reconstruction techniques using real natural water environments and water
tanks that simulate natural waters with real marine constituents.

Achieving successful image reconstruction in various natural water conditions is
a result of iterative trial-and-error image processing. Evaluating the reconstructed
images highlight the need for a comprehensive understanding of how water prop-
erties affect photon returns. Preliminary results on attenuation and scattering have
been reported in [101] but are not reported in this thesis.

This chapter is structured in four parts. First, the methodology for collecting
data of submerged targets by using a SPAD array flash LiDAR system is described.
Section 5.1 explains the different SPAD array flash LiDAR systems used and their
relevant features for image reconstruction. Section 5.2 details the imaging set-ups at
the three different water locations.

The second part describes the image-reconstruction algorithms for the collected
data, which are detailed in Section 5.3. This is followed by Section 5.3.1, which
presents a computational demand analysis of these algorithms to demonstrate real-
time capability.

The third part presents and discusses the reconstructed images from each water
location. Section 5.4 covers the AIMS indoor saltwater tank results, followed by Sec-
tion 5.5 with the DSTG indoor freshwater tank results and Section 5.6 with the Port
Adelaide River results. In addition, target classification performance is presented in
Section 5.4.3 for reconstructed images of data collected at the AIMS indoor saltwater
tank.

The fourth part, Section 5.7, discusses the challenges of SPAD array flash LiDAR
imaging of submerged targets in natural waters and proposes future research oppor-
tunities.

5.1 SPAD Array Flash LiDAR Systems

In this chapter, two different SPAD array flash LiDAR systems are employed for the
imaging of underwater targets. These systems, identified as Systems B and C, are
described in Table 3.1 in Section 3.4 of Chapter 3. System B is employed for imaging
at the AIMS indoor saltwater tank, while System C is used for above-water imaging
at the DSTG indoor freshwater tank and the Port Adelaide River.

Both systems share the same SPAD camera, but differ in their laser components.
System B uses a Bright Solutions laser, which is larger and heavier, making it imprac-
tical for above-water imaging. In contrast, System C utilises a more compact Aréte
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laser, which is better suited for above-water imaging tasks.
As mentioned in Section 3.2 of Chapter 3, direct Time-of-Flight (dToF) measure-

ments are discussed in terms of clock cycles. As detailed in Section 3.4.1 and 3.4.2
of Chapter 3, the dToF measurements do not compensate for the timing delays of
Systems B and C.

When no photons are registered by a SPAD detector during a LiDAR pulse cy-
cle, the SPAD camera assigns its maximum possible dToF value to the pixel corre-
sponding to the SPAD detector. For all the datasets discussed in this chapter, an
upper-bound range gate is set during imaging. Therefore, the maximum possible
value of a dToF measurement is the dToF value set for the upper-bound range gate.
During post-processing, any dToF measurements with this maximum dToF value are
discarded.

5.2 Data Collection Method

Three datasets are collected to evaluate the image-reconstruction algorithms, each
from a different location: the AIMS indoor saltwater tank, the DSTG indoor freshwa-
ter tank, and the Port Adelaide River.

This section includes multiple subsections, beginning with Section 5.2.1, which
describes the imaging targets used at each location. Following this, Section 5.2.2
provides details of the imaging set-up at the AIMS indoor saltwater tank.

Subsequent subsections detail the novel imaging set-up for performing above-
water imaging of submerged targets. Section 5.2.3 describes the set-up used at the
DSTG indoor freshwater tank for above-water imaging of submerged targets in clear
freshwater. This includes details of the custom mechanical rig built for this novel
imaging set-up. Section 5.2.4 covers the set-up used at the Port Adelaide River for
above-water imaging of submerged targets in natural water. Finally, Section 5.2.5
explains the process of capturing dToF measurements of the target at various sub-
merged depths at both the DSTG indoor freshwater tank and the Port Adelaide River,
given their similar imaging set-ups.

5.2.1 Imaging Targets

Different imaging targets are used at each location. In the AIMS indoor saltwater
tank, three thin plastic shapes, spray-painted in matte grey (as shown in Figure 5.1),
serve as the targets. Each shape fits within a square with a side length of 40 mm.

For imaging in the DSTG indoor freshwater tank, a Secchi Disc (SD) with a diam-
eter of 30 cm is used, as depicted in Figure 5.2. At the Port Adelaide River, a white
disc of the same size as the SD is employed. The use of a white disc as a target in the
river enhances the likelihood of detecting photons reflected from it. This is because
the water is much more turbid compared with the clear fresh water in the DSTG
indoor freshwater tank.

Table 5.1 below lists the different targets used in the different locations and the
tables in this chapter that contain the reconstructed images of these targets.
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Figure 5.1: The thin plastic shapes spray painted in matte grey used for imaging.
Note they have a wire hook attached so they can be attached to an optical mount for

imaging in the AIMS indoor saltwater tank.

Figure 5.2: The black and white SD used for imaging.

Table 5.1: Imaging targets used at each location.

Imaging Location Imaging Target Table that contains re-
constructed images

AIMS indoor saltwater
tank

Three grey geometric
shapes

Table 5.2

DSTG indoor freshwa-
ter tank

30cm black and white SD Table 5.3

Jetty at Port Adelaide
River

A 30cm white
disc, which is
the same size
as the SD used
in DSTG indoor
freshwater tank

Table 5.5

This space is intentionally left blank.
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5.2.2 AIMS Indoor Saltwater Tank

In the AIMS indoor saltwater tank, diverse ocean conditions are simulated by com-
bining filtered saltwater with varying quantities of sediments and chlorophyll. SPAD
LiDAR data are then collected for a submerged target in saltwater with different con-
centrations of sediments (1.30 to 8.62 mg/L), a singular concentration (2.46 µg/L) of
chlorophyll, and a combined mixture of sediments (5.71 mg/L) and chlorophyll (2.44
µg/L). Only a single concentration of chlorophyll is utilised because of limited time.
The selection of sediments and chlorophyll is based on their significance as two ma-
jor optical constituents of the ocean [24]. According to [24], chlorophyll is prevalent
in phytoplankton, while sediments consist of inorganic particles. These chosen con-
stituents effectively emulate key aspects of oceanic optical properties, contributing to
a more realistic simulation of diverse ocean conditions within the saltwater tank. The
tables in Appendix B list the different amounts of these constituents that are used for
imaging.

(a)

(b) (c)

Figure 5.3: (a) AIMS indoor saltwater tank set-up in the laboratory. [11] (b) There are
two large side windows on the right side of the tank used for the experiment. This is
the side window that is near the front wall of the tank (with the portholes). (c) View

of the other side window that is further from the front wall.
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The dimensions of the saltwater tank are 4 m in length, 1 m in width, and 0.75
m in height. Figure 5.3(a) shows a photo of the laboratory where the saltwater tank
is situated. The saltwater tank is in the middle of the laboratory. Two small circular
acrylic portholes, are custom-cut into the tank and are visible in Figure 5.3(a). These
portholes are strategically positioned to facilitate extended distances for SPAD array
flash LiDAR imaging into the water tank. Designed to be 0.5 m apart and with
a diameter of 0.12 m each, these portholes are integral to the experimental set-up.
There is also an additional wall in the AIMS indoor saltwater tank, which is referred
to as the back wall when evaluating reconstructed images. In addition, the tank is
equipped with two large acrylic windows on one side, as illustrated in Figure 5.3(b)
and 5.3(c) [101], but they are not used as part of the imaging set-up.

The next sub-section discusses how the saltwater is sourced. This is followed by
Section 5.2.2.2 which details the sediments and chlorophyll added into the water tank
for imaging. The remainder of this section discusses the imaging set-up and method.

5.2.2.1 Obtaining Saltwater from the Ocean

The AIMS indoor saltwater tank is situated within the AIMS SeaSim facility. It serves
as a controlled environment for saltwater experiments, specifically designed for the
study of coral reefs1. Filtered saltwater utilised in the laboratory experiments is
sourced from the ocean. A detailed description of the SeaSim facility capabilities is
provided in [6].

Before entering the saltwater tank, the saltwater passes through a fabric filter
with a diameter of 1 µm to remove any unexpected debris. Once inside the tank, a
pump is employed to ensure uniform mixing of the saltwater. Due to the absence of
chlorine, the saltwater can only remain in the tank for a maximum of 12 hours after
substances are added, as bacteria may begin to proliferate. Consequently, the tank is
emptied and refilled within approximately 2 hours, including the time required for
tank drainage, wall cleaning, and saltwater replenishment.

Thorough cleaning of the tank walls is imperative to prevent residuals that could
adversely affect the saltwater quality during imaging processes. Throughout ex-
periments, the saltwater temperature in the tank is maintained at 25 ◦C to ensure
consistency and relevance to local environmental conditions.

5.2.2.2 Sediment and Chlorophyll Used in the AIMS Indoor Saltwater Tank

Sediments with diameters of 38 µm or less are used to increase the sediment con-
centration of the saltwater in a controlled manner. The sediments have been sourced
directly from the ocean floor.

A certain sediment concentration is achieved in the AIMS indoor saltwater tank
by adding finite amounts of sediments. The sediments are provided by the AIMS
SeaSim staff. To ensure the sediments are evenly distributed throughout the water
tank, the required amount of additional sediment is first mixed in a bottle with

1Visit this site more information: https://www.aims.gov.au/about/facilities/national-sea-simulator

https://www.aims.gov.au/about/facilities/national-sea-simulator
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filtered saltwater to create a solution. Examples of the bottles of pre-mixed sediment
solution are shown in Figure 5.4. Then, this solution is evenly poured throughout the
saltwater tank, followed by stirring of the tank’s saltwater using the motor attached
to the saltwater tank.

Figure 5.4: Sediment solutions used to increase sediment concentrations.

For chlorophyll, a mixture of equal parts (approx. 16.66%) of six different microal-
gae are used to increase the chlorophyll concentrations of the tank water. Microalgae
are used since they contain chlorophyll [67]. The microalgae used are Chaetoceros sp.
(CS-256), Nanochloropsis oceania (CS-702), Isochrysis sp. (CS-177), Chaetoceros muelleri
(CS-176), Dunaliella sp. (CS-353) and Rhodomonas salina (CS-24/01). These microalgae
are between 3–10 µm in diameter. These microalgae are lab-grown as coral food. The
microalgae are maintained by the AIMS SeaSim staff.

For all the sediment and chlorophyll concentration values reported in this thesis, a
baseline correction is applied to them. These corrected concentration values account
for any existing sediments and chlorophyll in the saltwater which is sourced from
the ocean.

5.2.2.3 Imaging Set-up

System B, with its specifications listed in Table 3.1 in Section 3.4 within Chapter 3, is
utilised for imaging at the AIMS indoor saltwater tank. The SPAD array flash LiDAR
system is oriented horizontally relative to the imaging target, as opposed to placing
it vertically above the imaging target and water surface. Figure 5.5 shows a schematic
of the imaging set-up. The acrylic portholes are 0.5 m apart and each has a diameter
of 0.12 m.

The employed SPAD array flash LiDAR system has a minimum imaging distance
of 6 m, so the system is positioned such that the system begins detecting photons
reflected from inside the water tank and the system does not detect any photons
reflected from the acrylic windows or the front wall of the AIMS indoor saltwater
tank. This specific imaging set-up simulates photon returns collected from an above-
water SPAD array flash LiDAR system range gated to exclude photon returns from
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Figure 5.5: Schematic of AIMS indoor saltwater tank imaging set-up.

Figure 5.6: The grey right-angled triangle in the saltwater tank, held up by an optical
mount and piece of wire, (highlighted by the red circle in the photo) is illuminated
by a laser beam during calibration. Its shadow is on the back of the water tank,

highlighted by the purple circle in the photo.

reflections and scattering at the water surface. Additionally, a maximum range gate
of 100 clock cycles is set.

The imaging targets in the AIMS indoor saltwater tank, elaborated upon in Sec-
tion 5.2.1, consist of three grey shapes. These shapes are affixed to the top of an
optical mount with a height of 122 mm, positioned about 2.9 m away from the port-
holes. As seen in Figure 5.1 in Section 5.2.1, a small red wire hook is attached to
each of the shapes. This wire is used to secure the shape onto the optical mount, and
enable a quick change of shapes on the optical mount during imaging.

Figure 5.6 illustrates the laser illuminating a triangle submerged higher in the
water, positioned by the optical mount on the left. The shadow of the triangle is ob-
servable on the back wall of the tank, positioned at the upper left of the photograph.

A dark environment is utilised to conduct the experiments in order to reduce the
amount of ambient noise detected by the SPAD array flash LiDAR system.
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5.2.2.4 Imaging Method

Imaging is conducted for different sediment concentrations first, with all imaging
for each condition conducted within half an hour. This approach ensures that the
sediment does not settle significantly, which could alter the saltwater conditions be-
tween shapes for the same sediment concentration. The first sediment condition has
no added sediment, which corresponds to a corrected sediment concentration of 1.30
mg/L. Although no sediment is added, the filtered saltwater itself contains some
residual sediment.

Subsequent sediment conditions involves increasing sediment concentrations by
adding additional sediments to the saltwater tank for each new concentration. After
collecting all data for these sediment concentrations, the tank is emptied, thoroughly
cleaned, and refilled with new saltwater. Algae are then added to achieve a chloro-
phyll concentration of 2.46 µg/L. Following this, sediments are added to the tank
to create a combined mixture with sediment concentration of 5.71 mg/L and chloro-
phyll concentration of 2.44 µg/L. The slight decrease in chlorophyll concentration
from 2.46 µg/L to 2.44 µg/L is due to the fact that sediments are added the day
after the chlorophyll is introduced, potentially causing some algae to die overnight
and thus resulting in a lower chlorophyll measurement when the concentration is
re-measured by the specialised fluorescence meter.

5.2.3 DSTG Indoor Freshwater Tank Imaging Set-up

A lab-controlled freshwater elliptical tank at DSTG is used to test the set-up of a
SPAD array flash LiDAR system for above-water imaging. The tank, which measures
7 m in depth and 6 m in width, is continuously filtered and treated with chlorine to
ensure a contamination-free environment. This ensures any of the observed effects
in the data are not due to turbid conditions, which are already tested at the AIMS
indoor saltwater tank described in Section 5.2.2.

The SPAD array flash LiDAR system is mounted on a bridge above the side of
the water tank to perform above-water imaging of a submerged target. The system
is secured using a custom mechanical rig designed to position it precisely over the
water surface.

A schematic of the custom mechanical rig is shown in Figure 5.7. The rig is
anchored to the handrails of the bridge over the water tank. The SPAD array flash
LiDAR system is mounted onto a steel plate, with the laser positioned on the top
side and the SPAD camera on the opposite side. This steel plate is then attached to
an L-frame, which is robust enough to support the unit over the water. Additionally,
the steel plate is connected to the L-frame with a hinge, allowing the imaging system
to rotate and capture images at various angles. The red angle depicted in Figure 5.7
illustrates the camera angles reported in this chapter in relation to the position of the
steel plate.
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Figure 5.7: Schematic of custom rig from the side view.

Figure 5.8: Schematic of custom rig from an angled view. Here it shows the steel bar
is attached to only one side of the steel plate and L frame, so it is not blocking the
FOV of the SPAD array flash LiDAR system. The SPAD camera is not shown here as

it is underneath the steel plate in this angled view.

The schematic in Figure 5.8 illustrates the attachment of the steel bar to the rig.
A narrow steel bar is affixed to the tip of the steel plate and the L-frame, enabling
the steel plate to be pushed outward and the SPAD array flash LiDAR system to
be angled. As shown in the figure, the steel bar is attached to only one side of the
steel plate and L-frame, ensuring it does not obstruct the SPAD array flash LiDAR
system’s FOV.

The steel bar is secured to the steel plate by cutting a small hole at the corner tip
of the plate and drilling holes in the bar. A rope is threaded through these holes,
linking the tip of the plate to the tip of the steel bar. Additionally, the bar is fastened
to the L-frame with a loose cable tie, allowing it to move the steel plate forward and
backward without causing lateral movement.
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Figure 5.9: Schematic of DSTG indoor freshwater tank imaging set-up.

A schematic of the imaging set-up at the DSTG indoor freshwater tank is shown
in Figure 5.9. The SPAD camera is positioned 1.33 m above the water surface and is
angled at 30◦ from the vertical, focusing toward the centre of the tank. This angle,
determined empirically, minimises the detection of laser reflections off the water
surface and optimises image quality.

The imaging target, an SD, is suspended in the water using a rope and steel pole
mechanism. The steel pole extends the target away from the imaging system, while
the rope allows the target to be lowered into the water (as depicted by the vertical
line attached to the target in Figure 5.9). The rope slides along the pole, enabling
adjustment of the target’s depth. A measuring tape attached to the rope tracks how
much rope has slid along the pole, allowing precise measurement of the imaging
depth.

As the multiple ceiling lights in the laboratory are not representative of outdoor
lighting conditions at natural water locations, this set-up intentionally excludes the
detection of photons reflected by the water surface. This is possible because the sys-
tem’s minimum operating distance in this configuration2 is greater than its distance
to the water surface.

Further details on the imaging method used at this site are provided in Section
5.2.5.

5.2.4 Port Adelaide River Imaging Set-up

Imaging is conducted at the jetty on the Port Adelaide River, an estuary where fresh-
water from the river merges with saltwater from the ocean. The water in this area
is highly turbid, with the SD depth measured at approximately 3.4 m, at the time

2Minimum operating distance is 2 m, as discussed in Section 3.4 of Chapter 3.
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Figure 5.10: The black and white SD is being lowered into the water at Port Adelaide
River to measure the water turbidity level in terms of SD depth.

Figure 5.11: Schematic of Port Adelaide River imaging set-up.

of data collection. Details on measuring the SD depth and the rationale for using it
instead of the number of attenuation lengths (ALs) to assess natural water quality are
discussed in Section 3.6.2 of Chapter 3. Figure 5.10 shows a photo of the SD lowered
into the water at the Port Adelaide River.

The weather condition is sunny at the time of data collection. However, the
experimental set-up is located in a shaded area of the jetty, which provided shade for
the imaging area in the river. Figure 5.11 shows a schematic of the imaging set-up
on the jetty.

Similar to the set-up at the DSTG indoor freshwater tank, the same mechanical
rig described in Section 5.2.3 for the SPAD LiDAR system is secured to the handrails
on the side of the jetty. The imaging target, a white disc, is suspended in the water
using the same rope and steel pole mechanism used for suspending the SD at the
DSTG indoor freshwater tank, as described in Section 5.2.3. The main difference is
that the steel pole for suspending the imaging target is positioned lower and to the
right of the SPAD array flash LiDAR system, as shown in Figure 5.11.
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To prevent the steel pole from appearing in the SPAD camera’s FOV, as indicated
by the two diagonal dotted lines in Figure 5.11, the pole is placed away from the
SPAD array flash LiDAR system and angled diagonally towards the camera, ensuring
that the target remains within the FOV for imaging. The steel pole is positioned in
such a way that the rope appears from the bottom right corner of the SPAD camera’s
FOV.

When imaging at an initial target depth of 0.5 m, the mechanical rig positions
the SPAD array flash LiDAR system at an angle of 56◦ from the vertical downward
direction, labelled as the "Reported Camera Angle" in Figure 5.11. For target depths
of 1 m and deeper, the angle is adjusted to 63◦ to keep the target within the SPAD
camera’s FOV.

Further details of the imaging method used at this site are provided in Section
5.2.5.

5.2.5 Imaging Method at DSTG Indoor Freshwater Tank and Port Ade-
laide River

Above-water dToF measurements of submerged targets are captured using a novel
imaging set-up. The target is positioned directly below the SPAD array flash LiDAR
system. However, direct vertical alignment can cause strong reflections from the
water surface, which interfere with imaging even with range gating. To address this
issue, the target is intentionally placed at a horizontal offset distance from the direct
vertical line beneath the SPAD array flash LiDAR system, allowing for imaging at an
angle that minimises surface reflections.

The target is submerged at various predetermined depths, pausing at each depth
for imaging before being raised and taken out of the water. The target, tethered
by a rope (as described in Section 5.2.3), is positioned at specific depths indicated
by a measuring tape. During each descent, the SPAD array flash LiDAR system
initiates imaging, and a DSTG-developed Graphic User Interface (GUI) is used to
provide real-time feedback by displaying preliminary reconstructed images using
basic arithmetic methods. These methods process each pixel’s dToF measurements
over a rolling batch of 32 frames to calculate the mean, median, and in addition, the
dToF value of the histogram peak of the dToF measurements. If the target is visible
in these preliminary reconstructed images, the GUI helps ensure it is centred within
the FOV. If the target is not visible, a histogram of the dToF measurements for all
pixels from the current batch of 32 frames is generated. From this histogram, an
absence of a histogram peak around the target’s expected dToF value indicates that
the previously imaged depth is the lowest point at which the target can be captured.

When evaluating the performances of reconstruction algorithms, each recon-
structed image is created by processing a data file that corresponds to a continuous
collection of frames taken with the target at a specific depth. A new data file is cre-
ated for each distinct depth. Multiple data files may be collected for a single depth.
When referring to datasets in this chapter, a dataset consists of a set of data files col-
lected during a single instance of lowering the target into the water, where the target



§5.3 Image-Reconstruction Algorithms 97

is not retrieved from water during the entire process. Data files obtained after re-
trieving and re-submerging the target are considered part of a different dataset. This
method ensures consistency in water conditions within the same dataset, reducing
the impact of spatial and temporal variations in water properties due to factors such
as water currents.

5.2.5.1 Range Gating on the SPAD Array Flash LiDAR System

Different range gates are used for the SPAD array flash LiDAR system for imaging,
depending on the imaging location. For the DSTG indoor freshwater tank, a max-
imum range gate of 44 clock cycles is set, while for the Port Adelaide River, the
maximum range gate is set to 45 clock cycles.

These upper-bound range gates are set at a higher dToF value than the expected
dToF value of the floor of each location. In the DSTG indoor freshwater tank, the
lowest point of the tank floor has an expected dToF value of 17 clock cycles. In
the Port Adelaide River, the floor is 10 m below the water surface, equating to an
expected dToF value of 31 clock cycles.

For the Port Adelaide River dataset, an additional minimum range gate is set to 4
clock cycles. By adding 4 clock cycles to correct for timing delay (discussed in Section
3.4.2 of Chapter 3), this minimum range gate’s value corresponds to a lower bound
imaging distance of 4 m from the SPAD array flash LiDAR system, which is still
above the water surface. This setting was empirically determined to improve image
quality. This is likely because of a reduction of detected photons due to ambient
noise, as the weather was sunny at the time of the data collection.

Conversely, for the DSTG indoor freshwater tank dataset, it was empirically de-
termined at the time of data collection that no minimum range gate is necessary.
This is because the SPAD LiDAR system’s minimum operating distance of 2m, as
discussed in Section 3.4 of Chapter 3, which excludes photon returns from the water
surface.

5.3 Image-Reconstruction Algorithms

In this chapter, two basic image-reconstruction algorithms are considered: the detec-
tion threshold and median algorithm, and the histogram averaging algorithm. These
algorithms are two of the most widely used image reconstruction algorithms in the
field of SPAD LiDAR research. Both algorithms operate on a pixel-wise basis, pro-
cessing a batch of frames each time to produce a reconstructed image. The number
of frames used by the algorithm to reconstruct one image varies by dataset, and this
information will be provided alongside the reconstructed images presented in this
chapter.

The detection threshold and median algorithm first examines each pixel’s total
number of photon detections. If a pixel’s total number of photon detections over the
batch of frames is less than or equal to 0.1 (i.e. 10%) of the total number of frames in
the batch, the pixel’s reconstructed dToF value is considered undefined. If the photon
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detections exceed this threshold, the pixel’s reconstructed dToF value is determined
as the median of the pixel’s dToF measurements over the batch of frames.

The histogram averaging algorithm, proposed by the authors in [117], involves
creating a histogram for each pixel’s dToF measurements within the batch of frames.
For each pixel, the algorithm identifies the histogram bin with the highest count, and
if this bin’s photon count value surpasses a predefined threshold, the dToF value
corresponding to that bin is used as the pixel’s reconstructed dToF value. Otherwise,
the pixel’s reconstructed dToF value is considered undefined. The threshold for this
algorithm is consistent with the one used in the detection threshold and median
algorithm, set at 0.1 (i.e. 10%) of the total number of frames in the batch.

In the reconstructed images presented in this chapter, the colour representing the
smallest dToF value in the colour bar is also used to indicate an undefined value
for a pixel. In all of the colour bars shown in this chapter, dark blue is used to
represent both the image’s smallest dToF value and the undefined values. This is
an artefact of using Matlab’s imagesc function to display the array of dToF values
as an image. This colour-coding does not affect the image quality of the target in
the reconstructed images. This is because the lowest value in all the colour bars
corresponds to the closest distance from which a detected photon return is reflected,
which is never where the target is positioned.

The next sub-section discusses the real-time capability of the two image-
reconstruction algorithms presented here. A computational demand analysis is pro-
vided for each of these two image-reconstruction algorithms.

5.3.1 Real-Time Capability

The image-reconstruction algorithms investigated in this chapter are real-time capa-
ble because they both consists of a small number of steps and these steps employ
simple computational operations. To illustrate this real-time capability, a summary
of the detection threshold and median algorithm is provided in Figure 5.12 and a
summary of the histogram averaging algorithm is provided in Figure 5.13.

Figure 5.12 and 5.13 demonstrate that both algorithms have a small amount of
steps for processing one pixels’ set of dToF measurements. From Figure 5.12, the
most computationally intensive task for the detection threshold and median algo-
rithm is calculating the median value, which uses a sorting operation. For the re-
constructed images reported in this chapter, the algorithm is applied to process a
maximum of 300 frames. Therefore, this means that the sorting operation will sort a
maximum of 300 dToF measurements, which is a small amount and makes it possi-
ble for the median value to be computed in real time. As the most computationally
intensive task is real-time capable, this implies the detection threshold and median
algorithm is real-time capable for processing one pixel’s set of dToF measurements.

This space is intentionally left blank.
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one pixel’s set of dToF measurements

Count the total number of dToF measurements that corre-
sponds to a detected photon
Check if the total number of detected photons ≤ 10% of
the total number of frames selected for reconstructing the
image

Set reconstructed dToF value
as undefined

Calculate the median of the
dToF measurements
Set reconstructed dToF val-
ues as the median value

reconstructed dToF value

≤ 10%
> 10%

Figure 5.12: Summary of the detection threshold and median algorithm

one pixel’s set of dToF measurements

Identify histogram peak

Check if the number of histogram peak counts is ≤ 10% of
the total number of frames in selected for reconstructing
the image

Set reconstructed dToF value
as undefined

Set the associated bin value
of the histogram peak as the
reconstructed dToF value

reconstructed dToF value

≤ 10%
> 10%

Figure 5.13: Summary of the histogram averaging algorithm

For the histogram averaging algorithm, the most computationally intensive task
is identifying the histogram peak, while the other task is computationally trivial. The
task of identifying the histogram peak is computationally expensive because it uses
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sorting operation twice. Once for sorting the dToF measurements into a histogram
and another time for sorting each of the histogram count values in order to determine
the histogram peak. However, both instantiation of the sorting operation process a
small amount of data. This is because the histogram averaging algorithm is evaluated
over the SPAD LiDAR datasets collected at the DSTG indoor freshwater tank and
Port Adelaide River. For the reconstructed images presented in this chapter, the
algorithm only processes a batch of 200 or 300 frames at each execution, depending
on the dataset.

For creating a histogram, the sorting operation only processes up to 300 dToF
measurements. For identifying the histogram peak, the sorting operation processes
the histogram count values over all possible bin values. From the range gate values
presented in Section 5.2.5.1, it can be deduced that there will only be a maximum
of 40 different possible dToF measurements in this chapter’s reported SPAD LiDAR
datasets. This means there is only a maximum 40 possible bin values. Therefore,
despite the sorting operation being high intensity, the small number of possible bin
values means the task of identifying the histogram peak for one pixel is real-time
capable. Therefore, this demonstrates the histogram averaging algorithm is real-time
capable for processing one pixel’s set of dToF measurements.

Both the detection threshold and median algorithm and the histogram averaging
algorithm repeat the same steps in Figure 5.12 and 5.13 over all pixels of the SPAD
array. Instead of processing each pixels’ dToF measurements in series, a graphical
processing unit (GPU) can be utilised to speed up the computation. Each parallel
thread can be used to process each pixels’ set of dToF measurements. This is pos-
sible since it is common for a GPU to contain at least 1024 threads. Therefore, this
approach shows that both of these algorithms are real-time capable in reconstructing
an entire image.

The following sections present the reconstructed images for the datasets collected
at the three locations described in Section 5.2. Section 5.4 reports the reconstructed
images and target classification performance from data collected at the AIMS indoor
saltwater tank. Section 5.5 provides reconstructed images from data collected at the
DSTG indoor freshwater tank, while Section 5.6 presents the reconstructed images
from data collected at the Port Adelaide River.

5.4 Image Reconstruction of Data Collected at AIMS Indoor
Saltwater Tank

In images reconstructed from data collected in the AIMS indoor saltwater tank, the
detection threshold and median algorithm explained in Section 5.3 is used. For this
specific dataset, the algorithm employs a batch of 200 frames to reconstruct each
image. Additionally, the dToF measurements are further range-gated before applying
the detection threshold and median algorithm. This post-processing range gate is
different to the range gate applied during SPAD array flash LiDAR imaging. It is
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set between 1 and 10 clock cycles3 because the back wall of the water tank has an
expected dToF value of 9 clock cycles. Hence, no detected photons should have a
dToF measurement exceeding 10 clock cycles.

The expected dToF values are derived from theoretical calculations of a photon’s
dToF from the SPAD LiDAR system to the target and back, considering the refractive
index of water (1.33) and the speed of light in water (2.26 × 108m/s). The theoreti-
cal calculation assumes the SPAD LiDAR laser pulse propagates perpendicularly to
the water tank’s acrylic window, thus eliminating the need to factor in the angle of
laser pulse propagation in air and water. Also, System B’s timing delay of 40 ns is
subtracted from the theoretical dToF value as part of calculating the expected dToF
value. This is to ensure the expected dToF value is consistent with System B’s dToF
measurements which does not compensate for System B’s timing delay, as discussed
in Section 3.4.1 of Chapter 3. When converting the expected dToF value from seconds
to clock cycles, the clock cycle value is rounded up to the nearest integer, ensuring
consistency with the dToF measurements, which are always integers.

Table 5.2 below contains the reconstructed images for various concentrations of
sediments and/or chlorophyll. Reconstructed images of a circle, triangle, and square
are shown for each saltwater condition, except for the condition with 8.62 mg/L of
sediment concentration. In this case, only the reconstructed images related to the
circle and triangle are shown due to corruption of the data related to the square. The
equivalent number of ALs for each saltwater condition is also provided in this table
as a reference for water turbidity level.

Other saltwater conditions that also only have between 1.30 to 5.62 mg/L of sed-
iments are not presented here because their image quality is similar to the presented
reconstructed images in Table 5.2 within this sediment range. Appendix B contains
these additional reconstructed images as well as the ones presented here4. All the
reconstructed images from this dataset are depicted using the same colour bar for
consistent comparison.

The reconstructed images are presented in a larger size in Appendix B for more
detailed inspection. The reconstructed images presented here are made smaller to
enable easier comparison of all images.

This space is intentionally left blank.

3This is inclusive of the dToF measurements with 1 and 10 clock cycles
4The sediment concentration values reported in [101] are not the corrected sediment concentration

values. The values given in this thesis are the corrected values.
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Table 5.2: Reconstructed images at different saltwater con-
ditions by the detection threshold and median algorithm.

Amount of
Substances
Added

No.
of
ALs

Reconstructed Images

1.30 mg/L
sediments

1.32

3.70 mg/L
sediments

2.35

5.62 mg/L
sediments

3.29

8.62 mg/L
sediments

4.28

2.46 µg/L
chlorophyll

1.91

2.44 µg/L
chlorophyll
& 5.71 mg/L
sediments

3.43
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In all the images, a block of dark blue pixels appears on the outer edges. These
pixels form a curved boundary around the target, where the target is imaged from
within the acrylic porthole. They represent the AIMS indoor saltwater tank’s front
wall around the acrylic porthole, where its location is shorter than the SPAD array
flash LiDAR’s minimum imaging distance (i.e. System B in Table 3.1 in Section 3.4 of
Chapter 3). This causes no detection of photons reflected by the front wall and results
in these pixels’ reconstructed dToF values being undefined. As discussed in Section
5.3, the undefined values are shown as the same colour as the lowest reconstructed
dToF value in the image’s colour bar.

For all saltwater conditions except at 8.62 mg/L of sediments, the differently
shaped targets can be identified visually. Section 5.4.1 discusses the visual quality
of the reconstructed image in further detail. In addition, these images contain a
straight thick vertical line, which appears next to the target. This represents the
optical mount rod used to hold the target. Some reconstructed images also display
a small thin horizontal line linking the target to the thick line, indicating the small
wire piece used to attach the target to the optical mount. The background pixels in
all the reconstructed images are from scattering, since the expected dToF value of the
saltwater tank’s back wall is 9 clock cycles.

In images relating to 8.62 mg/L of sediments, the background pixels are from
detected photons reflected from water scattering, as their dToF measurements do not
match the expected dToF value of the AIMS indoor saltwater tank’s inside back wall.

The next subsection (Section 5.4.1) discusses the reconstruction performance of
the detection threshold and median algorithm in more detail. It is followed by Sec-
tion 5.4.2, which quantifies reconstruction performance in terms of different metrics
of localisation accuracy. Then, Section 5.4.3 presents an evaluation of the accuracy
in classifying different shapes in the reconstructed images under various saltwater
conditions, focusing on conditions with only sediment concentrations.

5.4.1 Reconstruction Performance via Visual Inspection

In all saltwater conditions, except where there is 8.62 mg/L of sediments, the recon-
structed images of each shape are sufficiently discernible by visual inspection. This
means target detection is possible by visually observing these reconstructed images.
The reconstructed images at 5.62 mg/L of sediments have a higher noise level than
the images at lower sediment concentration levels. This can be attributed to the in-
creased amount of sediments causing an increased amount of scattering. Section
5.4.3 discusses in detail the classification of shapes from reconstructed images under
saltwater conditions with increasing sediment concentrations.

In the case of 8.62 mg/L of sediments, the detection threshold and median algo-
rithm fails to produce a discernible representation of the target in the image. This
effect can be explained by examining the dToF measurements collected for target pix-
els, which are pixels at the expected spatial position of the target in the image. The
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spatial position of the target in the image is inferred from the reconstructed images
of the saltwater condition with 5.62 mg/L sediments. This is possible because at the
time of the data collection, the imaging of the saltwater condition with 8.62 mg/L of
sediments was conducted immediately after the imaging of the condition with 5.62
mg/L sediments. The same experimental set-up is used between imaging these two
sets of data, except for the addition of sediments into the saltwater to increase its
sediment concentration.

The dToF measurements of two different pixels at the target’s position are exam-

(a) (b)

(c)

Figure 5.14: Histogram of two different target pixels (15,17) and (15,19), which are in
the spatial position of the target in the reconstructed image of a circle at 8.62 mg/L
of sediments. Figure (a) shows the reconstructed image with red (15,17) and black
(15,19) asterisks marking which pixels are examined. The corresponding coloured
arrows are also pointing at them. Figure (b) shows the histogram of dToF mea-
surements for the red-marked pixel (15,17). Figure (c) shows the histogram of dToF
measurements for the black-marked pixel (15,19). The title of each histogram states
which colour-marked pixel is examined and the coordinates of the pixel. If there is a
green line in the histogram, it represents the reconstructed dToF value for the pixel.
The red vertical lines in the histogram depict the post-processing range gate used

before reconstruction is applied.
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ined via histograms and are shown in Figure 5.14. These two pixels are marked with
red and black asterisks (indicated by arrows) in Figure 5.14(a). These two pixels are
used to illustrate the general characteristics of the histograms of dToF measurements
from the target pixels, which display similar characteristics to these two pixels.

The total number of photon detections within the post-processing range gate
(indicated by the red vertical lines in the figures) for each of these two histograms
is 16 for the red-marked pixel in Figure 5.14(b) and 23 for the black-marked pixel
in Figure 5.14(c). These numbers are very close to 20, which represents 10% of the
total number of frames used for reconstruction (200 frames). If the total number
of detections is below 20, the detection threshold and median algorithm registers
the reconstructed dToF value for that pixel as undefined. This is demonstrated by
the red-marked pixel in Figure 5.14(a), where the total photon detection count is
16, resulting in an undefined reconstructed dToF value for that pixel. This indicates
that using 10% of frames for the threshold value of is not suitable for determining
whether a pixel corresponds to the position of the target.

Another characteristic of the data for the saltwater condition with 8.62 mg/L
sediments is the distribution of dToF measurements for pixels related to the tar-
get, which exhibits a less consistent trendline. Specifically, these histograms do not
display a clear peak. This contrasts with the distribution of dToF measurements col-
lected in the saltwater condition with the next highest sediment concentration of 5.62
mg/L. An example of a histogram of dToF measurements from a target pixel in the
reconstructed image for 5.62 mg/L is shown in Figure 5.15; the pixel is marked by a
red asterisk in Figure 5.15(a).

In Figure 5.15(b), the histogram of dToF measurements for a target pixel in the
reconstructed image shows a distinct histogram peak, indicating a significant number

(a) (b)

Figure 5.15: Histogram of the target pixel (15,19) in the reconstructed image of a
circle at 5.62 mg/L of sediments. Figure (a) shows the pixel marked by a red asterisk
and red arrow on the reconstructed image. Figure (b) shows the histogram of dToF
measurements for this pixel. The title of the histogram states the coordinates of the
pixel. The green line is the reconstructed dToF value of the pixel in the reconstructed
image. The red vertical lines in the histogram depict the post-processing range gate

used before reconstruction is applied.
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of detected photons reflected from the target’s surface. This clear histogram peak is
absent in the histograms of dToF measurements relating to the target pixels in the
8.62 mg/L condition (see Figure 5.14). The lack of a clear peak results in inconsistent
median values for each pixel, leading to a noisy reconstructed image.

Several other observations can be made from the reconstructed images in Table
5.2. For the reconstructed images of the target in saltwater containing only sediments
and up to 5.62 mg/L of it, the images become noisier with increasing sediment con-
centration. The reconstructed image with 2.46 µg/L of chlorophyll shares similar
image quality to images reconstructed in sediment-only conditions, except the back-
ground appears slightly different, with a different distribution of yellow and orange
pixels. This difference can be attributed to chlorophyll having different scattering
properties compared with sediments.

For the saltwater condition where there is a mixture of 2.44 µg/L of chlorophyll
and 5.71 mg/L of sediments, the reconstructed images exhibit a higher noise level
than all the other images except those with 8.62 mg/L of sediments. This is correlated
with its water turbidity level having a higher number of ALs compared with the
saltwater conditions of the other images (except those with 8.62 mg/L of sediments).

5.4.2 Reconstruction Performance via Different Localisation Accuracy Met-
rics

To provide a different perspective to the reconstruction performance of the detection
threshold and median algorithm, its reconstructed images are evaluated in terms
of pixel-wise absolute localisation accuracy and relative localisation accuracy. The
pixel-wise absolute localisation accuracy measures the difference between each target
pixel’s reconstructed dToF values and its expected dToF value, while the relative
localisation accuracy measures the range of the target pixels’ reconstructed dToF
values. As mentioned in Section 5.4.1, target pixels are pixels at the expected spatial
position of the target in the image.

The imaged target at the AIMS indoor saltwater tank is a planar object. Therefore,
the expected dToF values of the target pixels should be identical. For the imaging
setup at the AIMS indoor saltwater tank, the expected dToF value of the target is
calculated to be 6 clock cycles5.

The pixel-wise absolute localisation accuracy is evaluated for the reconstructed
images containing a discernible representation of the target (i.e. all images except
the saltwater condition of 8.62 mg/L of sediments). It can be seen that the target
pixels mostly have a reconstructed dToF value of 4 or 5 clock cycles, which is 1-2
clock cycles from the target’s expected dToF value. The number of pixels with a
reconstructed dToF value of 5 clock cycles only becomes the majority at the saltwater
condition with a mixture of 2.44 µg/L of chlorophyll and 5.71 mg/L of sediments,
where the water turbidity is the second highest tested level. Therefore, the pixel-wise
absolute localisation accuracy of the reconstructed images is 1–2 clock cycles.

5The expected dToF value does not account for System B’s timing delay of 40 ns, as discussed in
Section 3.4.1.
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The reconstructed dToF values of the target pixels are either 4 or 5 clock cycles,
meaning the relative localisation accuracy is one clock cycle. This means the recon-
structed dToF values of the target pixels are mostly consistent, even though their
reconstructed dToF values do not always match the expected dToF value of the tar-
get.

5.4.3 Target Classification of Reconstructed Images

The target classification performance of reconstructed images of targets submerged
in saltwater at different sediment concentrations is assessed by determining whether
the target classification’s overall accuracy degrades when the image is captured at
increasing sediment concentrations. All reconstructed images up to a sediment con-
centration of 5.62 mg/L are utilised for the evaluation of target classification perfor-
mance. This does not only include the reconstructed images for sediment concen-
trations shown in Table 5.2, but also for the other sediment concentrations (that are
up to 5.62 mg/L) listed in Table B.1 of Section B.1 in Appendix B. The reconstructed
images at 8.62 mg/L are not evaluated for target classification because the target is
not discernible in them, as shown in Table 5.2.

For target classification, a set of rules based on the target’s area and target’s
object ratio are used for differentiating the possible shapes of the target. The target’s
object ratio is defined as the ratio of the target’s area to its bounding box’s area. The
target’s area is calculated as the number non-zero pixels in the target’s bounding box
(which contains only the target). These rules follow those developed by [33], but
use a different threshold value because the reconstructed images have fewer sharp
edges compared with those in [33]. New threshold values are used for the target
classification algorithm here, which are determined empirically.

As discussed in Section 3.7 of Chapter 3, the classifier includes an additional
prediction class called "Undecided" for cases where the target does not fit any of
the classification rules for the three classes of shapes. However, no instances of this
Undecided class are used to test the classifier, because this class is only meant to
account for instances in which the classifier cannot determine a class for the target
based on its rules.

The classification rules require a bounding box to be drawn around the target.
Here, a target detection algorithm is used. The output of the target detection algo-
rithm provides the area of the target and properties of the target’s bounding box.
The dimensions of the bounding box are provided, which can be used for calculating
its area.

Since target classification performance is the focus of this section’s investigation,
a standard target detection algorithm augmented in an ad hoc way is applied here
and is detailed in Section 5.4.3.2. If the target classification algorithm is to be applied
to a dataset collected via a different imaging set-up, a different detection algorithm
may be needed, depending on the background pixels of the reconstructed image.

To enable more accurate target detection, the reconstructed image is converted to
a binary image and then denoised, creating a simpler representation of the recon-
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structed image. Figure 5.16(a) shows the reconstructed image, while Figure 5.16(b)
shows the corresponding denoised binary image, with the red box representing the
bounding box determined by the target detection algorithm. The red box indicates
that the target detection algorithm is able to create a boundary box that contains only
the target.

(a) (b)

Figure 5.16: Comparison between the reconstructed image (Figure 5.16(a)) of the
circle target in the AIMS indoor saltwater tank with 5.62 mg/L of sediment and its
denoised binary image (Figure 5.16(b)) with bounding box showing the segmented

image contains only the target.

Section 5.4.3.1 explains the steps applied to convert the reconstructed image to
a denoised binary image, then Section 5.4.3.2 presents details of the target detection
algorithm. The real-time capability of this target classification algorithm is then pre-
sented in Section 5.4.3.3. This is followed by a discussion of the target classification
results in Section 5.4.3.4.

5.4.3.1 Converting the Reconstructed Image to a Denoised Binary Image

Several steps are applied to the reconstructed image to produce the denoised binary
image. Figure 5.17 shows the image at every step of this process. First, the 5th
percentile of the reconstructed image is used as the threshold value for converting
the image to a binary image. Any value below or equal to the threshold value is
converted to 0. The 5th percentile is chosen because the target’s distance is within
this percentile. This results in the image shown in Figure 5.17(b), where the target
pixels have the value 0.

Next, scattered pixels are removed and holes are filled to produce an image suit-
able for detection, as demonstrated by the steps shown in Figure 5.17(c) to 5.17(f).
The image is inverted in Figure 5.17(e) and scattered pixels are removed from it (in
Figure 5.17(f)) to effectively fill holes in the original binary image. Finally, the image
is inverted one last time, as depicted in Figure 5.17(g), to ensure that target pixels
contain the value 1, thereby enabling the target detection algorithm to segment the
target from the image.



§5.4 Image Reconstruction of Data Collected at AIMS Indoor Saltwater Tank 109

(a) Reconstructed image (b) Thresholded to binary image

(c) Flipped binary image (d) Removed scattered pixels

(e) Flipped binary image (f) Removed scattered pixels (effec-
tively filling holes)

(g) Denoised binary image

Figure 5.17: Images depicting each processing step applied to a reconstructed image
before it is used for target detection. This is of a square submerged in saltwater

condition with 5.62 mg/L of sediments.
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5.4.3.2 Target Detection

The target detection algorithm can be described in two parts. The first part performs
detection of objects in the denoised binary image (from the previous section). Here,
an object is defined to be a group of connected pixels of the value 1 in the binary
image. Pixels are considered connected if they are adjacent in any of the eight possi-
ble directions: north, south, east, west, northeast, southeast, southwest, or northwest.
An example implementation of this is Matlab’s regionprops function.

Given that each denoised binary image contains many different geometric arte-
facts in addition to the target, many objects are detected in each image. Therefore, the
second part of the target detection algorithm applies a small number of empirically
determined rules to select which object is the target. These rules are related to the ob-
ject’s bounding box’s area, position and dimensions, and are evaluated sequentially.
An object is discarded immediately if it fails to meet any one of the criteria. The
object that satisfies these criteria is selected as the target. The detection algorithm
outputs the area and bounding box of this target. They are used for classification of
the target’s shape, as described in Section 5.4.3.

Figure 5.16(b) in Section 5.4.3 shows the bounding box determined by the target
detection algorithm, and it shows the bounding box to only include the target. Im-
ages where no target is detected are discarded and not tested for target classification.

This target detection algorithm successfully detects a target for all the denoised
binary images except for 125 out of 900 images of the square target in a sediment
concentration of 1.78 mg/L. Therefore, when testing the overall accuracy of the target
classification algorithm at each sediment concentration, 900 images are used for each
possible shape of the target, except for the square at 1.78 mg/L of sediments, where
only 775 images are evaluated.

The denoised binary images in Table B.2 in Appendix B show the target detection
result (i.e. the bounding box) for an image in each sediment concentration and each
possible shape of the target.

5.4.3.3 Real-Time Capability of Target Classification Algorithm

The execution time of the target classification algorithm is not measured because the
implementation is not optimised. An analysis of the operations used in this algorithm
can demonstrate that the algorithm is real-time capable. The target classification
algorithm can be summarised by Figure 5.18. It includes the detection threshold and
median algorithm because the target classification algorithm requires the detection
threshold and median algorithm’s reconstructed images. Therefore, the detection
threshold and median algorithm should be included in the consideration of whether
this target classification algorithm is real-time capable.

All of the steps shown in Figure 5.18 are real-time capable. The detection thresh-
old and median algorithm in the first step is already shown to be real-time capable
in Section 5.3.1. The use of threshold in steps 2, 5 and 6 is computationally simple.

For step 3, the task of removing scattered pixels and filling holes requires the
search operation to identify holes and noise pixels in the reconstructed image. How-
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a batch of frames

Detection threshold and median algorithm

Threshold - to binarise the image

Remove scattered pixels and fill holes

Object detection

Threshold - for target selection

Threshold - for target classification

confusion matrix

reconstructed image

binary image

de-noised binary image

detected objects’ properties

Figure 5.18: Target classification algorithm of reconstructed images from the detec-
tion threshold and median algorithm

ever, the reconstructed image only contains 32 × 32 = 1024 pixels. Therefore, the
search operation only needs to be executed on 1024 pixels. This small number of
pixels means this step is real-time capable.

For step 4, object detection is a standard operation in real-time computer vision
for images with higher pixel resolution than the 32×32 images evaluated in this
algorithm. Therefore, it’s clear that this step is real-time capable.

From this discussion, the target classification algorithm is real-time capable.

5.4.3.4 Target Classification Results

The total number of denoised binary images tested for target classification for each
sediment concentration is 2,700, with 900 images for each shape. The only exception
is at 1.78 mg/L, where the total number of images is 2,575, due to 125 fewer images of
the square being used for classification. This is because the target detection algorithm
is unable to segment an image containing the target in those 125 images, as discussed
in Section 5.4.3.2. Only the classification of the three shapes is tested for sediment
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Figure 5.19: Overall accuracy in classifying binary denoised images (i.e. the denoised
binary version of the reconstructed images) of a circle, a square or a triangle in

varying sediment concentrations.

concentrations up to 5.62 mg/L6 because the data for the square target at 8.62 mg/L
is corrupted.

The overall accuracy of target classification of the binary denoised images (i.e. the
denoised binary version of the reconstructed images) from data collected under dif-
ferent sediment concentrations is presented in Figure 5.197. The definitions of overall
accuracy are given in Section 3.7 of Chapter 3. It can be seen that the overall accu-
racy is high for all sediment concentrations8. The equivalent number of ALs for the
saltwater condition with this range of sediment concentrations is 1.32 to 3.29. Table
B.1 of Section B.1 in Appendix B provides a detailed list of the equivalent number of
ALs for each sediment concentration. The table also contains the reconstructed im-
ages and their corresponding denoised binary images for data collected at saltwater
conditions with each sediment concentration.

For sediment concentrations up to 3.70 mg/L (equivalent to 2.35 ALs), the al-
gorithm’s misclassifications are primarily due to the algorithm classifying shapes as
Undecided. The Undecided class is used to account for instances where the classifier
cannot definitively determine a shape based on the predefined rules, as explained in
Section 3.7 of Chapter 3.

As sediment concentrations increase beyond 3.70 mg/L, the misclassifications
include cases where shapes are incorrectly classified as a different class, in addition
to being categorised as Undecided. Figure 5.20 shows the number of Undecided
classifications as the total percentage of classified denoised binary images for each
sediment concentration. This figure demonstrates that the percentage of Undecided
classifications remains below 2.5% for sediment concentrations up to 5.62 mg/L,

6The sediment concentration values reported in [101, Fig. 7] are not the corrected sediment concen-
tration values. The values given in this thesis are the corrected values.

7The overall accuracy values in [101, Fig. 7] is incorrect; the values have been updated in this figure.
8The values for F1-measure, macro precision, and macro recall given in [101] are based on an overly

simplistic performance analysis. They should not be used in this classification scenario because the
classifier is not tested on any instances of the Undecided class, as discussed in Section 3.7 of Chapter 3.



§5.5 Image Reconstruction of Data Collected at DSTG Indoor Freshwater Tank 113

Figure 5.20: Percentage of classification categorising an image as Undecided over all
the images of all three shapes at varying sediment concentrations.

indicating a relatively low rate of indecision in the classifier’s performance for these
conditions.

From both Figures 5.19 and 5.20, no clear trend in overall accuracy with increasing
sediment concentration is evident. The only noticeable trend is a dip in classification
accuracy at 5.62 mg/L (equivalent to 3.29 ALs). This drop in overall accuracy may be
due to the higher sediment concentration, which introduces additional noise in the
reconstructed images, as shown by the images for 5.62 mg/L sediments in Table 5.2.
This dip in overall accuracy indicates a need to enhance either the target classifica-
tion algorithm or the image-reconstruction algorithm to ensure that overall accuracy
remains above 98% and the percentage of Undecided classifications stay below 2.5%.
Addressing these aspects could help maintain consistent target classification perfor-
mance across varying sediment concentrations.

5.5 Image Reconstruction of Data Collected at DSTG Indoor
Freshwater Tank

The histogram averaging algorithm proves to be more effective than the detection
threshold and median algorithm for image reconstruction of data collected at the
DSTG indoor freshwater tank, as shown in Table 5.3. For this dataset, a batch of 300
frames is used for reconstructing each image by either algorithms.

Expected dToF values are used to validate the dToF values in these reconstructed
images. They are calculated from the theoretical dToF value, which is the amount
of time it takes for a photon to travel from the SPAD array flash LiDAR system to
the target and back. This calculation considers the refractive index of water (1.33),
adjusting for the speed of light in water and using Snell’s law to account for changes
in propagation angle due to refraction.

Once the theoretical dToF value is calculated, System C’s timing delay of 13.3 ns
is subtracted from the theoretical dToF value as part of calculating the expected dToF
value. This is to ensure the expected dToF value is consistent with System B’s dToF
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measurements which does not compensate for System C’s timing delay, as discussed
in Section 3.4.2 of Chapter 3.

A post-processing range gate is utilised, before applying either of the reconstruc-
tion algorithms. This is different to the range gate applied during SPAD array flash
LiDAR imaging. This is to further filter out unwanted photons and enhance im-
age quality. The post-processing range gate values used are determined empirically
to provide the best reconstructed image quality. The upper bound post-processing
range gate value is uniformly set at 25 clock cycles for all depths. This value exceeds
the expected dToF value of the tank’s floor. The lower bound post-processing range
gate value is set to 2 clock cycles for target depths from 0.5 m to 4.5 m, and 5 clock
cycles for a target depth of 5 m.

Table 5.3 presents a comparison between the two image-reconstruction algorithms,
showcasing reconstructed images of the target at various depths below the water sur-
face. Each image in the table uses the same colour bar for consistent comparison. The
expected dToF value for the target at each depth is provided in the table.

Table 5.3: Different reconstructed images at various target
depths below the water surface of the DSTG indoor fresh-
water tank.

Depth
(m)

Expected
dToF
value of
the tar-
get(clock
cycles)

Detection Threshold and
Median image

Histogram Averaging im-
age

0.5 1
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1 2

1.5 4

2 5

2.5 7
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3 8

3.5 10

4 11

4.5 13
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5 14

In all the reconstructed images in Table 5.3, only two of the quadrants of the
SD are discernible in most images. Although we lack an RGB image to confirm the
precise orientation of the SD, we assume these are the white quadrants of the SD.

Even though the reconstructed images represent depth information, the black
quadrants of the SD target are not clearly visible for most of the reconstructed im-
ages, except the histogram averaging algorithm reconstructed image at 1.5 m depth.
This phenomenon can be explained by variations in light reflection from the target
compared to laser scattering in water. A detailed analysis of the pixel-wise his-
tograms of dToF measurements provides an explanation for these effects as well as
other observed effects in these images. Figure 5.21 provides histograms related to
pixels in the histogram averaging algorithm’s reconstructed image at 1.5 m depth.

Each histogram in Figure 5.21 is an accumulation of dToF measurements of each
pixel marked with a coloured asterisk (indicated by an arrow) in Figure 5.21(a). The
red lines in these histograms indicate the post-processing range gate values, while
the green vertical line shows the reconstructed image value.

Although we lack an RGB image to confirm the precise orientation of the SD in
Figure 5.21(a), we assume, based on experience, that the red-marked pixel in the
reconstructed image is located on the white quadrant of the SD. Conversely, the
green-marked pixel is presumed to be on the black quadrant of the SD. The red-
marked pixel (Figure 5.21(b)) shows a higher peak in photon counts compared with
the histogram for the green-marked pixel (Figure 5.21(c)). Theoretically, more photon
counts should be observed in the white quadrant because the white colour reflects
significantly more photons. In contrast, the less reflective black quadrant, repre-
sented by the green-marked pixel, shows a histogram peak attributed more to water
scattering than to the target itself. Consequently, the histogram bin value for the
histogram peak differs between the black and white quadrants, resulting in varying
pixel values in the reconstructed image by the histogram averaging algorithm.

For the black-marked and magenta-marked pixels in Figure 5.21(a), these rep-
resent different types of background pixels. The black-marked pixel is in an area
illuminated by the laser, while the magenta-marked pixel is in a region without laser
illumination but still shows photon returns from ambient light and the bottom of the
water tank. This is confirmed by their respective histograms: Figure 5.21(d) shows
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(a) (b)

(c) (d)

(e)

Figure 5.21: A closer inspection into a histogram averaging algorithm image of an SD
at 1.5 m depth in the DSTG indoor freshwater tank. Figure (a) shows the histogram
averaging algorithm image with red, green, black and magenta asterisks and arrows
marking pixels with different values. The histograms of dToF measurements used
to reconstruct the distance value are shown for the red (b), green (c), black (d) and
magenta (e) pixels. The title of each histogram states which colour-marked pixel is
examined and the coordinates of the pixel. The green line is the reconstructed dToF
value of the pixel in the reconstructed image. The red vertical lines in the histogram

depict the post-processing range gate used before reconstruction is applied.

more detected photons reflected near the water surface, which could be caused by
water scattering, and Figure 5.21(e) shows more photon counts from the freshwater
tank’s bottom.
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The histogram characteristics discussed here for the red-, black- and magenta-
marked pixels of the histogram averaging algorithm reconstructed image at 1.5 m
depth are also applicable to other histogram averaging algorithm images in Table
5.3, where the white quadrants of the SD and effects from water scattering are also
visible.

The difference in histogram characteristics provides a possible explanation for
why the black quadrant is not visible in these other reconstructed images. It is possi-
ble that the small number of photons returns from the less reflective black quadrant
were not detected by the SPAD camera when imaging due to the relatively larger
number of photon returns from water scattering.

The next subsection (Section 5.5.1) discusses the reconstructed images in more
detail and assesses their quality. This is followed by Section 5.5.2, which discusses a
phenomenon observed in the histograms of the collected dToF measurements, specif-
ically the existence of two histogram peaks for data from targets at depths of 2.5
m–4.5 m. Understanding these data characteristics enables a more thorough evalu-
ation of the histogram averaging algorithm’s global target localisation performance,
which is discussed in Section 5.5.3, which addresses a systematic discrepancy be-
tween the reconstructed dToF value for pixels at the target’s expected spatial position
in the image, and the expected dToF value.

5.5.1 Reconstruction Performance via Visual Inspection

As only the white quadrants of the SD are visible in most reconstructed images in Ta-
ble 5.3, the reconstruction performance is evaluated on whether the white quadrants
are discernible in the images.

The reconstructed images in Table 5.3 demonstrate that the histogram averaging
algorithm provides a more discernible image of the white quadrants compared with
the detection threshold and median algorithm. The white quadrants become indis-
cernible in the detection threshold and median algorithm’s reconstructed images for
depths beyond 1.5 m. In contrast, the reconstructed images by the histogram averag-
ing algorithm retains discernibility of the white quadrants for depths to 4.5 m.

The discernibility of the white quadrants in these reconstructed images means
the white quadrants can be used for target detection of the SD. Target classification
using only features of the white quadrants is possible, on the condition that other
target classes do not consist of only white quadrants as part of their image features.

While the white quadrants are not discernible in the histogram averaging algo-
rithm reconstructed image at a 5 m depth, the image still provides sufficient informa-
tion for target detection. It contains a small number of pixels representing the white
quadrants of the SD, making it possible to determine the presence of a target within
the FOV. Unlike the histogram averaging algorithm’s reconstructed images of targets
at shallower depths, this reconstructed image cannot be extended for target classifi-
cation applications in the future because the SD’s features are not distinguishable in
the image.
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5.5.2 Two Peaks in the Collected Data

A two-peak phenomenon emerges in the pixel-wise histogram of dToF measure-
ments when the target is positioned 2.5 m to 4.5 m below the water surface. This
effect is particularly evident for pixels corresponding to the white quadrant of the
SD. Table 5.4 presents a series of histograms of dToF measurements for a pixel in
reconstructed images of the white quadrant at various submerged depths. For each
depth, the examined pixel is located on the white quadrant. A red asterisk (indi-
cated by red arrow) is used to mark the pixel in each of the reconstructed images.
The reconstructed image’s dToF value (indicated by the green line in the histograms)
consistently aligns with the second peak, which corresponds logically to the target
being at greater depths and, therefore, farther away from the SPAD array flash LiDAR
system.

The first peak in these histograms is attributable to scattering in the water. As
discussed in Section 5.2.3, any photon returns from the water surface are automati-
cally filtered out by the SPAD array flash LiDAR’s internal timing delay. Thus, the
photon detections counted by the first histogram peak result solely from scattering
rather than direct reflections from the water surface. This is confirmed by the first
peak spanning approximately 10 clock cycles (around 6 to 15 clock cycles) as illus-
trated by the histogram for a target depth of 4.5 m in Table 5.4. The peak appears
to have a shorter span in the other histograms because the target is at a shallower
depth, causing the tail end of the peak to be overlapped by the target’s histogram
peak.

In contrast, the histograms of the red-marked pixel at shallower depths (0.5 m
and 1.5 m) exhibit a single peak, likely due to the target’s proximity to the water
surface. In these cases, the photon counts from the target coincide with those from
scattering, resulting in a single peak in the histograms.

This space is intentionally left blank.
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Table 5.4: The histogram averaging algorithm image of tar-
gets at different depths and the histogram of dToF measure-
ments at the pixel marked with red asterisk and arrow in
the image. The pixel is selected to be on the SD’s white
quadrant and its dToF measurements is representative of
the dToF measurements collected by other pixels on the
white quadrants. The green line is the reconstructed dToF
value of the pixel in the reconstructed image. The red verti-
cal lines in the histogram depict the post-processing range
gate used before reconstruction is applied.

Depth
(m)

Histogram aver-
aging algorithm
image with red-
marked pixel

Histogram of dToF mea-
surements of red-marked
pixel

0.5

1.5

2.5
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3.5

4.5

The distribution of dToF measurements might explain why the detection thresh-
old and median algorithm is less effective for reconstructing images from this dataset.
The majority of dToF measurements are at shorter distances than the target, causing
the median value to not align with the histogram’s second peak which corresponds
to the target’s depth. This misalignment results in less accurate reconstructions, as
the median value does not represent the actual distance to the target effectively. Con-
sequently, the detection threshold and median algorithm struggles to produce clear
images, particularly when the target is positioned at greater depths.

5.5.3 Systematic Error in Global Target Locations

As the histogram averaging algorithm provides a better reconstructed image than the
detection threshold and median algorithm (as discussed in Section 5.5.1), the former
algorithm is evaluated for its localisation accuracy. However, it is difficult to evaluate
the localisation accuracy in pixel-wise resolution for these reconstructed images. This
is because it is difficult to accurately distinguish between the pixels that corresponds
to the black quadrant from background pixels that corresponds to water scattering.
Therefore, a more reliable localisation accuracy measure would be to evaluate the
global target location that can be deduced from these reconstructed images.

From the discussions in this section, it is evident that the higher number of re-
flections from the white quadrant provides more reliable data for reconstruction.
Consequently, the reconstructed global location of the target is defined as the recon-
structed dToF value of one of the pixels corresponding to the white quadrant of the
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SD. The reconstructed dToF value of the majority of pixels associated with the white
quadrant is consistent, as evidenced by the pixels sharing the same colour within
each reconstructed image. Therefore, the value of any one of these pixels can be
used as the global target location.

In Section 5.5.2, Table 5.4 presents the histogram of dToF measurements of a pixel
on the white quadrant of the SD for each imaging depth. The reconstructed dToF
values, indicated by the vertical green line in the histograms in Table 5.4, are used as
the global target location by this algorithm.

Comparing these global target location values with the target’s expected dToF
values shown in Table 5.3, it becomes apparent that they do not match consistently.
The discrepancy in their values increases with target depth, ranging from 2 clock
cycles to 7 clock cycles.

Figure 5.22: Global target locations (y-axis) compared with the expected dToF values.

Despite this mismatch, a linear relationship between these values is observed.
This relationship is illustrated in Figure 5.22, where the global target locations are
plotted against the corresponding expected dToF values from Table 5.3. This linear
relationship suggests a systematic error in the imaging of the target using the SPAD
array flash LiDAR system. Therefore, it can be deduced that the histogram averaging
algorithm can reconstruct accurately, on the premise that further investigation is
required on the cause of this systematic error.

5.6 Image Reconstruction of Data Collected at Port Adelaide
River

Similar to the results from the DSTG indoor freshwater tank (see Table 5.3), the recon-
structed images using the histogram averaging algorithm provide a more discernible
representation of the target compared with those reconstructed using the detection
threshold and median algorithm.

Table 5.5 below shows a comparison of reconstructed images between the detec-
tion threshold and median algorithm and the histogram averaging algorithm. The
images are from data collected of the target at various depths below the water surface
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and different camera angles, each created from a batch of 300 frames. All images in
this table use the same colour bar to allow for direct comparison. No post-processing
range gate was applied to this dataset before image reconstruction.

The reconstructed dToF value of the target pixels are validated against the target’s
expected dToF value in Table 5.5. Target pixels are pixels at the expected spatial
position of the target in the image. The calculation of the expected dToF values
follows the same method described in Section 5.5.

Table 5.5: Different reconstructed images at various target
depths below the water surface of Port Adelaide River,

Depth
(m)
and
cam-
era
angle
(deg)

Expected
dToF
value
of the
target
(clock
cycles)

Detection Threshold and
Median image

Histogram Averaging im-
age

0.5, 56 18

1.0, 63 24
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1.5, 63 26

2.0, 63 28

2.5, 63 30

3.0, 63 32

In all the histogram averaging algorithm images, the background pixels are all
the pixels with undefined values. The background pixels’ histogram peak’s photon
count is below 10% of the total number of frames used to reconstruct an image. This
indicates that the peak represents noise. Meanwhile, detection threshold and me-
dian algorithm performs a check on whether the total number of detected photons
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is above 10% of total number of frames, instead of only the histogram peak. There-
fore, its reconstructed dToF value is not filtered out by this check and is used in the
reconstructed image. This highlights the effectiveness of employing histogram peak
to filter out noise.

A group of pixels (with defined reconstructed dToF values), forming a diagonal
pattern at the bottom right corner, is consistently observed in all reconstructed im-
ages by both algorithms. These pixels appear light blue in reconstructed images at
depths of 1.0 to 3.0 m, and dark blue in the image of the target at 0.5 m. The discrep-
ancy in reconstructed dToF values in the 0.5 m deep target image arises because the
camera angle differs from that in other images (as shown in Table 5.5), placing the
camera closer to the rope.

These pixels represent the rope suspending the target in the water, positioned on
the right side of the SPAD camera (see Figure 5.11 in Section 5.2.4). This is confirmed
by their reconstructed dToF values, which are shorter than the expected dToF value
of the water surface. Specifically, the expected dToF value for the water surface is 21
clock cycles for images with targets at depths of 1.0 to 3.0 m, and 16 clock cycles for
the image with the 0.5 m deep target.

The consistent reconstructed dToF values of these pixels across images of dif-
ferent target depths (except for the 0.5 m depth due to the different camera angle)
further confirm that these pixels represent the rope. This consistency is due to the
rope’s proximity to the camera being unaffected by the target’s depth, as described
in Section 5.2.4.

The pixels related to the rope do not appear as a distinct line because the image
is reconstructed with data collected from 300 frames, which is acquired over 12 sec-
onds. The acquisition time is long because System C’s Aréte laser operates at 25 Hz.
This long acquisition time means the SPAD array flash LiDAR system captures the
swaying rope in various positions. When reconstructing the image with data of the
rope at various positions, this results in a blurred appearance in the reconstructed
image.

The next subsection (Section 5.6.1) discusses why the histogram averaging algo-
rithm produces better reconstructed images than the detection threshold and median
algorithm. Section 5.6.2 quantifies the reconstruction performance of the histogram
averaging algorithm via relative localisation accuracy. Then Section 5.6.3 discusses
the challenges associated with using the histogram averaging algorithm to recon-
struct targets at depths greater than 2.0 m. Subsequent sections explore the distri-
bution of dToF measurements in Section 5.6.4 and discuss the global target absolute
localisation accuracy of the histogram averaging algorithm in Section 5.6.5.

5.6.1 Reconstruction Performance by Visual Inspection

Table 5.5 demonstrates that the histogram averaging algorithm yields a more dis-
cernible reconstructed image of the target compared with the detection threshold
and median algorithm, even though the histogram averaging algorithm cannot pro-
vide a discernible reconstruction of the target at depths beyond 2.0 m. For a detailed
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explanation of the challenges faced by the histogram averaging algorithm at greater
depths than 2.0 m , see Section 5.6.3.

For data collected at target depths from 1.0 m to 2.0 m, the histogram averag-
ing algorithm delivers the clearest representation of the target, which appears as
a circular shape in the reconstructed images. This demonstrates that these recon-
structed images can be used for visual target detection. In contrast, the target is less
discernible in the images reconstructed using the detection threshold and median
algorithm.

For the histogram averaging algorithm, its reconstructed image for the target at
0.5 m differs from those at 1.0 m, 1.5 m and 2.0 m due to the different camera angles.
This results in more reflections from the water surface being detected by the SPAD
array flash LiDAR system. The next subsection provides a detailed explanation of
the artefacts seen in the histogram averaging algorithm’s reconstructed image for the
target at 0.5 m.

5.6.1.1 Histogram Averaging Algorithm Reconstructed Image at 0.5 m Depth

The artefacts seen in the histogram averaging algorithm’s reconstructed image at
0.5 m can be explained by examining the pixels’ histogram of dToF measurements.
Figure 5.23 presents histograms of dToF measurements for pixels in different regions
of the reconstructed images, each marked with a coloured asterisk (indicated by the
same coloured arrow). These histograms help explain the attributes of each pixel’s
region.

This space is intentionally left blank.
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(a) (b)

(c) (d)

(e)

Figure 5.23: A closer inspection into a histogram averaging algorithm image of a
white disc submerged at 0.5 m depth at the Port Adelaide River. Figure (a) shows
the histogram averaging algorithm image with green, black, red and magenta as-
terisks and arrows marking pixels with different values. The histograms of dToF
measurements used to reconstruct the distance value are shown for the green (b),
black (c), red (d) and magenta (e) pixels. The title of each histogram states which
colour-marked pixel is examined and the coordinates of the pixel. The green line is
the reconstructed dToF value of the pixel in the reconstructed image. The red vertical
lines in the histogram depict the post-processing range gate used before reconstruc-

tion is applied.
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Figure 5.23(b) illustrates that the circular region containing the green-marked
pixel most likely represents the target. The histogram for this pixel shows a recon-
structed dToF value of 16 clock cycles, which is 2 clock cycles away from the expected
dToF value for the target of 18 clock cycles (as detailed in Table 5.5). The small dis-
crepancy of this value to the expected dToF value, combined with the circular shape
of the region, suggests that it accurately represents the target. The discrepancy be-
tween the target’s reconstructed and expected dToF values does not mean the target
is localised incorrectly. This is because the reconstruction algorithm produces differ-
ent reconstructed dToF values for all the pixels related to the target so some pixels
have the same reconstructed dToF value as the expected dToF value. The localisation
accuracy of this algorithm is further elaborated in Section 5.6.5.

The second region of interest in the reconstructed image of the 0.5 m depth target
is the "halo" surrounding the target. Figure 5.23(c) shows the histogram for the black-
marked pixel in this region, shown in Figure 5.23(a). The histogram indicates that
this halo corresponds to scattering from the water surface. Its histogram peak is at 18
clock cycles, close to the water surface’s expected dToF value of 16 clock cycles. While
the reconstructed dToF value is the target’s expected dToF value, it is physically not
plausible for this region to represent the target as well as the inner circular region,
as it would be physically impossible for the same surface to have two distinct depth
values.

The narrow region associated with the red-marked pixel (at the bottom of Figure
5.23(a)) is hypothesised to represent reflections from the water surface. The his-
togram for this pixel, presented in Figure 5.23(d), shows a peak at 14 clock cycles,
which is within 2 clock cycles of the water surface’s expected dToF value of 16 clock
cycles. The shorter distance recorded is likely due to the SPAD camera’s imaging
angle of 56◦ from vertical, causing photon returns closer to the image’s bottom edge
to be detected sooner than those from the top half of the camera.

Another narrow region near the right edge of the reconstructed image of the 0.5 m
depth target is suspected to be an artefact of an electronic error in the SPAD camera.
This is supported by the histogram of the magenta-marked pixel, a pixel in this
region, in Figure 5.23(e), which shows a peak at 20 clock cycles with a distribution
that differs from the other histograms presented in Figure 5.23.

All histograms in Figure 5.23 show a non-trivial number of detected photons
with dToF measurements preceding the expected dToF value for the water surface
(16 clock cycles for this reconstructed image’s target depth). These detected photons
are attributed to ambient noise in the environment. A more detailed discussion on
this noise is provided in Section 5.6.4.

5.6.2 Reconstruction Performance via Relative Localisation Accuracy

To provide a more quantitative analysis of the reconstruction performance of the
histogram averaging algorithm, the relative localisation accuracies of the target pixels
are assessed for the reconstructed images that contain a discernible representation
of the target. They are the images of the target at depths 0.5 m to 2 m. Similar
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to Section 5.4.2, the relative localisation accuracy measures the range of the target
pixels’ reconstructed dToF values.

The range of the target pixels’ reconstructed dToF values is calculated as the
difference between their minimum and maximum values. Since the target is clearly
visible in the reconstructed images, identifying which pixels correspond to the target
is straightforward. Table 5.6 presents the result.

Table 5.6: Range of reconstructed dToF values.

Depth (m) Range of reconstructed dToF
values (clock cycles)

0.5 16-19

1 23-24

1.5 24-27

2 24-28

The range of the reconstructed dToF values in Table 5.6 indicates that the recon-
structed dToF values for target pixels can vary by up to 5 clock cycles. This variation
may be attributed to the extended acquisition time of the batch of frames used for
reconstruction. The SPAD array flash LiDAR system employed for this dataset oper-
ates at 25 Hz (as noted for System C in Table 3.1 in Section 3.4 of Chapter 3). Thus,
a batch of 300 frames requires 12 seconds of acquisition time. In a dynamic envi-
ronment such as a river with constantly moving water, the target might have shifted
during this period, leading to variations in the reconstructed dToF values observed
in the reconstructed images.

5.6.3 Reconstruction Difficulty with the Histogram Averaging Algorithm

Despite the histogram averaging algorithm demonstrating better performance over
the detection threshold and median algorithm, it still faces significant challenges
when reconstructing images for targets positioned at depths greater than 2.0 m. At
these greater depths, identifying a clear histogram peak around the target’s depth
becomes increasingly difficult. For example, Figure 5.24 illustrates this issue for a tar-
get submerged at 2.5 m. The figure shows histograms of dToF measurements for two
different colour-marked pixels within the reconstructed image. These histograms
highlight the difficulty in identifying clear peaks corresponding to the target’s ex-
pected dToF value of 30 clock cycles, underscoring the limitations of the histogram
averaging algorithm at greater depths.

From Figure 5.24, both the black (Figure 5.24(b)) and green (Figure 5.24(c)) pix-
els’ histograms lack a distinct peak around the 30-clock cycle mark, which hampers
the effectiveness of the histogram averaging algorithm for reconstructing the target
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(a) (b)

(c)

Figure 5.24: A closer inspection into a histogram averaging algorithm image of a
white disc submerged at 2.5 m depth at the Port Adelaide River. Figure (a) shows
the image with black and green asterisks and arrows marking pixels with different
values. The histograms of dToF values are shown for black (b) and green (c). The title
of each histogram states which colour-marked pixel is examined and the coordinates
of the pixel. If there is a green line in the histogram, it represents the reconstructed
dToF value for the pixel. The red vertical lines in the histogram depict the post-

processing range gate used before reconstruction is applied.

image. The most prominent peaks in these histograms are likely due to scattering
from the water surface, appearing 1 to 3 clock cycles away from the water surface’s
expected dToF value of 21 clock cycles. This trend is also observed in data collected
at a depth of 3.0 m, which exhibits similar histogram characteristics.

The histograms in Figure 5.24 reveal a notable amount of detected photons with
dToF measurements preceding the expected 21 clock cycles for the water surface,
indicating the presence of ambient noise. Further analysis of this noise is provided
in Section 5.6.4.

Additionally, the histograms for targets at depths of 2.5 m and 3.0 m from the
Port Adelaide River do not exhibit the two-peak phenomenon observed in Section
5.5.2 for data collected at the DSTG indoor freshwater tank. At the DSTG tank,
this two-peak phenomenon is evident for targets at depths ranging from 2.5 to 4.5
m. Although Figure 5.24 shows multiple peaks for data collected of a target at 2.5
m depth, these additional peaks correspond to reflections from the air and water
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surface. In contrast, the histograms from the DSTG indoor freshwater tank only
contain detected photons with dToF measurements from below the water surface.
For dToF measurements beyond the water surface (which has an expected dToF value
of 21 clock cycles) in Figure 5.24, the histogram’s expected second peak cannot be
clearly distinguished. The absence of this second peak indicates that natural water
environments significantly affect the SPAD array flash LiDAR signals, complicating
accurate target reconstruction at deeper depths.

5.6.4 In-Air Photon Noise

In all the histograms of dToF measurements discussed in this section, there is consis-
tently a non-trivial number of detected photons with dToF measurements preceding
the expected dToF value of the water surface. This is illustrated further in Table
5.7, where the histogram of dToF measurements of a target pixel (marked by a red
asterisk in the reconstructed image shown in the first column) is presented. De-
spite the data being collected in shade, the outdoor weather was sunny at the time
of data collection, resulting in significant ambient noise from daylight. This persis-
tent noise contributes to the SPAD array flash LiDAR system detecting photons with
dToF measurements shorter than the water surface’s expected dToF value, compli-
cating the accurate reconstruction and interpretation of the target’s depth for future
image-reconstruction algorithms.

Table 5.7: The histogram averaging algorithm image of tar-
gets at different depths and the histogram of dToF measure-
ments at the pixel marked with red asterisk and arrow in
the image. The green line is the reconstructed dToF value of
the pixel in the reconstructed image. The red vertical lines
in the histogram depict the post-processing range gate used
before reconstruction is applied.

Depth
(m)

Histogram Av-
eraging image
with red-marked
pixel

Histogram of dToF mea-
surements of red-marked
pixel

0.5
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1.0

1.5

2.0

In Table 5.7, it is evident that all histograms exhibit one or multiple small peaks
at dToF measurements shorter than the expected dToF value for the water surface.
While the distribution of dToF measurements for ambient light is theoretically ex-
pected to be uniform, these peaks display a cyclic pattern in relation to dToF mea-
surements. Specifically, the photon counts drop to fewer than 2 counts every 5–7
clock cycles.

This cyclic behaviour is identified as an artefact of an internal electronics error
in the SPAD camera. Such errors can introduce periodic fluctuations in the photon
count data, affecting the accuracy of depth estimation and further complicating the
analysis of dToF measurements for image reconstruction. Addressing these artefacts
is crucial in the future for improving the reliability of the reconstruction algorithm
and ensuring accurate target localisation in future imaging scenarios.
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5.6.5 Global Target Absolute Localisation Accuracy

The global target absolute localisation accuracy of the histogram averaging algorithm
is assessed using reconstructed images that contain a discernible representation of
the target, which are the reconstructed images from Table 5.5 in Section 5.6 of targets
submerged to a depth 2.0 m. To assess the global target absolute localisation accuracy,
the global target location deduced from the reconstructed image is compared with
the target’s expected dToF value. For targets that are non-planar objects, the expected
dToF value will be different for each target pixel. However, as the imaged target at
the Port Adelaide River is a planar object, the expected dToF values of the target
pixels are all the same.

As discussed in Section 5.6.2, the reconstructed dToF values of the target pix-
els are inconsistent. Therefore, to evaluate the absolute localisation accuracy of the
global target, the median of the target pixels’ reconstructed dToF values are analysed
for each target depth’s reconstructed image. Since the target is clearly visible in the
reconstructed images, identifying which pixels correspond to the target is straight-
forward. Table 5.8 provides the result below.

Table 5.8: Comparing the median and expected dToF value
of the target pixels

Depth (m) Expected dToF val-
ues (clock cycles)

Median of the
reconstructed
dToF value
(clock cycles)

0.5 18 18

1 24 24

1.5 26 25

2 28 27

All median values in Table 5.8 are within one clock cycle of the expected dToF
value. Deviations in the median dToF values are noted for the reconstructed images
of targets at the two greatest depths. This discrepancy may be due to the use of a
longer rope for suspending the target at lower depths, which causes more swaying
in the water. This issue introduced by the swaying rope will be discussed in Section
5.7.1.

It can be concluded that absolute localisation accuracy with the histogram aver-
aging algorithm is high, with the target pixels’ reconstructed dToF values within one
clock cycle of expected dToF values.

Obtaining reliable data is another critical aspect to reconstructing a discernible
image of a submerged target. Ensuring that a submerged target is within the SPAD
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array flash LiDAR’s FOV can be complex. The associated challenges and potential
improvements to the experimental set-up are discussed in the next section.

5.7 Imaging Set-up Difficulties at Outdoor Natural Water Lo-
cations

As discussed in the introduction of this chapter, developing an effective reconstruc-
tion algorithm is not the only challenge in producing a discernible image of a sub-
merged target. Collecting reliable data of a submerged target using a SPAD array
flash LiDAR system presents its own set of difficulties. Specifically, several insights
and lessons about imaging in outdoor natural water locations are learnt from the
experience of collecting data using the SPAD array flash LiDAR system at the Port
Adelaide River.

Three distinct challenges were encountered when conducting SPAD array flash
LiDAR imaging at Port Adelaide River for data collection, each of which will be
addressed in the following subsections.

Firstly, the water current caused the target to move during imaging, complicating
the task of capturing a large set of frames with the target stationary at a specific
position. This issue is discussed in Section 5.7.1. To mitigate this problem, data used
for the reconstructed images in Table 5.5 of Section 5.6 were collected from the side
of the jetty where the water is calmer.

Secondly, reflections from sunlight on the water surface posed difficulties in imag-
ing under natural light conditions, as detailed in Section 5.7.2. To address this, data
collection at Port Adelaide River was conducted in the shaded area of the jetty to
prevent sunlight from degrading the quality of the reconstructed images.

Finally, locating the target by eye became increasingly challenging once it was
lowered past the SD depth. The SD depth, as discussed in Section 3.6.2 of Chapter
3, represents the maximum distance at which a human eye can still observe a target
in natural water. For the data collected in this chapter, the river water at the imaging
location had an SD depth of 3.4 m at the time of data collection. Consequently, it
was only possible to collect data of the target only submerged to 3 m during data
collection, as locating the target at 3.5 m and beyond proved difficult. Section 5.7.3
explores the challenges of locating targets past the SD depth, the associated problems,
and potential solutions.

The section concludes with Section 5.7.4, which discusses the use of a self-propelled
moving target as a potential solution for future outdoor imaging in natural waters.
This approach explains how this choice somewhat counter-intuitively reduces the
challenges described in the previous subsections.

5.7.1 Water Current

The water current in the river causes the target to move, making it challenging to
capture stable images of the target in a fixed position. At Port Adelaide River, this
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issue is partially mitigated by selecting an area with calmer waters. For future imag-
ing efforts, suspending a weight directly below the target on the rope could help
stabilise the target in the water, allowing for imaging in areas with stronger currents.
However, this solution is effective only for targets at shallow depths. As the imaging
depth increases, so does the length of the rope needed to suspend the target, which
can exacerbate movement due to the greater surface area of the rope affected by the
current.

Several alternative solutions can address this issue, with varying effectiveness
depending on the natural water environment. One option is to anchor the target
to the riverbed. While this method could be effective, it may require significant
logistical planning to transport and deploy a heavy anchor, and it may be impractical
if the riverbed is too deep. Another approach is to replace the rope with a rigid
structure to suspend the target. This can reduce movement caused by currents, but
introduces its own challenges, such as adding artefacts to the reconstructed images.
These artefacts would necessitate additional processing to mask or filter them out
before applying image-reconstruction algorithms. Additionally, depending on its
design, a rigid structure might complicate handling and increase the complexity of
the imaging set-up.

Finally, using a self-propelled moving target is a potential solution for greater
depths; this will be discussed in detail in Section 5.7.4. This approach could mitigate
the challenges associated with current-induced target movement and offer a practical
alternative for imaging in natural waters.

5.7.2 Sunlight Reflection on Water Surface

One major challenge when imaging outdoors into the river is the reflection of sun-
light on the water surface. This issue is apparent from the images reconstructed from
data collected on the sunny side of the jetty at Port Adelaide River, which are shown
in Figure 5.25. The imaging set-up used to collect this data is the same as the set-
up used for collecting data at the Port Adelaide River presented in this chapter (as
described in Section 5.2.4). These reconstructed images in Figure 5.25 illustrate this
problem with sunlight reflection.

The reconstructed images in Figure 5.25 are created from a batch of 300 frames
using the histogram averaging algorithm, which is the same algorithm identified
in Section 5.6 to provide better reconstructed images for the Port Adelaide dataset,
which was collected in the shade (see the image in the right-most column in Table
5.5 in Section 5.6). These images show similar features to the reconstructed images
from data collected in the shade, with the only notable difference being the presence
of a patch of light green pixels at the top of the images.

The light green patch of pixels at the top of the two reconstructed images in
Figure 5.25 results from detected photons originating from sunlight reflecting off the
water surface, which is close to the water surface’s expected dToF value of 21 clock
cycles. In contrast, the target submerged at 1.5 m appears as a yellow circle in these
images, corresponding to its expected dToF value of 26 clock cycles.
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(a) (b)

Figure 5.25: Histogram averaging images of the target submerged at 1.5 m depth
(equivalent to an expected dToF value of 26 clock cycles from the SPAD array flash
LiDAR system) in the Port Adelaide River under bright sunlight. The camera angle

is at 63◦ in (a) and a slightly larger angle than 63◦ is used in (b).

The difference between these two images is that Figure 5.25(b) is collected with
the SPAD array flash LiDAR system adjusted to a larger camera angle than the 63◦

camera angle used to collect the data that is used to reconstruct the image in Figure
5.25(a). This adjustment in camera angle is made empirically, by using the prelim-
inary reconstructed image of the target that is available in real-time on the DSTG-
developed GUI during data collection, as outlined in Section 5.2.5. The camera angle
adjustment is minor, as confirmed by the two reconstructed images in Figure 5.25
showing the same reconstructed dToF values for the target and background pixels in
the new image.

The change in angle for Figure 5.25(b) minimised the impact of sunlight reflection
on the image reconstruction of the target. This is a significant improvement when
compared with Figure 5.25(b), where the photon returns from the sunlight prevented
the SPAD array flash LiDAR system from detecting photons reflected from the tar-
get. The sunlight prevents detections of photons reflected from the target because
sunlight reflection off the water surface is closer to the SPAD camera than the sub-
merged target, and the SPAD camera detects only the first photon return within a
LiDAR cycle.

5.7.3 Imaging at Depths Greater than the Natural Water’s SD Depth

Reconstructing a discernible image of a target submerged at greater depths in natu-
ral waters presents significant challenges, as discussed in Section 5.6.3. It is equally
challenging to collect reliable data using a SPAD array flash LiDAR system at these
depths. Specifically, data collection becomes notably difficult when the target is low-
ered past the SD depth of natural waters. As detailed in Section 3.6.2 of Chapter
3, the SD depth represents the maximum distance at which a human eye can still
perceive a submerged object.

Once the target is beyond the SD depth, locating it visually becomes extremely
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challenging. Even with a weight to enhance the target’s stability (as discussed in Sec-
tion 5.7.1), maintaining the target’s precise position remains difficult. These factors
collectively contribute to the difficulty in confirming the target’s exact location.

Uncertainty about the target’s location leads to several issues. First, it becomes
challenging to ensure that the target is within the SPAD camera’s FOV. Consequently,
the data collected cannot be reliably used to assess the effectiveness of the reconstruc-
tion algorithm. This uncertainty complicates the diagnosis of reconstruction failures,
which could stem from various factors, such as the target being outside the FOV,
the SPAD camera failing to detect photon returns from the target, deficiencies in the
reconstruction algorithm itself, or other environmental influences.

Another issue arising from not knowing the target’s location is the difficulty in
determining the expected dToF value of the target, making it impossible to validate
the reconstructed dToF value.

Potential improvements for locating the target include attaching a laser to the
target to project a non-destructive beam visible as a spot in a raw image, or as a
spot in the preliminary reconstructed images displayed on the DSTG-developed GUI
discussed in Section 5.2.5. Additionally, using a rigid structure to replace the rope for
suspending the target, as suggested in Section 5.7.1, may help counteract movement
caused by water currents. Alternatively, employing a self-propelled moving target,
as discussed in Section 5.7.4, offers another potential solution.

5.7.4 Use of a Moving Target

Another approach to address the challenge of keeping the target stationary in the
water is to use a self-propelled moving target for imaging. This target can follow a
predetermined path, which simplifies tracking and validation. A Remotely Operated
Vehicle (ROV) is a suitable candidate for this purpose, as it is equipped with an
internal system capable of countering water currents and maintaining a planned
trajectory. This method also ensures that the target’s location is known at each time
point, facilitating validation of its presence in the reconstructed images.

This approach effectively addresses the issues highlighted in Section 5.7.1, where
maintaining a stationary target at deeper depths proves difficult. It also resolves the
problem of locating the target beyond the SD depth, as discussed in Section 5.7.3.

5.8 Chapter Summary

This chapter examined image reconstruction of data collected by an above-water
SPAD array flash LiDAR system of submerged single targets in natural waters. The
performance of two basic image-reconstruction algorithms are presented: the detec-
tion threshold and median algorithm, and the histogram averaging algorithm. Their
computational demand analysis demonstrates they are real-time-capable, where the
analysis highlights they consists of small number of steps and even at computation-
ally intensive steps, they are processing a small amount of data. While the basic
computational methods enable these algorithms to be real-time capable, they also
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inhibit the image reconstruction performance of these algorithms. The image recon-
struction performance of these algorithms are evaluated against three datasets col-
lected at three different water locations, where the algorithms’ image reconstruction
performance worsen for deeper depths or higher number of ALs in each dataset.

The first dataset was collected at the AIMS indoor saltwater tank, which sim-
ulated the imaging of submerged targets at different turbidity conditions without
the interference of the water surface. The detection threshold and median algorithm
proved effective for reconstructing visually discernible images of the imaged target
for water turbidity conditions of up to 3.43 ALs, which is created by a mixture of
2.44 µg/L chlorophyll and 5.71 mg/L sediments. This demonstrates that these im-
ages can be used to conduct visual target detection. However, it failed at higher
sediment levels (8.62 mg/L, equivalent to 4.28 ALs).

The reconstruction performance of the detection threshold and median algorithm
is quantified in term of two different metrics. The pixel-wise absolute localisation
accuracy is 1–2 clock cycles. Despite the lower absolute localisation accuracy, the
relative localisation accuracy of the reconstruction algorithm is found to be one clock
cycle.

The evaluation of target classification using the reconstructed images of differ-
ent shapes submerged in sediment-only conditions showed no trend in overall clas-
sification accuracy with increasing sediment concentration, except for a significant
dip in accuracy at the highest concentration (5.62 mg/L, 3.29 ALs), although over-
all accuracy remained above 95%. A computational demand analysis of the target
classification algorithm demonstrates that it is real-time capable.

The second dataset was collected at the DSTG indoor freshwater tank. The imag-
ing set-up for collecting this dataset used a novel imaging set-up for above-water
SPAD array flash LiDAR imaging of submerged targets. A custom mechanical rig
built for positioning the SPAD array flash LiDAR system above the water surface is
used in this set-up.

For reconstruction performance of this second dataset, both reconstruction al-
gorithms can only reconstruct the white quadrant of the SD, which is the imaging
target. This is attributed to the difference in the amount of reflected photon between
the black and white quadrants.

The detection threshold and median algorithm cannot reconstruct a discernible
image of the target for a clear freshwater depth of more than 1 m. This is surprising
given this algorithm is able to reconstruct up to a turbidity level of 3.43 ALs at the
AIMS indoor saltwater tank, where the portion of the imaging distance between the
target and imaging system that is in the water environment is approximately 2.87 m.
This inconsistency highlights a need for further study into the effect of water quality
on SPAD array flash LiDAR systems.

The histogram averaging algorithm outperformed the detection threshold and
median algorithm in reconstructing discernible images of targets submerged to 4.5
m depth. At a submerged depth of 5 m, the target is detectable in the histogram aver-
aging algorithm’s reconstructed images. However, the SD features are not discernible
in the reconstructed image, making it difficult to extend the application of this image
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for target classification in the future. A comparison between the reconstructed and
expected dToF values demonstrates that the histogram averaging algorithm captures
the trend of the target imaged at increasing depths, but the reconstructed dToF values
contain a systematic error.

The third dataset uses the same mechanical rig and similar imaging set-up in the
DSTG indoor freshwater tank to image targets submerged in the Port Adelaide River,
where turbidity levels were at 3.4 m SD depth, at the time of data collection. The tar-
get in the reconstructed images by the histogram averaging algorithm is discernible,
for data collected with the target submerged down to 2 m depth in natural water.
This demonstrates that target detection is possible.

For the reconstructed images from the third dataset, an analysis of the reconstruc-
tion performance in terms of relative localisation accuracy is 5 clock cycles. Further
investigations are required to determine why the range of reconstructed dToF values
for the targets pixels is so large despite the imaging target being planar, where the
expected dToF values should be the same for all target pixels. Global target absolute
localisation accuracy with the histogram averaging algorithm is one clock cycle.

In data collected from the target at 2.5 m and 3.0 m, the target cannot be seen
in the images reconstructed by the histogram averaging algorithm. A closer inspec-
tion of the collected dToF measurements shows no photon returns from the target
are detected when the target is submerged at these depths. This is indicated by the
absence of a secondary histogram peak, which can be observed from histograms of
dToF measurements collected of the target submerged at similar depths at the DSTG
indoor freshwater tank. The insufficient number of detected photons reflected from
the target may be attributed to the complex nature of natural waters. This indicates
that a more advanced image-reconstruction algorithm is needed to reconstruct a dis-
cernible image of the target at these greater depths in natural water location. In
order to develop a real-time capable algorithm that can reconstruct images at greater
depths or higher number of ALs, it will require a further study of the complex and
variable nature of natural waters.

Studying the relationship between natural water properties and their Inherent
Optical Properties (IOPs) is one approach to understanding the complex and vari-
able nature of natural waters. Understanding these complex phenomena and their
effects on SPAD LiDAR data will enable more sophisticated computational methods
to be developed, where these methods may include lightweight neural or FPGA-
based methods. For example, by modelling the effect of these properties on dToF
measurement distributions, it may be possible to utilise lightweight computational
methods to filter out noises in the SPAD LiDAR data caused by the effects of natural
water; this may result unveiling the histogram peak that corresponds to the target’s
location. Preliminary research on the impact of natural water properties on IOPs is
available in [101], although it is not included in this thesis.

Obtaining reliable data of submerged targets with a SPAD array flash LiDAR sys-
tem is another critical aspect to developing better image reconstruction algorithms.
Challenges in data collection and imaging in natural waters are identified from the
experience of conducting imaging at the Port Adelaide River for creating the third
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dataset. Challenges include target movement due to currents and sunlight interfer-
ence. Future improvements for the imaging set-up could include the use of an ROV
to move in a pre-determined path for more accurate imaging and target localisation
below the SD depth.

Other than natural water environments, another common imaging environment
during remote surveys is outdoor fog. The next chapter investigates image recon-
struction for this type of imaging condition, where the histogram of dToF measure-
ments present a similar two-peak characteristic as seen at the DSTG indoor freshwa-
ter tank.
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Chapter 6

SPAD Image Reconstruction of
Targets Obscured by Fog

Fog is another obscurant commonly encountered during remote surveillance by Un-
crewed Autonomous Vehicles (UAVs). It creates a challenging imaging environment
for Single Photon Avalanche Diode (SPAD) array flash Light Detection and Rang-
ing (LiDAR) systems. Fog’s light-scattering properties result in the majority of de-
tected photons being noise rather than reflected from the target [183]. This makes
it difficult to accurately reconstruct an image of the target, leading to poor target-
discrimination performance. This may be detrimental for military operations if the
target-discrimination information is incorrect.

This chapter focuses on developing image-reconstruction algorithms for SPAD
array flash LiDAR data collected of a single-target imaged in fog. By evaluating the
quality of these reconstructed images, it can be determined whether they can be used
for target detection. The first two algorithms presented in this chapter also have their
reconstructed images evaluated for target classification. These algorithms employ
simple computational operations on restricted sets of data (500–1000 for these algo-
rithms), suggesting they have the potential for real-time capability, even though their
execution times are not measured. In this chapter, a computational demand analysis
accompanies the description of each algorithm to demonstrate real-time capability.

The first approach is called the range gate and process algorithm. For this ap-
proach, a range gate is set on the SPAD array flash LiDAR system when imaging
targets through fog. This enables a lot of the backscattered photons to not be de-
tected. The image is reconstructed by using the direct Time-of-Flight (dToF) value
associated with the peak of the histogram of dToF measurements as the reconstructed
dToF value. The image quality of the reconstructed image is denoised by applying
area correlation and threshold methods.

To demonstrate that the reconstructed images from the range gate and process
algorithm can be classified, dToF measurements of two different wooden frigate sil-
houettes are collected using a SPAD array flash LiDAR system. The target is classified
by determining which frigate class’s mean area it is closest to. This area is defined
as the total number of non-zero pixels in the reconstructed image. A portion of the
collected images is used as training data to determine each class’s mean area.

143
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The imaging environment for the collected data of these frigate silhouettes has
the fog concentrated at a short distance span between the SPAD array flash LiDAR
system and the target, rather than having the fog distributed throughout the entire
span between the SPAD array flash LiDAR system and the target. Combined with
using a range gate around the known target location for data collection, this approach
is not robust enough for real fog environments where there is a wider fog span. In
real fog, range-gated data may require additional processing to create an accurately
reconstructed image of an obscured target.

With robustness in mind, the second approach investigates modelling dToF mea-
surements that are collected without a range gate. It employs a finite mixture model,
which is a probability distribution that consists of a finite mixture of different prob-
ability distribution models, for depth estimation in each pixel of the reconstructed
image. This approach is referred to as the finite mixture model algorithm in this
thesis. It aims to model the entire range of possible dToF measurements of the SPAD
array flash LiDAR system, taking into account the maximum possible distance of the
imaging scene.

The finite mixture model algorithm is inspired by [139], which demonstrates that
dToF measurements of detected photons reflected from fog scattering can be mod-
elled by a statistical distribution such as a gamma distribution. The authors in [139]
successfully reconstructed images by determining each of the pixel’s reconstructed
dToF value from the residual probability distribution between the probability distri-
bution modelling all of the pixel’s dToF measurements and the fitted gamma distri-
bution to the same set of dToF measurements. Inferring the dToF value of each pixel
in a reconstructed image from the residual probability distribution is also commonly
employed in other literature [86, 181, 183, 182, 137]. Section 2.3 of Chapter 2 discusses
this and the paper [139] in more detail.

Compared with the proposed algorithm in [139], the finite mixture model algo-
rithm presented in this chapter differs in several ways. Most importantly, it does not
determine each pixel’s reconstructed dToF value from the residual probability distri-
bution. Instead, the approach determines each pixel’s reconstructed dToF value from
a finite mixture model fitted to a set of dToF measurements. This means it mod-
els the dToF measurements of detected photons reflected from the fog and target
concurrently, removing the need to compute a residual probability distribution. The
reconstructed dToF value of each pixel can be inferred after one single probability
distribution fit of the dToF measurements.

The finite mixture model consists of lognormal and Gaussian probability distri-
butions. The model assumes the dToF measurements of detected photons reflected
from fog can be modelled by one or more lognormal distributions while the dToF
measurements of detected photons reflected from the target can be modelled by a
Gaussian distribution. The target’s localised distance is defined to be the mean of
the Gaussian component, as in [139]. However, the finite mixture model algorithm
reported here uses a lognormal distribution instead of a gamma distribution (which
is used in [139]) to model the dToF measurements of detected photons reflected from
fog. This is because the finite mixture model algorithm approaches the fog obscurant
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problem from a phenomenological approach instead of physics modelling or convo-
lution approaches. The lognormal is chosen because its trend shape is observed to
be a sufficient match to the distribution of the dToF measurements in a histogram.
This makes it a phenomenological approach, while a gamma distribution has been
demonstrated to be derived from a physics model of multiple scattering events. The
authors in [139] derive the gamma distribution model from assuming that the dis-
tance between the consecutive scattering events of a photon follows an exponential
distribution.

The Expectation-Maximization (EM) algorithm [41] is employed in the finite mix-
ture model algorithm to fit the probability distributions to the measured dToF mea-
surements of each pixel over a batch of frames. It is an iterative algorithm that can
approximate parameters of the probability distribution. It is chosen over more com-
mon methods such as Maximum Likelihood Estimation (MLE) because it is often
difficult to find an analytical solution for these parameters [23, 35]. In addition, the
EM algorithm is known to be short in computation time. In the SPAD array flash
LiDAR community, only the authors in [137] have employed the EM algorithm in
their image-reconstruction algorithm. As discussed in Section 2.3 of Chapter 2, the
authors in [137] use EM algorithm to estimate parameters of the fog model’s proba-
bility distribution, which models the dToF measurements reflected from fog using a
Poisson distribution with its mean parameter dependent on a unit step function.

To demonstrate the image reconstruction performance of this finite mixture model
algorithm, it is tested on a SPAD LiDAR dataset of three planar shapes (circle, tri-
angle, and square) obscured by fog, collected by a SPAD array flash LiDAR system.
The histogram of dToF measurements in this collected dataset shares some common
attributes with dToF measurements collected in the DSTG indoor freshwater tank,
as seen in Section 5.5.2 of Chapter 5. In particular, all the histograms of dToF mea-
surements have two peaks, where the first one represents detected photons reflected
from obscurant scattering and the second is from the target. This means that the
finite mixture model algorithm can be potentially extended to reconstruct images of
single targets submerged in water.

Target classification is demonstrated with the reconstructed images from this fi-
nite mixture model algorithm. The processing steps for target classification converts
the reconstructed image into a binary image using a threshold method, then apply a
few image processing techniques to improve the quality of the reconstructed image
for classification. Afterwards, the total number of non-zero pixels are counted to
determine the class of shape.

The reconstructed images of the shapes are only discernible and classifiable for
collected data with a fog level of a maximum of 50.8 m visibility/1.14 attenuation
lengths (ALs) (in terms of 532 nm). With the fog level increasing, the amount of
detected photons reflected from the target becomes significantly less than from the
fog. This is where the finite mixture model algorithm is weak; it is unable to fit a
Gaussian distribution accurately to the dToF measurements related to the target once
this occurs. Therefore, an alternative algorithm needs to be explored. This leads to
the Fourier descriptor algorithm, which utilises spatial correlation between pixels at
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each possible dToF measurement to perform global target localisation, which leads
to image reconstruction. The algorithm is able to perform global target localisation
even when there is a small number of detected photons reflected from the target.

The Fourier descriptor algorithm differs conceptually from the previous two ap-
proaches discussed in this chapter, offering a new perspective on image reconstruc-
tion. Instead of reconstructing an image on a pixel-by-pixel basis, this algorithm
reconstructs all pixels simultaneously. Rather than processing the dToF measure-
ments at each pixel over a batch of frames, it processes the collected data by creating
a binary image for each possible value in the range of dToF measurements from a
batch of frames. An image related to photon counts of one of the possible values
in the range of dToF measurements is referred to as a slice when discussing this
algorithm. When constructing a binary image for each possible dToF value’s slice,
each pixel’s value is assigned a value of 1 if one or more photons are detected at this
specific dToF value within the current batch of frames. Otherwise, it has a value of 0.
The resulting set of slices is referred to as a binary histogram stack in this algorithm.

The Fourier descriptor algorithm reconstructs all pixels of an image at once by
determining which slice of the binary histogram stack contains the closest represen-
tation of the target’s silhouette. This is conducted by utilising Fourier descriptors,
which are able to provide a unique signature for each different object’s silhouette.
Fourier descriptors can also be extended to be size- and rotation-invariant. Fourier
descriptors are calculated for each slice in order to determine which slice contains
the most similar silhouette to the target.

To ensure accurate Fourier descriptors are computed for each slice, noise pixels
are removed and holes are filled for each slice of the binary histogram stack. An
additional check in apparent target size is also employed in this algorithm to filter
out noise pixels before Fourier descriptors are calculated for each slice.

Given that the imaging target used to evaluate this algorithm is planar, its ex-
pected dToF value should be the same for all pixels at the target’s spatial position in
the image. This means the target should only locate in one slice of the binary his-
togram stack. Therefore, for this chapter’s implementation of the Fourier descriptor
algorithm, the target’s location is selected as the dToF value corresponding to the
slice with the descriptor most similar to the target. Moreover, image reconstruction
can be performed by simply assigning the chosen slice’s dToF value to pixels where
the slice’s binary image has the value 1, and assign the remaining pixels’ values as
undefined.

The SPAD LiDAR dataset used to evaluate the finite mixture model algorithm
is also used to test the Fourier descriptor algorithm. In this instance, only the data
related to the planar triangle target is used for evaluating the Fourier descriptor
algorithm. Promising preliminary results show the algorithm can perform absolute
localisation of the triangle target at a fog level of 2.28 ALs and visibility of 25.4 m.

The motivation for using Fourier descriptors comes from the observation that the
target remains consistently discernible in the finite mixture model algorithm’s recon-
structed images, even when some images exhibit poor reconstruction performance in
terms of relative localisation accuracy. The target is discernible in the image because
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its silhouette is clearly visible and resembles that of the actual target. Therefore, the
Fourier descriptor aims to model this silhouette in order to enhance overall recon-
struction performance.

From the discussion in Section 2.3 of Chapter 2, it is clear that none of the ex-
isting literature has approached reconstruction of fog-obscured targets using image
features such as Fourier descriptors. The closest approach to image features that
has been implemented is the use of spatial correlation techniques to reconstruct the
image. For example, the authors in [60] encoded spatial correlation information be-
tween pixels in the regularisation terms used for image reconstruction. Another sim-
ilar approach to image features is to perform denoising on the reconstructed image,
such as the authors in [127] using inpainting.

As the Fourier descriptor algorithm relies on a clear silhouette of the target to
perform localisation, this algorithm is unable to localise a target that is occluded by
other objects. This is because the target’s whole silhouette will not be fully visible
in the image. Therefore, the Fourier descriptor algorithm’s localisation performance
will be poor for targets in dense clutter. To use the Fourier descriptor algorithm
to localise an occluded target, an additional inference method needs to be applied
beforehand to extrapolate from an image of the target’s occluded silhouette to create
an image with the target’s complete silhouette. This will then allow the Fourier
descriptor algorithm to be applied for localisation.

Target classification has not been demonstrated for the reconstructed images by
the Fourier descriptor algorithm. Nonetheless, the algorithm can be extended for
classification in the future. As Fourier descriptors are unique for different shapes,
Fourier descriptors of different object classes can be calculated beforehand. Dur-
ing classification, the target can be classified by determining which object class has
the most similar Fourier descriptor to the target’s Fourier descriptor. For real-time
implementation, a lookup table of different targets’ Fourier descriptors can be im-
plemented for fast real-time classification on-board mobile platforms. Once the al-
gorithm is extended for classification, it can also be extended to localise multiple
different targets with different shapes at different depths. The algorithm can be
utilised to localise different Fourier descriptors that correspond to different targets.

In the future, the Fourier descriptor algorithm can be extended to image recon-
struct and classify targets that are non-planar objects. From the perspective of the
binary histogram stack, a non-planar object will appear over a consecutive series of
slices. Therefore, a non-planar object will contain a sequence of Fourier descriptor
instead of a planar object having a single Fourier descriptor. For target localisation,
the Fourier descriptor algorithm needs to be extended to search for a series of con-
secutive slices that contains a particular sequence of Fourier descriptors. Similarly,
classification of targets that are non-planar objects will involve determining which
object class’s sequence of Fourier descriptors matches best with the target’s sequence
of Fourier descriptors. Image reconstruction of a target that’s a non-planar object will
not be just from a slice of the binary histogram stack. Instead, image reconstruction
will involve combining the binary images of all the histogram slices that are associ-
ated with the target, where a pixel’s reconstructed dToF value is the dToF value of
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the first slice in the identified sequence of slices that contain the value 1 at the same
pixel position. Otherwise, the pixel stays undefined.

The remainder of the chapter is organised as follows. The imaging process using
the SPAD array flash LiDAR to collect two distinct datasets, namely the Frigates Fog
Dataset FFD and Shapes Fog Dataset (SFD), is detailed in Section 6.1. This section
provides details about the imaging conditions and imaging targets captured in the
datasets.

Moving on to the presented methodologies, Section 6.2 outlines the range gate
and process algorithm. It encompasses image reconstruction techniques, denoising
processes, computational demand analysis and the classification approach employed.
Additionally, the robustness of using range-gated data is explored in Section 6.2.3.

Following this, Section 6.3 presents the finite mixture model algorithm. It begins
with a description of the finite mixture model in Section 6.3.1, followed by an in-
depth mathematical explanation of the application of the EM algorithm in Section
6.3.1.1, with a presentation of the EM algorithm’s convergence condition in Section
6.3.1.2, and then the finite mixture model algorithm’s initialisation process in Section
6.3.1.3. The target classification algorithm for the reconstructed images from this
algorithm is discussed in Section 6.3.2, along with the efficacy of employing a pixel-
wise algorithm in Section 6.3.4. The real-time capability of the finite mixture model
algorithm and the classification algorithm are then discussed in Section 6.3.3, where
their computational demand analyses are presented.

Finally, Section 6.4 presents the Fourier descriptor algorithm, which utilises the
Fourier descriptor, an image feature, for target localisation. The computational de-
mand analysis for this algorithm is presented in Section 6.4.2.2, which discusses the
algorithm’s real-time capability.

Transitioning to the results and discussion in Section 6.5, the performance of each
algorithm is evaluated. The range gate and process algorithm’s different performance
outcomes are presented in Section 6.5.1, which includes image reconstruction results
in Section 6.5.1.1, with subsequent target classification results detailed in Section
6.5.1.2. The performance of the finite mixture model algorithm is then discussed in
Section 6.5.2, which is in terms of different performance metrics in its subsections.
Finally, a comparison of the global target locations extracted by the Fourier descriptor
algorithm and the finite mixture model algorithm is provided in Section 6.5.3, which
demonstrates the Fourier descriptor algorithm’s improvement in absolute localisation
accuracy for the global target location.

The work presented in this chapter has been published in [100] (for the range
gate and process algorithm), [99] (for the finite mixture model algorithm) and [104]
(for the Fourier descriptor algorithm).

6.1 SPAD Data Collection Method

The algorithms developed in this chapter are evaluated using SPAD array flash
LiDAR data collected in a long indoor dark tunnel. The technical specifications of
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the SPAD array flash LiDAR system used are detailed under System C in Table 3.1
in Section 3.4 of Chapter 3.

Two separate datasets are collected and used to evaluate different algorithms.
One dataset imaged two different white wooden frigate silhouettes through fog,
while the other captured cardboard cutouts of three simple geometric shapes (circle,
triangle, and square) through fog. In this thesis, the frigate silhouette dataset will be
referred to as the Frigates Fog Dataset (FFD), and the geometric shapes dataset will
be referred to as Shapes Fog Dataset (SFD). The FFD is used for evaluating the per-
formance of the range gate and process algorithm, while the SFD is used to evaluate
the finite mixture model algorithm, with only the triangle data of the SFD being used
for testing the Fourier descriptor algorithm.

For FFD, a range gate is set on the SPAD array flash LiDAR system for 69 to 110
clock cycles. Unlike FFD, a range gate is not employed to collect data for the SFD
dataset. The SPAD array flash LiDAR system is set to have a minimum delay of 10
clock cycles (equivalent to a target distance of 5 m) to avoid scattering directly from
the laser while still capturing as much of the fog in the tunnel as possible. For both
datasets, if a pixel registers no photon return, its dToF measurement is recorded as
the maximum clock cycle value, which is 110 clock cycles for the SPAD array flash
LiDAR system used in the imaging set-up of both datasets. Therefore, any pixels
with a dToF measurement of 110 clock cycles is processed as no photon detected.

Figure 6.1: FFD’s imaging set-up of tunnel for measurements through fog.

Other than the targets, the same equipment is used in the same locations for
the imaging set-ups for data collection of the FFD and SFD. Figures 6.1 and 6.2
illustrate the equipment layout for the two datasets, respectively. The same 54 m-
long tunnel is used for conducting imaging to collect data for both datasets. The
Rave AF1214 Fog Machine and the Rave Heavy Fog water-based liquid (consisting
of 42% Propylene glycol, <5% glycerine, and distilled water [9]) are used to generate
fog to obscure the targets. The fog machine heated the water-based liquid and forced
it into the atmosphere under pressure. The fog machine is positioned 25 m away
from the LiDAR system. The SPAD array flash LiDAR system and power meter are
situated in an approximately 3 m by 5.5 m room at the tunnel’s entrance. A 532
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Figure 6.2: SFD’s imaging set-up of tunnel for measurements through fog.

nm wavelength, 14 mW continuous wave laser is used and placed at the back of the
tunnel, facing the power meter. The fog levels reported in this chapter are based on
the received power measurements. The fog levels are reported in terms of visibility
(cf. Section 3.6.3 of Chapter 3) and the number of ALs (cf. Section 3.6.1 of Chapter
3). Imaging is conducted in the dark to reduce environmental noise.

Figure 6.3: Cut-out silhouettes of two different frigates.

As mentioned earlier, the FFD and SFD contain data that are collected from imag-
ing different targets. For FFD, Figure 6.3 displays the two different frigate silhouettes
before they were painted white to use for imaging in data collection. One silhouette
measures 120.5 cm in length, while the other measures 133 cm in length1. In con-
trast, for the SFD, white cardboard cut-outs of 3 different shapes (circle, triangle, and
square) are used as targets, as depicted in Figure 6.4. These shapes are sized such
that a 610 mm square could be circumscribed around them. The shapes are attached
to 3 planks of long timber, and a pulley system is employed to raise these shapes into
the field-of-view (FOV) of the SPAD array flash LiDAR system. This set-up enables
the imaging of individual shapes with minimal interruption to the flow of fog in the
tunnel, allowing the fog condition to remain as consistent as possible for all 3 shapes.

1An incorrect unit was noted in [100]. The correct length is in cm instead of m.
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(a) Circle (b) Triangle (c) Square

Figure 6.4: Different shapes cut out from cardboard and painted white for imaging.
These shapes are connected to a pulley mechanism that enable each shape to be lifted
up from the floor for imaging. Figure 6.4(c) shows the design of this mechanism
causes the triangle to be placed in front of the square when the square is imaged.
This does not cause an issue as the triangle is directly in front of the square, so its
tiny depth difference to the square is not detected by the SPAD array flash LiDAR

system.

Figure 6.4(c) illustrates the design of this mechanism, which causes the triangle to be
positioned in front of the square when the square is imaged. This arrangement does
not pose an issue, as the triangle is situated right in front of the square, and its slight
depth difference is not detected by the SPAD array flash LiDAR system used in this
experimental set-up. At the time of data collection, additional fog was released only
after all three shapes were imaged separately.

Another difference between the set-ups of the two datasets is the direction in
which the fan is oriented, which influences the extent of fog dispersion. For FFD,
the fan is directed perpendicular to the line of sight to the back of the tunnel, which
helps keep the fog circulating in the narrower area of the tunnel. This can be seen in
Figure 6.5 where the entrance to the tunnel does not have fog. At the other end of
the tunnel, the fog is estimated to dissipate at around 15–23 m from the generator (as
illustrated in Figure 6.1). For SFD, the fan is directed towards the rear of the tunnel.
The fog is observed to dissipate at an approximate distance of 6 m from the back of
the tunnel and spread up to the tunnel’s entrance, as illustrated in Figure 6.2.

For FFD, data collection occurred at fog levels with visibilities ranging from 76.9
to 14.1 m, corresponding to 0.68 to 3.69 ALs. In contrast, for SFD, the fog levels
spanned from 185 to 12 m in visibility, corresponding to 0.31 to 4.85 ALs.

As discussed in Chapter 3, visibility and the number of ALs are employed to
quantify the fog levels that obscured the targets during imaging. Calculating these
terms requires determining the beam attenuation coefficient, which is computed us-
ing Eq. 3.1 from Section 3.5 of Chapter 3. To obtain this coefficient value, the mea-
sured power of a continuous 532 nm laser beam across each fog level is used as the



152 SPAD Image Reconstruction of Targets Obscured by Fog

Figure 6.5: A photo of the long tunnel with lights on, with the testing target barely
visible. Experiments are conducted in the dark. The fog level here is 25.8 m visibility
and 2.25 ALs, which are calculated from laser power measurements of the continuous

laser beam on the right.

term I in Eq. 3.1. This power is measured by the power meter at the tunnel entrance.
The power of the continuous laser is used as the term I0 in Eq. 3.1.

As discussed in Section 3.5.1, the term x in Eq. 3.1 is assigned the average distance
of the fog span. For FFD, the fog is estimated to span between 15–23 m (as depicted
in Figure 6.1). Thus, an average value of 19 m is used for x in Eq. 3.1. Conversely,
for SFD, the fog span is estimated to span between 23–48 m, as shown in Figure 6.2.
Consequently, an average value of 35.5 m is used for x in Eq. 3.1.

6.2 Reconstructing Range-Gated Data

The range gate and process algorithm is presented in the first subsection for recon-
structing images, then it is followed by an explanation of the target classification
algorithm used to evaluate the quality of the reconstructed images. Finally, a discus-
sion of the robustness of this algorithm is provided in the final subsection.

The results from evaluating the reconstruction and classification performances of
this algorithm are reported in Section 6.5.1.

6.2.1 Range Gate and Process Algorithm

The range gate and process algorithm comprises of three components. The first
component is the collection of dToF measurements utilising a range gate. For the
evaluation of this algorithm in reconstructing images of frigate silhouettes (i.e. FFD
dataset), the dToF measurements are gathered with the range gate set to 69 to 110
clock cycles, as discussed in Section 6.1. Furthermore, as discussed in Section 6.1,
in instances where a pixel records no photon return, its value is registered as the
maximum clock cycle value, which is 110. Therefore, all pixels with a value of 110
clock cycles are excluded from the raw data before undergoing processing via the
range gate and process algorithm.
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The second component involves reconstructing the image. A pixel-wise method
is employed, wherein each pixel’s dToF measurements over a batch of frames are
organised into a histogram, and the dToF value corresponding to the histogram peak
is utilised as the reconstructed dToF value2. A batch of 500 frames is utilised for each
image reconstruction.

The third component is denoising, which consists of two techniques that are ap-
plied to the reconstructed image to enhance its quality. The first technique is called
area correlation, which involves comparing each pixel’s value with its surrounding
pixels. If a pixel is within 3 clock cycles of less than a certain number of its sur-
rounding 3×3 pixels, it is discarded. This step aims to eliminate noisy background
regions characterised by random pixel values. For the fog condition used to evaluate
this algorithm (14.1 m visibility and 3.69 ALs), if there are less than 2 pixels that are
within 3 clock cycles of a pixel, then the pixel is discarded.

After area correlation, a threshold value is employed as a second denoising tech-
nique to further filter out noise, resulting in a clearer image. This threshold is de-
termined empirically from the reconstructed image at this stage, considering the
difference between the expected dToF values of the target and the background.

6.2.1.1 Real-Time Capability

The execution time of the range gate and process algorithm is not measured because
the implementation is not optimised. To demonstrate the real-time capability of this
algorithm, an analysis of its operation is conducted. Figure 6.6 shows a summary of
this algorithm.

one pixel’s set of dToF measurements

Identify histogram peak

Area correlation

Threshold

reconstructed dToF value

Figure 6.6: Summary of range gate and process algorithm

From Figure 6.6, it is clear the range gate and process algorithm have a small
amount of steps when processing each pixel. The most computationally intensive

2To avoid misunderstanding, the histogram algorithm referred to in [100, Section IV] identifies the
bin of the histogram peak, not including the subsequent application of a threshold, as in [100, Section
III].
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task is identifying the histogram peak for each of the pixels, which has been shown
to be real-time capable for a small amount of data in Section 5.3.1 in Chapter 5. Here,
the algorithm is only processing 500 frames and the number of bins in its histogram
is 40, given the dToF measurements vary between 69 to 109 clock cycles (as discussed
in Section 6.2.1).

The remaining tasks are simple in computation, and can be parallelised if needed
to enable real-time execution. For speed up processing for all pixels, each pixel’s
processing can be implemented on a parallel thread, as argued for the algorithms in
Section 5.3.1 in Chapter 5 which also processes each pixel’s dToF measurements in-
dependently. Therefore, this demonstrates that the range gate and process algorithm
is real-time capable for reconstructing an image.

6.2.2 Evaluating Reconstructed Images for Target Classification

To illustrate that the reconstructed image from this range gate and process algorithm
can be classified, dToF measurements of two different white wooden frigate silhou-
ettes are collected using a SPAD array flash LiDAR system (as described for FFD in
Section 6.1). The target is classified by determining which frigate class’s mean area it
is closest to. The area of the silhouette is defined as the total number of pixels with
non-zero values in the reconstructed image. All the pixels in the reconstructed image
can be counted because the de-noising techniques have removed most of the noisy
pixels, making the majority of non-zero values to be part of the silhouette shape in
the image. Counting the number of non-zero pixels in a 32×32 is clearly real-time
capable.

An additional class, called "Undecided", is created to account for scenarios where
the area is equidistant to both frigates’ mean areas. As outlined in Section 3.7 of
Chapter 3, instances of the Undecided class are excluded from testing, serving solely
to address scenarios where the classifier cannot assign an object class to the target
based on predefined rules.

To determine the mean area for each frigate class for classification, training is
conducted by calculating the mean area of each type of frigate silhouette from some
of the frames in the FFD. For each fog condition, 100 reconstructed images of each
frigate are generated for training, and the mean of each frigate’s area is calculated
and used for target classification. These 100 reconstructed images are generated
from a sliding window approach, where each image is reconstructed from a batch of
frames shifted by an index of one from the previous batch. To test the target classi-
fication performance, a different set of 100 reconstructed images of each frigate are
utilised. Similarly, these images are also generated using the same sliding window
approach for generating reconstructed images for training. However, the frames used
for testing is different to the frames used for training.
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6.2.3 Robustness of using Range Gated Data

This approach demonstrates the potential of utilising range gating for imaging tar-
gets obscured by fog, employing simple arithmetic techniques to reconstruct target
images. However, when imaging unknown targets at unknown distances in unfa-
miliar environments, there is not sufficient time to query all possible distances via
range gating to collect real-time target data. While this lack of speed may not pose
a problem for stationary targets, it could prove problematic for fast-moving targets.
A rapidly moving target may appear blurry if the SPAD array flash LiDAR system
fails to query all sets of range gates quickly enough. To address this challenge, the
upcoming section presents the finite mixture model algorithm, which focuses on re-
constructing images of targets collected from SPAD array flash LiDAR systems that
do not utilise a range gate.

6.3 Modelling dToF Measurements Collected without the Use
of Range Gating

This section presents the finite mixture model algorithm and the target classification
algorithm used to evaluate its reconstructed images. The goal of the finite mixture
model algorithm is to reconstruct an image by determining the dToF value of each
pixel independently. For each pixel, the finite mixture model algorithm utilises the
EM algorithm3 to fit a finite mixture model to the dToF measurements from a batch
of frames.

The SFD is used to evaluate the quality and target classification performance
of reconstructed images generated by the finite mixture model algorithm. For this
dataset, the finite mixture model algorithm requires a batch of 500 frames to recon-
struct one image.

Before fitting a finite mixture model to the dToF measurements from the SFD,
any values outside the range of 0 to 100 clock cycles are discarded. This step aims
to remove detected photons reflected from the back wall of the tunnel, as described
in Section 6.1. The dToF measurements of detected photons reflected from the back
wall appear as a spike when their dToF measurements are included in plotting the
histogram of dToF measurements of all detected photons. Including this spike in the
evaluation of the finite mixture model algorithm would necessitate more sophisti-
cated modelling. To avoid this unnecessary complication, the dToF measurements of
the detected photons reflected from the wall are excluded. The focus of this algo-
rithm is on modelling the dToF measurements from both the fog and the target.

The finite mixture model is described in Section 6.3.1, followed by a mathematical
explanation of applying the EM algorithm to fit the finite mixture model to the dToF
measurements in Section 6.3.1.1. Finally, Section 6.3.2 details the processes used to

3There is an error in the reporting in [99] where Kernel Density Estimator (KDE) is not used as part
of the finite mixture model algorithm, the EM algorithm fits the finite mixture model directly to the
dToF measurements of each pixel.
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conduct target classification on the reconstructed images by the finite mixture model
algorithm.

The results from evaluating the reconstruction, classification and localisation per-
formances of this algorithm are reported in Section 6.5.2.

6.3.1 Finite Mixture Model Algorithm

The finite mixture model is a probability distribution that consists of one or two
lognormal distributions (depending on the fog level) and one Gaussian distribution.
The lognormal distributions model the dToF measurements of detected photons re-
flected from the fog, while the Gaussian distribution models the dToF measurements
of detected photons reflected from the target. The distance to the target is deter-
mined as the mean of the Gaussian distribution. For pixels that do not contain the
target, the Gaussian distribution erroneously fit some of the dToF measurements of
detected photons reflected from the fog, with the lognormal distribution fitting the
remaining dToF measurements. Consequently, the reconstructed dToF values from
the background pixels are less consistent compared to those from the target pixels,
which are pixels at the expected spatial position of the target in the image.

In reconstructing images from the dToF measurements collected in the SFD, the
Gaussian distribution is assumed to follow the lognormal distributions. This as-
sumption is incorporated into formulating the EM algorithm to fit the finite mixture
model to these dToF measurements. It is based on the experiment set-up, where the
target is positioned at the furthest point. An illustration of this arrangement is pro-
vided in Figure 6.7, where it shows the Gaussian distribution is at a later clock cycle
value than the lognormal distribution.

Figure 6.7: A histogram of the dToF measurements of detected photons at pixel
(17,17) for a circle target obscured by a fog level with visibility of 94.5 m and 0.61 ALs
compared with a finite mixture model with 1 lognormal and 1 Gaussian distributions

that is fitted to the same set of dToF measurements.
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6.3.1.1 Expectation-Maximization (EM) Algorithm

The EM algorithm is utilised to iteratively estimate the parameters of a finite mixture
model. In the context of the fog model for a single pixel, this model represents
the probability of measuring a certain dToF value. While MLE is a more common
method for estimating parameters of finite mixture models from datasets [35], it
is not applicable in this context due the difficulty in computing them analytically
for mixture models [23, 35]. In fact, the EM algorithm is specifically applicable for
computing MLE from incomplete data [41]. Although the existence and uniqueness
of solutions cannot be guaranteed with the EM algorithm [35, 111], in the context of
employing the fitted finite mixture model for reconstructing dToF values of a target,
an approximation is deemed sufficient.

To create a finite mixture model that represents the probability of measuring a
certain dToF value at a pixel, the EM algorithm processes the dToF measurements
at the pixel over a batch of frames. Let x be the variable that represents a dToF
measurement. Each possible dToF measurement is denoted as x = xi. The dataset
D = {x1, ....., xN} represents the set of dToF measurements, where N is the maximum
number of possible dToF measurements in the current pixel for the current batch of
frames. The EM algorithm assumes that x is independent and identically distributed
(IID), following a finite mixture model with K mixture components.

Here, the term mixture component refers to one of the probability distributions
in the finite mixture model. When discussing the finite mixture model, the Gaussian
distribution in the finite mixture model can be referred to as a Gaussian component.
Likewise, the lognormal distribution can be referred to as a lognormal component.

The finite mixture model p(x|Θ) represents a probability distribution of dToF
measurements of the detected photons, defined as follows:

p(x|Θ) =
K

∑
k=1

αk pk(x|θk) =
K

∑
k=1

αk p(x|zk, Θ), (6.1)

where k = 1, ...., K is the index of the k-th mixture component, Θ = (θ1, ....., θK) repre-
sents a K-tuple and θk contains the parameters for the probability distribution of the
k-th mixture component. zk serves as a one-hot counter to indicate the k-th mixture
component. It is a vector with length K containing the value of 1 only at its k-th en-
try, with its remaining entries are zero. αk = p(zk|Θ) denotes the weight of the k-th
mixture component in the finite mixture model. This weight represents the probabil-
ity that a randomly selected xi value belong to a k-th mixture component, with the
constraint ∑K

k=1 αk = 1. Both pk(x|θk) and p(x|zk, Θ) are mathematically equivalent
representations of the probability distribution of the k-th mixture component.

The EM algorithm calculates the values of θk and αk (for all k = 1, ...., K) in the fi-
nite mixture model equation. In the context of modelling the dToF measurements of
detected photons reflected from fog, the finite mixture model has one Gaussian com-
ponent and up to two lognormal components. Both types of probability distribution
is defined by the same type of parameters so θk = [µk, Σk] for each of the components.
However, µk and Σk have different statistical meaning between Gaussian and lognor-
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mal distributions. In the case of the Gaussian distribution, µk represents the mean
and Σk represents the variance of the dToF measurements xi in dataset D. Whilst
for the lognormal distribution, µk and Σk are not the mean and variance of dataset
D. Instead, they are defined as parameters for the lognormal distribution. Another
interpretation of µk and Σk for the lognormal distribution is they are the mean and
variance of the equivalent Gaussian distribution of the lognormal distribution. The
equivalent Gaussian distribution can be fitted to a transformed set of dToF measure-
ments in the form of ln(xi), where the dToF measurements xi from dataset D follows
the lognormal distribution.

Initialisation of the parameters θk = [µk, Σk] and αk are conducted before they
are computed iteratively by the EM algorithm. The initial values are denoted as
θ0

k = [µ0
k , Σ0

k ] and α0
k . The initialisation employs a k-means++ inspired algorithm.

The initialisation algorithm is discussed in detail in Section 6.3.1.3.

Each iteration of the EM algorithm aims to compute the parameters αk, µk and
Σk. Known formulas exist for calculating these parameters when the finite mixture
model contains only Gaussian components (i.e. Gaussian Mixture Models (GMMs))
[154]. Therefore, the parameters of the Gaussian components are determined using
these formulas. For the lognormal component’s parameters, the Gaussian compo-
nent’s formulas are adapted accordingly. The formulas for this computation will be
presented later in this section.

Each iteration can be divided into an E-step and an M-step. These two steps
will be explained separately and the relevant formulas will be presented for the
lognormal and Gaussian components.

E-step: The E-step computes values known as membership weights, aiming to
determine the probability of each value xi, belonging to each mixture component.
This assumes that each possible value xi of the variable x is generated by only one of
the k-th mixture components. The membership weight is calculated as follows:

wik = p(zk|xi, Θ) =
pk(xi|θk) · αk

∑K
m=1 pm(xi|θm) · αm

, 1 ≤ k ≤ K, 1 ≤ i ≤ N. (6.2)

This is calculated for all dToF measurements xi, 1 ≤ i ≤ N and all mixture compo-
nents 1 ≤ k ≤ K. Therefore, this results in a K × N matrix of membership weights.
Furthermore, the membership weights are defined such that ∑K

k=1 wik = 1, meaning
each column of wik sums to 1.

This equation is valid irrespective of the type of distribution, as it directly applies
Bayes’ rule [154]. During calculation, the probability distributions (pk(xi|θk) and
pm(xi|θm)) in Eq. 6.2 follow either the Gaussian distribution or the lognormal distri-
bution, depending on whether the mixture component is defined to be Gaussian or
lognormal distribution, respectively. The formulas for the Gaussian and lognormal
distributions are provided below.

For a Gaussian component, p(x|θk) takes the form of a Gaussian probability den-
sity function which is the following:
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pG
k (x|θk) =

1
(2π)1/2|Σk|1/2 e−

1
2
(x−µk)

2

Σk , (6.3)

where µk is the mean and Σk is the variance of the Gaussian component k.
For a lognormal component, p(x|θk) takes the form of a lognormal probability

density function, which is the following:

pL
k (x|θk) =

1
(2π)1/2|Σk|1/2x

e−
1
2
(ln(x)−µk)

2

Σk , (6.4)

where µk and Σk are defined as the parameters of the lognormal component k.
For the first iteration of the E-step, the initial values of the parameters θ0

k =

[µ0
k , Σ0

k ] and α0
k are used in these Eq. 6.2, 6.3 and 6.4 for θk = [µk, Σk] and αk.

M-step: The M-step utilises the membership weights wik and the dataset D to
calculate the new values of Θ and αk. First, the sum of the membership weights
Nk for the k-th mixture component is calculated to determine the number of dToF
measurements xi that can be modelled by mixture component k. This is given by:

Nk =
N

∑
i=1

wik (6.5)

Then the mixture weights αk for the finite mixture model (as shown in Eq. 6.1) are
calculated by:

αnew
k =

Nk

N
, 1 ≤ k ≤ K, (6.6)

The calculations of the sum of membership weights (Nk) and mixture weights
(αk) are the same regardless of the type of probability distribution defined for the
mixture component. However, the other parameters vary depending on the type of
probability distribution of each component.

The mean µk and variance Σk of the Gaussian component are updated using the
following formulas:

µnew
k = (

1
Nk

)
N

∑
i=1

wik · xi, 1 ≤ k ≤ K (6.7)

Σnew
k = (

1
Nk

)
N

∑
i=1

wik · (xi − µnew
k )2, 1 ≤ k ≤ K (6.8)

For a lognormal component, the calculation of its parameters µk and Σk adopts
a different formula to the Gaussian component. The formulas in Eq. 6.7 and Eq.
6.8 are employed to calculate µk and Σk for a Gaussian component only. However,
for a variable x that follows a lognormal distribution, the transformed variable ln(x)
follows a Gaussian distribution. Therefore, the parameters µk and Σk of a lognormal
distribution fitted to x will have the same value as the mean µk and variance Σk
Gaussian distribution fitted to the transformed data ln(x). Therefore, the lognormal
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component’s parameters µk and Σk can be calculated by applying Eqs. 6.7 and 6.8 to
the data in the form of ln(x) instead of x. This leads to the formulas for updating the
lognormal component’s parameters to be:

µnew
k = (

1
Nk

)
N

∑
i=1

wik · ln(xi), 1 ≤ k ≤ K (6.9)

Σnew
k = (

1
Nk

)
N

∑
i=1

wik · (ln(xi)− µnew
k )2, 1 ≤ k ≤ K (6.10)

As the EM algorithm is iterative, a convergence condition is used to determine
when the algorithm stops further calculations. The convergence condition is deter-
mined by a log-likelihood measure derived from [154]. This is discussed in Section
6.3.1.2. If the convergence measure is not met within 50 iterations, the algorithm halts
and outputs the parameter values (θk = [µk, Σk] and αk) from the current iteration.

6.3.1.2 Convergence Condition for EM Algorithm

The EM algorithm is an iterative process aimed at determining the values Θ and αk
in Eq. 6.1. In this finite mixture model algorithm, a solution is defined to be con-
verged when the absolute difference in log-likelihood between the current iteration’s
parameters Θ and αk and those of the previous iteration is equal to or less than 0.01.
The implementation halts after 50 iterations if this convergence criterion is not met.

The log-likelihood under the IID assumption of variables is the following for a
Gaussian distribution:

ln l(Θ) =
N

∑
i=1

ln p(x|Θ) =
N

∑
i=1

(
ln

K

∑
k=1

αk pG
k (xi|θk)

)
(6.11)

For the lognormal distribution case, the log-likelihood changes to the following:

ln l(Θ) =
N

∑
i=1

ln p(x|Θ) =
N

∑
i=1

(
ln

K

∑
k=1

αkxi pL
k (xi|θk)

)
(6.12)

The expression in the summation has an extra factor of xi because xi pL
k (xi|θk) is

equivalent to pG
k (ln(xi)|θk) by the following:

xi pL
k (xi|θk) = xi ×

1
(2π)1/2|Σk|1/2xi

e−
1
2
(ln(xi)−µk)

2

Σk

=
1

(2π)1/2|Σk|1/2 e−
1
2
(ln(xi)−µk)

2

Σk

= pG
k (ln(xi)|θk)

(6.13)

This means Eq. 6.12 calculates the log-likelihood of the equivalent Gaussian dis-
tribution with mean µk and variance Σk. This formula is used because the update
of the parameters µk and Σk (from Eq. 6.9 and 6.10) is calculated as the mean and
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variance of the Gaussian distribution with data in the form of ln(xi). Therefore, it is
mathematically consistent to continue calculating the log-likelihood in terms of the
same Gaussian distribution.

As the log-likelihood value is a summation of the log-likelihood values for all the
lognormal and Gaussian components in the finite mixture model, the log-likelihood
for the mixture of lognormal and Gaussian distributions can be expressed as follows:

ln l(Θ) =
N

∑
i=1

ln p(x|Θ) =
N

∑
i=1

(
ln

K

∑
k=1

L(xi, αk, θk)

)

L(xi, αk, θk) =

{
αk pG

k (xi|θk) last k-th component

xiαk pL
k (xi|θk) otherwise

(6.14)

6.3.1.3 Parameter Initialisation

As the EM algorithm is an iterative process, the parameters θk = [µk, Σk] and αk of
the finite mixture model in Eq. 6.1 need to be initialised first. The initial values of
these parameters are denoted as θ0

k = [µ0
k , Σ0

k ] and α0
k .

The initialisation process employed for the finite mixture model algorithm draws
inspiration from the k-means++ algorithm4 outlined in [18]. The process forms clus-
ters from the raw data points, which are the dToF measurements x = xi. The number
of clusters to be formed are dictated by the pre-defined number of mixture compo-
nents (K) in the finite mixture model. In the application of this initialisation process
to the finite mixture model algorithm, the number of mixture components is up to 3,
depending on the number of mixture components employed. Each of these clusters
Ck contain data that can be fitted with one of the mixture components.

The initial values θ0
k = [µ0

k , Σ0
k ] and α0

k of each mixture component can be calcu-
lated from these clusters. Each cluster is used to calculate the parameters of each
mixture component. The proportion of points of each cluster compared to the data
set D is used to set the initial value of each component’s mixture weight α0

k . The clus-
ter with the highest mean value is used to set the parameters of the K-th component
(and labelled as the K-cluster). This is because the finite mixture model assumes the
K-th mixture component follows a Gaussian distribution. The K-th cluster’s mean
µCk and variance ΣCK are directly used as the K-th mixture component’s Gaussian
distribution’s mean and variance values, denoted as µ0

K and Σ0
K.

As the finite mixture model is defined to have only one Gaussian component, the
remaining clusters are used for determining the parameters of the other mixture com-
ponents, which follow the lognormal distribution. Each remaining cluster’s points
are assumed to follow a lognormal distribution. However, each of these remaining
clusters’ mean and variance values cannot be directly used as the parameters of the
lognormal components. This is because the parameters of the lognormal distribution

4There is a minor error in the reporting in [99] where k-means++ algorithm is not used to initialise
the parameters for the finite mixture model algorithm, instead the initialisation process is inspired by
the k-means++ algorithm.
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are not its mean and variance. Therefore, the following formula is the calculation of
the initial parameters µ0

k and Σ0
k of the lognormal components given its mean and

variance are µCk and ΣCk respectively. These formulas follow directly from the stan-
dard equations of using the parameters of a lognormal distribution to calculate its
mean and variance. This is the part of the parameter initialisation process where it
differs from the k-means++ algorithm.

µ0
k = ln(

µ2
Ck√

µ2
Ck
+ ΣCk

) (6.15)

Σ0
k = ln(1 +

ΣCk

µ2
Ck

) (6.16)

This parameter initialisation process has several other differences from the k-
means++ algorithm. First of all, the initialisation here is not an iterative algorithm
because the dToF measurements xi span a small range of between 0 to 100 clock
cycles. This means one iteration is sufficient to approximate an adequate set of initial
values of the parameters, which the EM algorithm can then use for initialisation to
accurately estimate these parameters throughout its iterative process. Secondly, the
Mahalanobis distance is used instead of the square of the Euclidean distance when
calculating distance between the data points and the centre of each cluster. Thirdly,
additional checks are employed to ensure the value of any of the cluster’s ΣCk is not
zero, which ensures none of the Σ0

k values is zero. This is because the EM algorithm
breaks down if any of the Σ0

k values are zero. The values ΣCk are used as the value
of Σ0

k or are used to calculate Σ0
k . The values set for ΣCk are still sensible as it is still

within the range of value in the dataset D. The EM algorithm can further compute
the values of µk, Σk and αk iteratively.

The details of the initialisation process are shown by the pseudocode presented
in Algorithm 1.

This space is intentionally left blank.
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Algorithm 1 Parameters initialisation for the finite mixture model algorithm.
1: For each k ∈ {1, ...., K}, initialise the variance ΣCk of each k-th mixture cluster to

be the variance of the entire data set D.
2: Take one centre c1, chosen uniformly at random from the set of dToF measure-

ments x ∈ D.
3: Remove all dToF measurements xi in the data set D that is the same value as c1.
4: Take a new centre cl , choosing from the remaining dToF measurements x ∈ D

with probability
M(x,cj,ΣCj )

∑x∈D M(x,cj,ΣCj )
, where M(x, cj, ΣCj) =

|x−cj|
ΣCj

is the Mahalanobis

distance of the point x ∈ D to its closest centre cj where 1 ≤ j < l.
5: Repeat the previous step until there are K centres altogether.
6: For each k ∈ {1, ...., K}, set the cluster Ck to be the set of points in D that have the

closest Mahalanobis distance to ck than they are to cm for all m ̸= k.
7: Set the centre with the largest value to be the initial value µ0

K of the K-th mixture
component, which is the mixture component that follows a Gaussian distribution.

8: Calculate the centre values µCk of the remaining clusters where k < K.
9: Set the initial mixture weight α0

k to be the portion of points in the cluster Ck with
respect to all the points in the data set D.

10: Calculate the sample variance ΣCk of each of the clusters Ck.
11: If all ΣCk value are zero (i.e. the number of unique points are less than K), then

make all ΣCk values equal to the variance of the data set D.
12: If less than K number of ΣCk values are zero, for the ΣCl values that are zero,

set them as the mean of all the ΣCm values that are non-zero, where m ̸= l and
1 ≤ l, m ≤ K.

13: Set the initial variance of the K-th mixture component Σ0
K to be the variance ΣCK

of cluster CK, this mixture component follows the Gaussian distribution.
14: Calculate the initial parameters µ0

k and Σ0
k of the remaining mixture components

(which follows the lognormal distribution) using Eq. 6.15 and 6.16.

6.3.2 Target Classification of Reconstructed Images

The reconstructed images from the finite mixture model algorithm undergo evalua-
tion for target classification. As part of this process, the reconstructed images are first
converted into binary images and then denoised, as illustrated in Figure 6.8. Section
6.3.2.1 below provides details on the steps for binary conversion and denoising.

Converting the reconstructed image to a binary format ensures accurate target
classification through a straightforward target classification algorithm. This simplifi-
cation is essential to enable real-time autonomous target classification, as it stream-
lines the computational process without compromising accuracy.
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The total number of non-zero pixels in the binary image is utilised as a metric to
classify the target in the reconstructed image. As depicted in Figure 6.8, it is impor-
tant to note that the non-zero pixels in the binary image represent the background5.
By classifying the amount of background pixels, the different shapes can be distin-
guished, as the amount of background pixels is related to the type of shape in the
image. This is because the binary image is de-noised to the extent that the majority
of pixels are either from the background or the shape. The threshold values for the
number of background pixels are determined empirically to provide the best possible
classification performance.

Figure 6.8: Reconstructed image (left) and its corresponding denoised binary image
(right) employed for classification. These images represent a square obscured by a

fog level of 50.8m visibility and 1.14 ALs

For evaluating target classification with the SFD, each class of target is a shape,
and the classifier has a specific range of pixel counts to distinguish between the
shapes. As explained in Section 3.7 of Chapter 3, the target classification algorithm
incorporates an additional class termed ’Undecided.’ This class is introduced to ac-
commodate instances where the target in the reconstructed image does not conform
to any of the classification rules for the various shapes. During classifier testing, no
instances of the Undecided class are employed, as its purpose is solely to handle
cases where the classifier cannot determine an object class for the target based on
predefined rules.

6.3.2.1 Converting the Reconstructed Image to a Denoised Binary Image

The process employed to convert the reconstructed image into a denoised binary
image is similar to the process described in Section 5.4.3.1 of Chapter 5; the difference
here is the initial converted binary image’s target pixels have the value 1 instead of
0. This results in the final binary image having its target pixels as 0 instead of 1. This
difference enables the background pixels to be used here for classification instead of
the target pixels.

5The paper [99] provides incorrect details regarding the classification process, implying that the
pixels from the shape are classified. However, in reality, it is the background pixels that are utilised for
classification.
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The initial converted binary image’s target pixels have a value of 1 instead of 0
because the threshold value used here is different to the process presented in Section
5.4.3.1 of Chapter 5. The threshold value varies for each image and is determined as
the 60th percentile pixel value of the reconstructed image6. The choice of the 60th
percentile is based on the observation that the reconstructed dToF values of the target
pixels in the reconstructed image constitute the top 40% of the reconstructed dToF
values. As the target pixels have a higher value than the threshold, this results in its
binary value being 1 instead of 0.

After the reconstructed image is converted to a binary image, subsequent steps
involve filling holes and removing scattered pixels. This processing is necessary be-
cause as the fog thickens, there is a decrease in the number of detected photons
reflected from the target, resulting in fewer pixels representing the target. Conse-
quently, this may lead to an increase in holes and noise within the binary image.
Figure 6.9 illustrates these processing steps. The binary image undergoes multiple
inversions, during which scattered pixels are removed. The process of removing
scatter pixels from an inverted image effectively fills in holes in the original binary
image. Finally, the image is inverted one last time (as depicted in Figure 6.9(g)) to
ensure that background pixels contain the value 1, thereby enabling the count of
non-zero pixels to be equivalent to counting the total number of background pixels,
where this count value is used for target classification.

This space is intentionally left blank.

6The definition of this threshold value in [99] is incorrect; it is directly calculated from the recon-
structed image, not the median image.



166 SPAD Image Reconstruction of Targets Obscured by Fog

(a) Reconstructed image (b) Thresholded to binary image

(c) Flipped binary image (d) Removed scattered pixels

(e) Flipped binary image (f) Removed scattered pixels

(g) Denoised binary image

Figure 6.9: Images depicting each processing step applied to a reconstructed image
for target classification. The data used here is of a circle obscured by a fog level of

50.8m visibility and 1.14 ALs.
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6.3.3 Real-Time Capability

The execution times of the finite mixture model algorithm and the target classifi-
cation algorithm of the reconstructed images are not measured here because their
implementations are not optimised. To demonstrate their real-time capability, an
analysis of their operations is conducted. Section 6.3.3.1 provides an analysis of the
finite mixture model algorithm and Section 6.3.3.2 provides an analysis of the target
classification algorithm.

6.3.3.1 Finite Mixture Model Algorithm

Figure 6.10 shows a summary of processing the dToF measurements of one pixel us-
ing the finite mixture model algorithm described in Section 6.3.1. For the parameter
initialisation step in the finite mixture model algorithm, this figure refers to Algo-
rithm 1 in Section 6.3.1.3 which presents a detailed pseudocode to this step. When
considering this figure in conjunction with Algorithm 1, it is clear that most of the
finite mixture model algorithm consists of mathematical operations.

The most computationally expensive task out of the mathematical operations in
the finite mixture model algorithm is multiplication. This algorithm may use up to
approximately 1.8 million multiplication operations to process dToF measurements
from on pixel. This assumes the algorithms uses up to 50 iterations and processes
up to 1000 frames, which is the maximum number of frames that are used during
evaluation of the algorithm in Section 6.5. With appropriate implementation, state-of-
the-art GPUs is able to execute this number of multiplication operations in real-time.
For comparison, the Jetson TX2 utilised in Chapter 4 is an embedded board with an
on-board GPU, and it can perform 1.33 TFlops in its default configuration [8]. This is
commonly demonstrated in high speed signal processing and machine learning algo-
rithms. Therefore, this discussion demonstrates the mathematical operations used in
this algorithm are real-time capable for processing one pixel’s dToF measurements.

After multiplication, the next most computationally expensive step in this algo-
rithm is parameter initialisation, which is the first step in Figure 6.10. The pseu-
docode for parameter initialisation is presented in detail in Algorithm 1 in Section
6.3.1.3. By examining this pseudocode, it can be seen that Step 4 is the most compu-
tationally expensive because the sorting operation is used to determine which dToF

measurement x ∈ D has the highest probability
M(x,cj,ΣCj )

∑x∈D M(x,cj,ΣCj )
. Nonetheless, the finite

mixture model algorithm is evaluated against the SFD and only processes a batch of
a maximum of 1000 frames for each instantiation. Therefore, there is only a maxi-
mum of 500 dToF values in the dataset D, which means the sorting operation will be
real-time capable given it is sorting a small amount of values. In addition, line 4 in
Algorithm 1 may repeat up to two times, which depends on the total number of mix-
ture components that is used7. When line 4 needs to be repeated twice, two sorting
operations conducted in series is still real-time capable given the sorting operation is
still only sorting 1000 values each time.

7number of mixture components is discussed in Section 6.3.1
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one pixel’s set of dToF measurements

Parameter initialisation - see Algorithm 1 in Section 6.3.1.3

Initialise the convergence parameters:
Total no. of iterations = 0

Log-likelihood = 0
Absolute difference in log-likelihood = 1

while Total no. of iterations ≤ 50 and
Absolute difference in log-likelihood > 0.01

E-step:
Compute membership weights using Eq. 6.2

M-step:
Compute new component weight using Eq. 6.6
Compute new parameters for each component
depending on its probability distribution:

Gaussian: Eq. 6.7 and 6.8
lognormal: Eq. 6.9 and 6.10

Calculate log-likelihood of updated finite mixture model
using Eq. 6.14

Calculate absolute difference between new and previous
iteration’s log-likelihood values

Parameters for the finite mixture model (θk = [µk, Σk] and
αk for 1 ≤ k ≤ K), where µK is used as the reconstructed
dToF values for the pixel

Figure 6.10: Summary of finite mixture model algorithm
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This discussion demonstrates that the finite mixture model algorithm is real-time
capable for processing one pixel’s set of dToF measurements. To enable real-time
processing of dToF measurements from all SPAD pixels, a parallel implementation
can be employed to process each pixel in each parallel thread. This implementation
follows the same discussion in Section 5.3.1 of Chapter 5 for processing each pixel in
each parallel thread.

6.3.3.2 Target Classification Algorithm

Figure 6.11 presents a summary of the algorithm for classifying reconstructed images
from the finite mixture model algorithm. It includes the finite mixture model algo-
rithm in the summary because the target classification algorithm processes the finite
mixture model algorithm’s reconstructed images of the fog-obscured targets. There-
fore, the finite mixture model algorithm should be included in the consideration of
whether this target classification algorithm is real-time capable.

a batch of frames

Finite mixture model algorithm

Threshold - to binarise the reconstructed image

Remove scattered pixels and fill holes

Count number of background pixels

Threshold - for target classification

confusion matrix

reconstructed image

binary image

de-noised binary image

Figure 6.11: Target classification using reconstructed images from the finite mixture
model algorithm

The most computationally expensive task in this algorithm is remove scattered
pixels and fill holes, which is step 3 in Figure 6.11. As discussed in Section 5.4.3.3 of
Chapter 5 which also examines this task in a different target classification algorithm,
this task is real-time capable given the small pixel resolution of the image.

The Finite Mixture Algorithm has already been shown to be real-time capable,
as discussed in Section 6.3.3.1. The remaining tasks are all computationally simple,
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therefore making this classification algorithm real-time capable.

6.3.4 The Weaknesses of Pixelwise Approaches

The finite mixture model algorithm suffers from poor localisation accuracy, as evi-
denced in Section 6.5.2.4. This drawback can be attributed to two primary factors.
Firstly, the pixel-wise approach yields varying reconstructed dToF value for each tar-
get pixel, leading to inconsistencies. Secondly, the algorithm models each pixel inde-
pendently, lacking a mechanism to determine the target’s spatial position within the
32×32 array image. Consequently, it struggles to identify which pixel is a target pixel
and therefore have these target pixels’ reconstructed dToF values dictate the target’s
location. A more suitable approach for reconstructing fog-obscured images would
involve leveraging spatial information alongside the finite mixture model algorithm’s
processing across the entire imaging range of the SPAD array flash LiDAR system.
The next section introduces the Fourier descriptor algorithm, which endeavours to
address this challenge by employing an image feature-based approach to determine
the target’s spatial position within the 32×32 array and subsequently determine the
target’s location.

6.4 Fourier Descriptor Algorithm

The Fourier descriptor algorithm adopts an image feature-based approach for image
reconstruction. This algorithm differs conceptually from the previous two image-
reconstruction algorithms discussed in this chapter, in that it reconstructs all pixels
simultaneously instead of a pixel-by-pixel basis. The algorithm analyses the data
from all of the pixels, creating a binary image for each possible value in the range
of dToF measurements. A binary image related to photon counts of only one of the
possible values in the range of dToF measurements is referred to as a slice when
discussing this algorithm. Each binary image pixel for each slice is 1 if the total
photon count over a batch of frames is non-zero for the slice’s corresponding dToF
value, otherwise the pixel value is 0. This data structure is different to what is applied
in the previous two image-reconstruction algorithms, which independently analyse
each pixel’s dToF measurements. The data structure employed in this algorithm is
described in Section 6.4.1.

Given the Fourier descriptor algorithm is evaluated on data from the SFD, which
consists of planar imaging targets, this means the expected dToF value for all target
pixels should be the same. Target pixels are pixels at the expected spatial position of
the target in the image. Therefore, the target’s entire silhouette can be represented
in one of the slices. This allows the Fourier descriptor algorithm to perform global
target localisation by determining which slice contains the closest silhouette to the
target, which is solved by computing Fourier descriptor for each slice. The chosen
slice’s corresponding dToF value provides the global target location.

From the global target location, image reconstruction is a simple conversion from
the chosen slice’s binary image. The reconstructed image has the slice’s associated
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dToF value at the same pixels where the slice’s binary image has a non-zero value,
and the rest of the reconstructed image’s pixels are set as undefined.

A detailed explanation of the entire algorithm is presented in Section 6.4.2, with
a detailed explanation of how to calculate a Fourier descriptor provided in Section
6.4.2.1.

The results from evaluating this algorithm’s global target localisation perfor-
mance in terms of absolute localisation accuracy is reported in Section 6.5.3.1.

6.4.1 Data structure

For each possible value in the range of dToF measurements, the Fourier descriptor
algorithm constructs a binary image in which each pixel represents the number of
photon counts at the corresponding dToF value. Each image related to each possible
dToF value is referred to as a slice when discussing this algorithm.

Each slice’s binary image is created in two steps. For each slice’s dToF value, an
image is created where each pixel’s value is the number of photon counts with the
corresponding dToF measurement over a batch of frames. A set of these images is
called a histogram stack. Then, each slice’s binary image is created by binarising
each slice’s image in the histogram stack. The binary image’s pixel value is 1 if the
corresponding pixel value in the histogram stack’s image is non-zero. Otherwise, the
pixel value is 0. Binary images are employed to facilitate easier and faster processing
of spatial information. A set of these binary images is called a binary histogram
stack.

As an example, Figure 6.12 depicts the transformation of four frames of 3×3 dToF
measurements into a binary histogram stack. The measurements are demonstrated
to convert into a histogram stack, then into a binary histogram stack. The bin values
refer to each possible value in the range of dToF measurements.

Figure 6.12: Example of turning dToF measurements collected over four frames into
histogram stack and binary histogram stack.



172 SPAD Image Reconstruction of Targets Obscured by Fog

In context of the SFD, the maximum dToF measurement is 100 clock cycles, ap-
proximating to a distance of 52 m from the SPAD array flash LiDAR system to the
back of the fog (as depicted in Figure 6.2). This equates to the binary histogram
stack having a maximum of 100 slices because there can only be a maximum of 100
different values in the dToF measurements.

6.4.2 Algorithm

The Fourier descriptor algorithm aims to identify the slice within the binary his-
togram stack that best matches the image features of the target. By identifying the
slice, the target’s location is assigned as the dToF value associated with the slice. The
algorithm accomplishes this by comparing the Fourier descriptor of each slice to that
of the target. The slice with the closest resemblance in Fourier descriptor is deemed
the winner, and its associated dToF value is designated as the location of the target.

Given the Fourier descriptor algorithm is evaluated on the SFD which consists of
targets that are planar objects, the algorithm has an assumption that only a maximum
of one single target can locate at each of the distance intervals corresponding to
each of the dToF measurements by the SPAD array flash LiDAR system. Therefore,
the algorithm computes at most one Fourier descriptor for each slice of the binary
histogram stack. The process of computing Fourier descriptors is detailed in Section
6.4.2.1.

Before a Fourier descriptor is calculated for each slice, the algorithm first identi-
fies and removes noise regions, followed by filling in any holes within a given slice.
This process follows the same approaches described in Section 6.3.2.1 in this chapter
and Section 5.4.3.1 in Chapter 5 for removing scattered pixels and holes. Here, scat-
tered pixels are considered as noise regions. A region containing pixels with a value
of 1 is flagged as noise if the total number of such pixels falls below a threshold,
which is a fraction of the apparent target area at that location. Similarly, a region
with pixels of value 0 is recognised as a hole if its total count of 0-valued pixels is
below the same threshold. The binary image is inverted and scattered pixels are re-
moved from it to effectively fill holes in the original binary image. The calculation of
the apparent target area is detailed in Eq. 6.17 in Section 6.4.2.1.

6.4.2.1 Fourier Descriptors

Fourier descriptors provide a frequency domain description of the contour of an ob-
ject [48]. In the Fourier descriptor algorithm, the calculation of Fourier descriptors
follows a method described in [48] for shape recognition. The calculation begins
with a boundary being traced clockwise around a region of 8-connected pixels with
a value of 1. In the proof-of-concept implementation used in this approach, MAT-
LAB’s bwtraceboundary function is employed for this purpose. The resulting trace
depends on the initial point and search direction provided as inputs to the function.
Figure 6.13 illustrates two examples of boundary traces on slices generated from data
in the SFD.
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(a) (b)

Figure 6.13: Example of boundary traces with the red asterisk representing the mean
of the boundary trace coordinates. The slices’ associated dToF values are 50 (a) and

85 (b) clock cycles. The fog level of this data has visibility of 25.4 m/2.28 ALs.

Since the exact spatial position of the target within each slice’s binary image is
unknown, it is not feasible to specify a particular pixel and direction as the initial
point and search direction for boundary tracing. Therefore, a set of 4000 unique and
randomly generated combinations of initial pixels and search directions are used.
The initial pixels are selected from all 32×32 pixels of the SPAD array, and the initial
search directions include all 8 possible directions: North, North-East, East, South-
East, South, South-West, West, and North-West.

Not every initial boundary pixel and search direction will successfully trace an
object’s boundary, but 4000 different combinations cover roughly half of the possible
combinations of pixels and search directions. Compared to using all possible combi-
nations, this approach provides approximately the same likelihood that an object is
traced in each slice’s binary image, as opposite directions at the same pixel yield the
same trace. For each single binary histogram stack generated from a batch of frames,
the same 4000 combinations of initial pixels and search directions are used. A new
set of combinations is generated only when a new batch of frames is processed.

All generated boundary traces for each slice are further filtered by performing an
area check to determine whether the object could be the target. A boundary trace is
retained only if the object’s area falls within a tolerance of 50% of the apparent target
size at the slice’s dToF value. This tolerance level has been empirically determined
to work well with the SFD used to evaluate this algorithm.

The apparent target area can be estimated using ground truth data, which is a set
of frames of the same target where its location is known. This set of frames is also
from the SFD but is separate to the frames used for evaluating the Fourier descriptor
algorithm. A binary histogram stack is generated for this ground truth data, and
after applying the denoising steps described, the target’s area can be determined
from the slice associated to the target’s expected dToF value. The area is defined as
the number of pixels occupied by the target.
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The apparent target area can then be calculated using the following formula:

apparent area of target in slice associated with a dToF value of k

=
target’s area in slice associated with a dToF value of p

( k
p )

2
, (6.17)

where p is the expected dToF value of the target.
To reduce computation time, the area of a bounding box that circumscribes the

boundary trace is used instead of the exact area encompassed by the boundary trace.
This approach is mathematically sound because the area of a region is proportional
to the area of the bounding box that circumscribes it. This area check is a preliminary
filter and does not account for shape differences between a detected object and the
target. However, the algorithm corrects for this in subsequent steps by using Fourier
descriptors.

The coordinates of each remaining boundary trace are converted to a radius sig-
nature, which records the distances of consecutive boundary trace points from the
mean point of the same trace. Examples of radius signatures are shown in Figure
6.14. The radius signature is then resampled to the same length as the target’s ex-
pected radius signature. The target’s expected radius signature is calculated from
applying the described steps on data of the same target collected in the same imag-
ing set-up as SFD but without any obscurants. Resampled radius signatures are also
shown in Figure 6.14.

(a) (b)

Figure 6.14: Example of boundary traces turned into radius signatures and then
resampled radius signatures. The bin numbers are 50 (a) and 85 (b) clock cycles. The

fog level of this data has visibility of 25.4 m/2.28 ALs.

Once the resampled radius signature is calculated, a Fast Fourier Transform (FFT)
is performed to create the Fourier descriptor. This radius signature resampled to pro-
duce equivalent FFT components for correct comparison with the target’s expected
Fourier descriptor, which is calculated from the target’s expected radius signature.
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Figure 6.15: Example of Fourier descriptors of the radius signatures shown in Figure
6.14. The fog level of this data has visibility of 25.4 m/2.28 ALs.

Since the phase of the Fourier descriptor depends on the starting point of the
boundary trace, only the magnitude of the Fourier descriptor is used for comparison
to determine which slice contains the target. All frequency components are used and
normalised to create a size-invariant descriptor, allowing comparison of detected
shapes at different depths (and therefore different apparent sizes) to a fixed-size
pre-computed target descriptor. Figure 6.15 shows two objects’ Fourier descriptors
compared with the target’s Fourier descriptor.

The Euclidean distance between each remaining boundary trace’s Fourier de-
scriptor and the target’s expected Fourier descriptor is calculated. The slice contain-
ing the boundary trace with the Fourier descriptor that has the closest Euclidean
distance to the target’s expected Fourier descriptor is then selected as the one con-
taining the target. The global target location is assigned as the dToF value of this
chosen slice.

6.4.2.2 Real-Time Capability

The execution time of the Fourier descriptor algorithm is not measured here because
the implementation has not been optimised. Instead, an analysis of its operations
steps is made to determine its real-time capability. An overview of the algorithm’s
steps is summarised in Figure 6.16. The Fourier descriptor algorithm is designed to
operate on batches of frames so it can be implemented for real-time processing on an
embedded board. When evaluated for its performance against the data in SFD, the
algorithm uses a batch of 500 frames when processing data collected at a fog level
of 43.8 m visibility and 1.33 ALs, while it uses 1,000 frames for a visibility of 25.4 m
and 2.28 ALs.
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a batch of frames

Convert to binary histogram stack

Remove scattered pixels and fill holes

Generate 4000 unique and randomly generated combinations of initial pixel
and search direction for bwtraceboundary

Generate the target of interest’s ideal Fourier descriptor

For each set of initial pixel and search direction

For each slice in the binary histogram stack

Try generating boundary trace from Matlab function
bwtraceboundary

Check the area of bounding box of boundary trace is
within 50% of the apparent target size

Convert boundary trace to radius signature

Store radius signature with the current slice’s dToF value

Resample the radius signatures to the same length as the target’s expected
radius signature

Calculate Fourier descriptor for each resampled radius signature and store
it with the radius signature’s associated dToF value

Calculate the Euclidean distance between each Fourier descriptor to the tar-
get’s expected Fourier descriptor

Select the Fourier descriptor with the shortest Euclidean distance

Assign the Fourier’s descriptor’s associated dToF value as the global target
location

global target location

successful trace generation

condition is met

trace not generated

condition not met

Figure 6.16: Summary of Fourier descriptor algorithm
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Figure 6.16 shows that the most computationally-expensive task in the Fourier
descriptor algorithm is converting a batch of frames into a binary histogram stack (1st
step in the figure). This task is computationally expensive because it uses the sorting
operation to create a histogram for each pixel’s set of dToF measurements. However,
there are only 32×32 pixels. Moreover, only a maximum of 1000 frames are used for
each instantiation when evaluating this algorithm against the SFD. This means only
32 × 32 = 1024 histograms need to be created and for each histogram, and only up
to 1000 dToF measurements are being sorted. Even though the sorting operation is
expensive, applying it a small number of times means creating a histogram for each
pixel is still real-time capable.

If creating 1024 histograms causes the algorithm’s execution time to be longer
than the data acquisition time, it can be parallelised where each parallel thread is
used for sorting each pixel’s dToF measurements in to a histogram. It is common for
a graphical processing unit (GPU) to contain at least 1024 threads. Therefore, this
discussion shows the task of converting the batch of frames into a binary histogram
stack is real-time capable.

The second most computationally-expensive task is selecting the Fourier descrip-
tor with the shortest Euclidean distance to the target’s expected Fourier descriptor
(second last step in Figure 6.16). There are only 4000 Euclidean distance values.
Therefore, following the same discussion as sorting a small number of values for a
histogram, this task is real-time capable.

The third most computationally-expensive task is generating the boundary trace
for 4000 combinations of initial pixel and search direction (7th step in Figure 6.16).
This is because the task of generating a boundary trace (from one set of initial pixel
and search direction) requires multiple search operations. The boundary is traced
pixel by pixel where at each pixel, the search operation is executed at each pixel to
search in all directions for the next pixel that has the boundary. Given the image
used for evaluating this algorithm is 32×32 in pixel resolution, the boundary cannot
have more than 32 × 32 = 1024 pixels long. Therefore, the search operation is only
conducted for a maximum of 1024 times to create one boundary trace, where the
small number of instantiations of the search operation makes generating a boundary
trace real-time capable. To improve the speed of generating 4000 boundary traces,
parallelisation can be used where each parallel thread can be used to generate a
boundary trace for each set of initial pixel and search direction. It is common for
GPUs to have at least 4000 threads available. Therefore, generating 4000 different
boundary traces is real-time capable.

The fourth most computationally-expensive task is to remove scattered pixels and
fill holes, which is step 2 in Figure 6.16. This task requires the search operation to
identify holes and noise pixels in each slice’s binary image. As discussed in Section
5.4.3.3 in Chapter 5, each search operation is real-time capable over one binary image.
Even though this task requires the search operation to be executed for 100 times over
100 binary images8, this task can be parallelised where each parallel thread executes

8number of slices discussed in Section 6.4.1
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one search operation. Therefore, this demonstrates this task is real-time capable.
The fifth most computationally-expensive task is generating 4000 unique and ran-

dom combinations of initial pixel and search direction (3rd step in Figure 6.16). This
is because this task uses the operation of random number generation. There are
many existing hardware random number generators that can be employed for real-
time execution. Therefore, this means this task is real-time capable. This device
will need to be mounted onto the mobile platform if this algorithm is to execute on
it. Another solution to enabling this task to be real-time capable is to pre-generate
these random values. This will not affect the performance of the algorithm because
generating 4000 sets of initial pixel and search direction covers roughly half of the
possible combinations (as discussed in Section 6.4.2.1), which is enough for one of
these combinations to generate a boundary trace.

The remaining tasks in Figure 6.16 are real-time capable because they are stan-
dard real-time operations in digital signal processing. From this discussion, it is clear
that the Fourier descriptor algorithm is real-time capable.

In the following section, the evaluation of the quality and target classification
performance of the reconstructed images are discussed for the range gate and process
algorithm, and the finite mixture model algorithm. The performance of the Fourier
descriptor algorithm is discussed in terms of global target localisation.

6.5 Results and Discussion

In this section, the performance of the image-reconstruction algorithms presented
in this chapter is evaluated using different metrics. The reconstruction performance
metrics employed are relative localisation accuracy and pixel-wise absolute localisa-
tion accuracy. Other than quantitative measures, visual inspection is also used to
determine the reconstruction performance of the algorithms, determining whether
the images can be used for visual target detection. The reconstructed image’s quality
is based on whether a naked eye can identify the silhouette of the imaging target in
the image.

In this chapter, relative localisation accuracy is evaluated as the percentage of pix-
els in the reconstructed image that fall within one clock cycle of the most frequently
occurring reconstructed dToF value in the image. Allowing for a one-clock-cycle
leeway accounts for any timing errors attributable to the SPAD array flash LiDAR
system. Identifying the most frequently occurring reconstructed dToF value in the
image involves organising all reconstructed dToF values into a histogram and iden-
tifying the dToF value associated with the histogram’s peak.

Pixel-wise absolute localisation accuracy is evaluated as the percentage of pixels
that have its reconstructed dToF value within a predefined threshold of its expected
dToF value. This is a technique utilised in [158, 183].

Target classification of the reconstructed images is also evaluated in terms of over-
all accuracy; the definition of overall accuracy is provided in Section 3.7 of Chapter
3.
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In addition to reconstruction and classification performance, global target locali-
sation performance is evaluated by using absolute localisation accuracy; it is calcu-
lated as the absolute difference between the target’s expected dToF value and the
target’s estimated distance, as determined from the reconstructed image.

Each algorithm’s performance is presented in terms of one or more of these met-
rics. As discussed in Section 2.3 of Chapter 2, there is no standardised metric for
evaluating the quality of reconstructed images. Different metrics are used to report
the performance of different algorithms, where different metrics highlight different
characteristics of their reconstructed images by different algorithms.

Table 6.1 lists the dataset (FFD and SFD) and various fog levels employed to
evaluate each of the image-reconstruction algorithms presented in this chapter. The
table also lists the number of frames used to reconstruct one image. Background
explanation of the use of visibility as metric for fog level is provided in Section 3.6.3
of Chapter 3. An explanation of the use of ALs is given in Section 3.6.1 of Chapter 3.

This space is intentionally left blank.
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The performance results of the range gate and process algorithm are presented
in Section 6.5.1, and then the performance results of the finite mixture model algo-
rithm are presented in Section 6.5.2. Finally, the performance result of the Fourier
descriptor algorithm is presented in Section 6.5.3.

6.5.1 Range Gate and Process Algorithm Performance

The metrics used to evaluate the range gate and process algorithm are reconstruction
performance evaluated via visual inspection and the overall accuracy of target clas-
sification of reconstructed images. The former is discussed in Section 6.5.1.1 and the
latter is presented in Section 6.5.1.2.

6.5.1.1 Reconstruction Performance Evaluated via Visual Inspection

The reconstruction performance of the range gate and process algorithm is evaluated
using the data with the maximum fog level from FFD, which has a fog level of 3.69
ALs and 14.1 m visibility. Details of FFD are given in Section 6.1. Reconstructed
images of each of the two frigates collected at the maximum fog level are shown in
Figure 6.17.

(a) (b)

Figure 6.17: Reconstructed images of the two different frigate silhouettes located at
40 m from the camera, obscured by a fog level of 14.1 m visibility/3.69 ALs (with

respect to 532 nm).

By comparison with the imaged wooden frigate silhouettes shown in Figure 6.3
in Section 6.1, it is evident by visual inspection that the reconstructed images of the
frigates are of discernible quality, making these images suitable for target detection.

6.5.1.2 Target Classification of Reconstructed Images

Using the approach described in Section 6.2.2, the overall accuracy in classifying the
two frigate silhouettes is 93%9 for data collected at a fog level with visibility of 14.1
m and 3.69 ALs, which is the maximum fog level collected for FFD. The formula for
overall accuracy is given in Section 3.7 of Chapter 3.

9The overall accuracy presented in [100] did not include the Undecided class in its calculation, hence
has a different value to this.
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There are zero instances where the algorithm classifies an image of these frigates
as belonging to the Undecided class. As discussed in Section 6.2.2, this Undecided
class is used for classifications where the target’s area is equidistant to the mean
area values of the two frigates. Therefore, the reason there are zero instances of
Undecided may be because the margin between the area values of the two frigates is
under 10 pixels, where the area is measured in number of pixels for classification.

6.5.2 Finite Mixture Model Algorithm Performance

To reconstruct each image for evaluation, the finite mixture model algorithm fits a
finite mixture model containing up to two lognormal and one Gaussian distributions
to each pixel’s dToF measurements over a batch of frames. To ensure consistency,
data over a moving subset of frames is used for producing each new reconstructed
image. As mentioned in Section 6.3.1.1, the Gaussian distribution is assumed to be
the final mixture component in the finite mixture model when fitting the data from
the SFD dataset.

For fog levels between 0.31 ALs (185 m visibility) and 0.80 ALs (72.9 m visibility),
the algorithm reconstructs each image from a batch of 500 frames, using 1 lognormal
and 1 Gaussian distributions. For fog levels at 1.01 ALs (57.2 m visibility) and 1.14
ALs (50.8 m visibility), the algorithm reconstructs using a batch of 1,000 frames and
utilises 2 lognormal and 1 Gaussian distributions. This adjustment in parameters
helps the finite mixture model to better account for varying levels of fog and provides
more accurate depth estimation.

(a) 1 lognormal probability distribution (b) 2 lognormal probability distributions

Figure 6.18: Both plots contain a histogram of the dToF measurements of detected
photons at pixel (17,17) for a circle target obscured by a fog level with visibility of
57.2 m and 1.01 ALs. They are compared finite mixture models with either (6.18(a))
1 lognormal and 1 Gaussian distributions or (6.18(b)) 2 lognormal and 1 Gaussian

distributions fitted to the same set of dToF measurements.

The algorithm requires more frames at higher fog levels because increased fog
density leads to greater photon scattering, resulting in fewer photons returning from



§6.5 Results and Discussion 183

the target. This is evident in Figure 6.18, where it compares the fit of the finite
mixture model using different numbers of lognormal distributions. The red line
represents the finite mixture model and the grey bars depict the histogram of dToF
measurements. The contrast of the two plots in this figure show two lognormal
distributions provide a better fit than one. Furthermore, Figure 6.19 illustrates that
the image reconstructed from two lognormal distributions has the target exhibit a
more discernible quality, which means a better reconstruction performance when
evaluated via visual inspection.

Figure 6.19: Reconstructed images using 1 lognormal and 1 Gaussian (top row) ver-
sus 2 lognormals and 1 Gaussian (bottom row) for fog levels at 1.01 ALs/57.2 m

visibility (left column) and 1.14 ALs/50.8 m visibility (right column)

The finite mixture model algorithm’s reconstruction performance is first evalu-
ated in terms of relative localisation accuracy and is presented in Section 6.5.2.1.
This is followed by a brief discussion of the reconstruction performance in terms of
visual inspection in Section 6.5.2.2. Then the overall accuracy is presented in Section
6.5.2.3 for target classification of the reconstructed images. Finally, the algorithm’s re-
construction performance is evaluated via pixel-wise absolute localisation accuracy,
and the results are presented in Section 6.5.2.4. This additional reconstruction per-
formance metric is intended to assess the effectiveness of the finite mixture model in
accurately modelling each pixel’s dToF measurements to determine the reconstructed
dToF value for each pixel. This perspective is not possible with relative localisation
accuracy since its reference dToF value is the highest occurring reconstructed dToF
value in the reconstructed image, which does not necessarily correspond to the tar-
get’s expected dToF value. In addition, Section 6.5.2.5 discusses the fit of the finite
mixture model to the dToF measurements in more detail.

Ground truth images of each imaged target are used for calculating the pixel-
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wise absolute localisation accuracy. Each pixel’s dToF value in the ground truth
image is used as the expected dToF value for comparing with the corresponding
pixel’s reconstructed dToF value in the reconstructed image. In addition, ground
truth images are used to provide performance comparison for the relative localisation
accuracies calculated for the reconstructed images.

To create ground truth images, additional data is collected with the imaged tar-
gets in the same imaging set-up as the SFD (see Section 6.1) but in an environment
without fog. Each pixel’s value in the ground truth image is an average of its dToF
measurements over 500 frames, where only dToF measurements that are between 0
to 100 clock cycles are used10. This alignment is crucial as the dToF measurements
processed by the finite mixture model algorithm are also constrained to 0 to 100 clock
cycles before reconstruction.

6.5.2.1 Relative Localisation Accuracy

Relative localisation accuracy is used to evaluate image reconstruction performance
because the reconstructed dToF measurements of the target pixels should exhibit con-
sistent relative distances from each other, ideally within the same clock cycle range.
The imaged targets in the SFD are cardboard cut-outs and are oriented perpendicular
to the optical axis, which means the target pixels should all have the same expected
dToF value. The beginning of Section 6.5 provide the definition of relative localisation
accuracy.

As the relative localisation accuracy is not evaluating for the absolute localisation
accuracy, the target’s expected dToF value is not used as the reference value for
evaluating how closely the reconstructed dToF values align to. Instead, the highest
occurring dToF value in the reconstructed image is used as this reference value. This
is because the target typically occupies the majority of the reconstructed image (as
seen in Figure 6.20), which results in the highest occurring reconstructed dToF value
in the reconstructed image corresponding to the estimated dToF value of the target
itself.

This space is intentionally left blank.

10The ground truth images used in [99] were not calculated with restricted dToF values. Therefore,
the values in Figure 6.20 and Table 6.2 are updated accordingly compared with [99, Section 6.1] and [99,
Section 6.3]. Differences only arise for the values related to the last row (i.e. reconstructed images of
the square). However, these differences are minimal, with only a maximum of a few percentage points
for Figure 6.20 and decimal differences for Table 6.2.
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The relative localisation accuracy percentages for different shapes in different fog
conditions are shown in Figure 6.20. Fog conditions vary across columns, increasing
from left to right. Each percentage represents an average derived from 10 distinct
processed images. While only one image is shown for visualisation purposes, the
reconstruction remains consistent across all 10 reconstructed images. The first col-
umn presents the relative localisation accuracy percentages for different shapes in
the ground truth image, where the image is created from data collected without fog.
The percentages presented in this column is only evaluated over one ground truth
image. Details of the creation of the ground truth image is provided in Section 6.5.2.

Comparing the relative localisation accuracy percentage value for each shape and
fog condition with the relative localisation accuracy percentage value of the corre-
sponding shape’s ground truth image provides a relative assessment of the recon-
struction quality. The relative localisation accuracy values calculated for the ground
truth images serve as the benchmark, representing the optimal relative localisation
accuracy percentage achievable by the finite mixture model algorithm. Generally,
there is a downward trend in percentages with decreasing fog visibility, aligning
with expectations due to heightened scattering in denser fog conditions. However,
occasional discrepancies may arise where percentages deviate from this trend. These
anomalies could be attributed to imperfect fits of the probability distribution model
or the presence of significant noise pixels at the same distance, as observed in the
case of the square at 57.2 m visibility and 1.01 ALs. As discrepancies are related to
the fit of the finite mixture model, this will be further discussed in Section 6.5.2.4
which discusses the reconstruction performance in terms of the pixel-wise absolute
localisation accuracy.

6.5.2.2 Visual Inspection

Despite the decreasing relative localisation accuracy presented in Section 6.5.2.1, the
targets are discernible in the reconstructed images, making them suitable for target
detection tasks. An example of a reconstructed image for each fog condition and
image target is presented in Figure 6.20, and it can be observed that each target
shape’s silhouette is clearly identifiable in all these images.

6.5.2.3 Target Classification of Reconstructed Images

Target classification performance is reported for its overall accuracy at various exper-
imental fog level (between 185–50.8 m visibility and 0.31–1.14 ALs). The fog levels
tested are the same level listed in the two rows of Table 6.1 that are related to the
finite mixture model algorithm. At each fog level, 10 different reconstructed images
for each shape are used to test the target classification algorithm. The details of the
target classification algorithm are provided in Section 6.3.2.

The overall accuracy for classifying different shapes are tested for each fog level,
and is 100% for all fog levels. For all fog levels, there are zero instances where the al-
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gorithm classifies a shape to be the additional Undecided class11, which is discussed
in Section 3.7 of Chapter 3. This high overall accuracy is attributed to the target’s
proximity to the SPAD array flash LiDAR system, ensuring its visibility within all
experimental fog levels. Despite these promising results, classification performance
at lower visibility levels warrants further investigation, particularly where visibility
falls below the target’s distance. Future work will focus on assessing overall accuracy
under such challenging conditions.

6.5.2.4 Pixel-Wise Absolute Localisation Accuracy

The pixel-wise absolute localisation accuracy of a reconstructed image is calculated
by determining the percentage of pixels that have their reconstructed dToF values
within a predefined threshold of their expected dToF values. For evaluating the
finite mixture model algorithm, the pixel’s expected dToF value is defined as its
corresponding pixel’s value in the ground truth image, as discussed in Section 6.5.2.
Also, the predefined threshold amount is assigned as 3 clock cycles for evaluating
the finite mixture model algorithm.

Table 6.2 presents the pixel-wise absolute localisation accuracy for the recon-
structed images of all shapes at various tested fog levels from the SFD dataset. Each
percentage is an average calculated from the same set of 10 reconstructed images
used in Section 6.5.2.1.

Table 6.2: Pixel-wise absolute localisation accuracy for reconstructed images for each
fog level

Number of ALs 0.31 0.55 0.57 0.61 0.80 1.01 1.14

Visibility (m) 185 104.7 101.7 94.5 72.9 57.2 50.8

Circle 47.70% 7.36% 42.02% 7.64% 12.42% 34.26% 19.05%

Triangle 14.22% 10.10% 9.36% 8.13% 7.71% 10.65% 11.90%

Square 7.21% 12.79% 4.85% 10.71% 4.89% 9.49% 13.58%

As observed in Table 6.2, there is no consistency in the pixel-wise absolute local-
isation accuracy values, and all the percentages fall below 50%. This suggests that
the algorithm is not suitable for accurately reconstructing dToF value to localise the
target. The discrepancy arises from the imperfect fit of the estimated finite mixture
model to the dToF measurements of detected photons. To illustrate this, the fit of the
finite mixture model to the dToF measurements is presented in the next subsection.

11The classification accuracy in [99] did not include the Undecided class in its calculation. However,
because of the 100% accuracy, the inclusion of this extra class does not affect the value.
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6.5.2.5 Data Fit of the Finite Mixture Model

Comparing the trends of the histogram of dToF measurements to the finite mixture
model provides a means to evaluate the fit of the finite mixture model’s probability
distribution to the data.

In [99], the probability distribution resulting from the finite mixture model al-
gorithm is compared with the probability distribution fitted by the Kernel Density
Estimator (KDE) algorithm. Since KDE is another estimation algorithm, it only pro-
vides an approximation to the distribution of the dToF measurements. Therefore, it
is more appropriate to directly employ the histogram of dToF measurements, which
is an exact representation of the distribution of dToF measurements.

Figure 6.21 comprises a series of plots12 comparing the fitted finite mixture model’s
probability distribution with the histogram of dToF measurements, with each plot
based on dToF measurements collected by pixel (17,17) in a different fog level. At
each fog level, the histograms and probability distributions of the dToF measure-
ments at pixel (17,17) are representative of the histograms and probability distribu-
tions of the dToF measurement at other target pixels. The counts on each histogram
are normalised against their maximum value, converting the counts into probability
values for comparability with the finite mixture model.

In each plot in Figure 6.21, the histogram peak at the beginning corresponds to
dToF measurements of detected photons reflected from fog, while the histogram peak
at the end relates to dToF measurements of detected photons reflected from the tar-
get. This comparison provides insight into the accuracy of the model’s representation
of the underlying value distribution of the dToF measurements.

This space is intentionally left blank.

12The plots are displayed over two pages.



§6.5 Results and Discussion 189

(a) 0.31 ALs/185 m visibility (b) 0.55 ALs/104.7 m visibility

(c) 0.57 ALs/101.7 m visibility (d) 0.61 ALs/94.5 m visibility

Figure 6.21: The finite mixture model algorithm is fitted to the dToF measurements
of detected photons at pixel (17,17) for the circle target obscured by different fog
levels. Pixel (17,17) is located on the target in all the reconstructed images for all the
fog levels. The fitted finite mixture model is the red line in each of the plots and they
are compared to the set of grey bars, which is the histogram of dToF measurements
with its count values normalised. The x-axis is number of clock cycles and y-axis is
probability of photon detection. Figure (f) and (g) are fitted using a batch of 1,000
frames and a mixture of two lognormal and one Gaussian distributions, while the
other figures are fitted using a batch of 500 frames and a mixture one lognormal and

one Gaussian distributions.

This space is intentionally left blank.
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(e) 0.80 ALs/72.9 m visibility (f) 1.01 ALs/57.2 m visibility

(g) 1.14 ALs/50.8 m visibility

Figure 6.21: The finite mixture model algorithm is fitted to the dToF measurements
of detected photons at pixel (17,17) for the circle target obscured by different fog
levels. Pixel (17,17) is located on the target in all the reconstructed images for all the
fog levels. The fitted finite mixture model is the red line in each of the plots and they
are compared to the set of grey bars, which is the histogram of dToF measurements
with its count values normalised. The x-axis is number of clock cycles and y-axis is
probability of photon detection. Figure (f) and (g) are fitted using a batch of 1,000
frames and a mixture of two lognormal and one Gaussian distributions, while the
other figures are fitted using a batch of 500 frames and a mixture one lognormal and

one Gaussian distributions.

With increasing fog levels, the histogram peak related to detected photons re-
flected from fog increases in height in all the plots in Figure 6.21. Conversely, the
histogram peak related to detected photons reflected from the target decreases in
height. This decrease causes the finite mixture model algorithm to "miss" the target’s
histogram peak. Mathematically, this indicates that the finite mixture model fails
to accurately model the dToF measurements reflected from the target, as there are
insufficient amount of dToF measurements to identify a distinct cluster. This issue is
illustrated in Figure 6.22.
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Figure 6.22: Comparing the finite mixture model (red line) with the histogram of
dToF measurements. This is for dToF measurements collected by 1,000 frames of
a square obscured by a fog level of 1.14 ALs/50.8 m visibility. The finite mixture
model is not able to model the peak at around 83 to 93 clock cycles, which is the
accumulation of dToF measurements of detected photons reflected from the square

(which is the target).

The Gaussian distribution used in the finite mixture model algorithm fails to ade-
quately capture the target’s histogram peak, leading to inaccuracies in estimating the
mean of the Gaussian distribution, which represents the reconstructed dToF value.
This phenomenon occurs randomly due to the iterative nature of the EM algorithm
used for parameter estimation. However, these occurrences become more frequent
with increasing fog levels.

Since this algorithm reconstructs dToF values for each pixel, the increased occur-
rence of inaccuracies results in more pixels having inaccurately reconstructed dToF
values. Consequently, the reconstructed images at higher fog levels exhibit less clar-
ity of the target, as demonstrated by the images in Figure 6.20.

6.5.3 Fourier Descriptor Algorithm

As the Fourier descriptor algorithm estimates the dToF value of the global target
for image reconstruction, it is evaluated for global target localisation using absolute
localisation accuracy.

Reconstructed images of the target are not presented here because the recon-
structed image would simply be a conversion from the slice’s binary image contain-
ing the target. Since the algorithm achieves global target localisation by exploiting the
target’s silhouette, a high absolute localisation accuracy would indicate that the tar-
get’s silhouette will also be clearly visible in the reconstructed image. Additionally,
the image reconstruction performance with respect to relative localisation accuracy
is inherently 100%, as the reconstructed image is converted from a slice of the binary
histogram stack. As mentioned before, all the non-zero pixels in the binary image are
associated with the target and are converted to the same reconstructed dToF value
for the reconstructed image.
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The data used to evaluate the absolute localisation accuracy of the Fourier de-
scriptor algorithm are from the SFD at two different fog conditions: 43.8 m visibili-
ty/1.33 ALs and 25.4 m visibility/2.28 ALs13. In particular, the data associated with
the right-angled triangle is utilised. The three vertices of this triangle are at coor-
dinates (6,5), (6,27), and (28,27). These vertices are determined from inspecting a
reconstructed image of the same right-angled triangle from the SFD imaged without
fog, but under the same imaging set-up. In this reconstructed image, each pixel’s re-
constructed dToF value is the average of the dToF measurements collected over 1,000
frames.

For removing noise and filling holes in the slices of the binary histogram stack,
empirical testing has determined that a fraction of 0.02 is effective for a fog level with
43.8 m visibility and 1.33 ALs, while a fraction of 0.035 works well for a fog level of
25.4 m visibility and 2.28 ALs.

The target is positioned 44.6 m away, as depicted in Figure 6.2, corresponding to
an expected dToF value of 85 clock cycles (refer to Section 3.4.2 of Chapter 3 for the
timing delay correction used to convert clock cycle values to distance values).

When using Eq. 6.17 from Section 6.4.2 to calculate the apparent area of this
triangle at different dToF slices, the target’s area at its expected dToF value is deter-
mined from the same batch of 1,000 frames of non-obscured data. It calculates the
area of the target at the slice associated with the expected dToF value of 85 clock
cycles. Hence p in Eq. 6.17 is defined to be 85 clock cycles.

6.5.3.1 Comparing Global Target Absolute Localisation Accuracies

The Fourier descriptor algorithm’s absolute localisation accuracy of the global target
location is evaluated on 100 global target location values determined by the algorithm
processing 100 batches of frames. This is conducted for each of the two fog levels
described in the previous section and in Table 6.1. Batches of frames are chosen to be
evenly separated across the data collected over all the frames in the SFD for the two
chosen fog levels (as shown in Table 6.1).

For the higher fog condition (43.8 m visibility and 1.33 ALs), batches of 1,000
frames are used by the Fourier descriptor algorithm, and a fraction of 0.035 is utilised
for calculating the threshold for removing noise and holes (see Section 6.4.2 for ex-
planation of the utilisation of this threshold value). Conversely, for the lower fog
condition (25.4 m visibility and 2.28 ALs), 500 frames are used for each batch, and a
fraction of 0.025 is employed since there is less noise in the data.

Figure 6.23(a) and 6.23(c) present the histogram of the 100 global target location
values computed by the Fourier descriptor algorithm for the lower and higher fog
condition, respectively.

To demonstrate performance improvement by the Fourier descriptor algorithm,
its global target locations are compared with the global target locations of the fi-
nite mixture model algorithm. Here, the finite mixture model algorithm employs a

13These number of ALs values are updated from the values reported in [104].
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(a) (b)

(c) (d)

Figure 6.23: Comparison of the histogram of global target location values from the
Fourier descriptor algorithm ((a) & (c)) and the finite mixture model algorithm pre-
sented in Section 6.3 ((b) & (d)). In the top row, the visibility is 43.8 m and the fog
level is 1.33 ALs. For the bottom row, the visibility is 25.4 m and the fog level is 2.28
ALs. The red asterisk on the x-axis represents the arithmetic mean of each algorithm.
Their values are 85.35 (a), 75.93 (b), 82.66 (c) and 58.86 (d). The Gaussian distribution
is plotted in (b) and (d), where it is associated with the arithmetic mean of the finite
mixture model algorithm’s global target location values. Their variances are 115.42

and 120.27 respectively.

mixture of two lognormal and one Gaussian distributions for fitting the dToF mea-
surements. As discussed in Section 6.3.1, the Gaussian distribution’s mean for each
pixel corresponds to the target’s localised distance at that pixel. As the imaged target
is planar, these locations from each pixel can be treated as global target locations
for comparison with the Fourier descriptor algorithm’s global target locations. The
histograms in Figure 6.23(b) and 6.23(d) are of the global target location values from
the finite mixture model algorithm, as presented in Section 6.3.

From the discussion of the finite mixture model algorithm’s reconstruction per-
formance in Section 6.5.2, it is known that the algorithm requires more frames at
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higher fog levels because of the increased fog scattering. The fog levels reported here
are higher than the levels reported for the finite mixture model algorithm in Section
6.5.2. Therefore, all of the collected data for each of the fog levels are used by the
finite mixture model algorithm to reconstruct the dToF value of the target for each
pixel. The total number of frames in the collected data is 1,500 for the higher fog
level and 1,900 for the lower fog level.

The finite mixture model algorithm cannot determine which pixel in the raw
frame is a target pixel, unlike the Fourier descriptor algorithm. To provide a fair
comparison, the finite mixture model algorithm is applied to reconstruct dToF mea-
surements of the target only for pixels within the right-angled triangle with vertices
at coordinates (6,5), (6,27), and (28,27). As discussed in Section 6.5.3, this right-angled
triangle and its vertices are identified from inspecting a reconstructed image of the
right-angled triangle from SFD imaged under the same imaging set-up but without
fog. Details of this reconstructed image is provided in Section 6.5.3. From this recon-
structed image, it can be deduced that there are 276 target pixels. This results in the
finite mixture model algorithm having 276 global target location values for each fog
level.

Figure 6.23(b) and 6.23(d) present the histogram of the 276 global target location
values computed by the finite mixture model algorithm. The red asterisks represent
the values’ arithmetic mean.

As each global target location value from the finite mixture model algorithm is
from a mean of a Gaussian distribution, the arithmetic mean of these values also
follows a Gaussian distribution. The variance of this arithmetic mean is calculated
from the algorithm’s 276 global location values. The resulting Gaussian distribution
of these global target values is plotted as a red line over the histograms in Figure
6.23(b) and 6.23(d) to illustrate that the finite mixture model algorithm provides not
only a point estimate but an entire distribution of the global target location.

To provide a comparison to the finite mixture model algorithm’s arithmetic mean,
the arithmetic mean of the Fourier descriptor algorithm’s 100 global target location
values is also computed and plotted as a red asterisk over the histograms in Figure
6.23(a) and 6.23(c).

The results, presented in Figure 6.23, highlight a significant enhancement in abso-
lute localisation accuracy for the higher fog level (25.4 m visibility/2.28 ALs) and an
improved accuracy for the lower fog level (43.8 m visibility/1.33ALs) by the Fourier
descriptor algorithm. The Fourier descriptor algorithm provides a better global target
localisation performance than the finite mixture model algorithm despite employing
data collected over fewer frames in its image-reconstruction process.

6.6 Chapter Summary

Three different algorithms are presented for image reconstruction of single targets
that are obscured by fog when imaged by a SPAD array flash LiDAR system. By vi-
sual inspection, the range gate and process algorithm is demonstrated to reconstruct
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discernible images of wooden frigate silhouettes at a fog level of 14.1 m visibility and
3.69 ALs using data collected over a batch of 500 frames. This demonstrates target de-
tection is possible by visual inspection. The classification of the reconstructed images
achieves an overall accuracy of 93%. Classification is done by comparing the sum of
non-zero pixels in the reconstructed image with each frigate’s mean area, which is
calculated with a small set of training data. In addition, computational demand anal-
ysis highlights that the algorithm uses a small amount of steps and processes a small
amount of data, making it real-time capable.

The finite mixture model algorithm has decreasing reconstruction performance
when evaluated in terms of relative localisation accuracy. However, when it is eval-
uated by visual inspection, all its reconstructed images are discernible for fog levels
up to 50.8 m visibility/1.14 ALs, making these images applicable for target detec-
tion. The algorithm processes data collected over a batch of 500 frames per recon-
structed image. The overall accuracy of classifying the imaged targets from these
reconstructed images is 100% for all tested fog levels. Target classification converts
the reconstructed image to a binary image, then, after applying some additional de-
noising steps, uses sum of non-zero pixels to classify the shape.

The pixel-wise absolute localisation accuracy is poor for the finite mixture model
algorithm. This may be due to the pixel-wise approach of this algorithm leading to
inconsistencies. Through computational demand analysis, it is shown that a state-
of-the-art GPU such as the Nvidia Jetson TX2 module will be able to execute this
algorithm in real time. In particular, it will be able to execute the approximately
1.8 million multiplication operations required per pixel for this algorithm. The algo-
rithm’s remaining operations are demonstrated to require far less time in compari-
son, ensuring that this algorithm is real-time capable.

The Fourier descriptor algorithm utilises the dToF measurements registered by
all pixels collectively to perform global target localisation. By utilising a GPU on-
board an embedded board, the parallelisation of this algorithm’s computationally
expensive tasks (such as histogramming and generating boundary trace) and using
the algorithm to only process a small amount of frames will ensure this algorithm is
real-time capable.

The Fourier descriptor algorithm is demonstrated to localise a triangle imaged by
a SPAD array flash LiDAR system for a fog level of up to 25.4 m visibility/2.28 ALs
by processing data collected over a batch of 1,000 frames. The algorithm’s output
global target locations are compared with those determined using the finite mixture
model algorithm on data of a planar target in a fog level of 25.4 m visibility/2.28 ALs.
This is at a higher fog level than previously evaluated by the finite mixture model
algorithm. The comparison demonstrates that the Fourier descriptor algorithm has
a higher global target absolute localisation accuracy than the finite mixture model
algorithm. This implies that the Fourier descriptor algorithm will be able to provide
a better image reconstruction performance.

While target classification performance is not tested, the use of Fourier descriptors
in this algorithm suggests potential for extension to target classification, given that
Fourier descriptors are unique for different geometric shapes, and can be extended
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to be size- and rotation-invariant.
While reconstructed images are not demonstrated for the Fourier descriptor algo-

rithm, the images will be a simple conversion of the generated slice’s binary image.
As this algorithm requires the binary image to contain a discernible representation of
the target in order to calculate an accurate Fourier descriptor for global target locali-
sation, a high global target localisation accuracy implies that the target is discernible
in the binary images. This demonstrates that images reconstructed using the binary
images from the Fourier descriptor algorithm will be suitable for target detection and
classification.



Chapter 7

Conclusion

Real-time-capable target-discrimination algorithms have been presented in this the-
sis for processing data collected by a Single Photon Avalanche Diode (SPAD) array
flash Light Detection and Ranging (LiDAR) system of single targets situated in three
different types of environments: air, natural waters and fog. A real-time target clas-
sification algorithm, called the random feature-detecting network, is presented in
Chapter 4 for classifying live data of four different model airplanes (Tu-128, Su-35,
Su-24, and MQ-9), collected with a SPAD array flash LiDAR system in clear air condi-
tions in a laboratory setting. The initial stages of this algorithm successfully perform
image reconstruction and target detection. The target classification performance of
the random feature-detecting network has an overall accuracy of up to 99.35%, with
an F1-score reaching 0.99.

The random feature-detecting network is implemented with a live data acquisi-
tion module into an embedded software program to execute in real time on the Jetson
TX2. The embedded software program utilises multithreading to implement the tar-
get classification algorithm in a separate thread to the live data acquisition module,
which enables faster execution. The power consumption of the embedded software
program is 5.1 W. The random feature-detecting network’s execution time on the
embedded software implementation ranges between 30.18 and 65.07 ms. These per-
formance metrics demonstrates the feasibility of deploying the embedded software
implementation on a Jetson TX2, with its low Size, Weight and Power (SWaP) profile
rendering it suitable for edge computing applications on compact mobile platforms
within a distributed network.

The remainder of this thesis presents image-reconstruction algorithms where the
reconstructed images can be used for target detection.

Two basic image-reconstruction algorithms, the detection threshold and median
algorithm and the histogram averaging algorithm, are presented in Chapter 5 for col-
lected SPAD LiDAR data of submerged targets in natural waters. Both are real-time-
capable algorithms, as demonstrated by the computational demand analysis which
indicates these algorithms use a small number of computational steps and processes
a small amount of data (i.e.200-300 frames). The reconstruction performance of these
two algorithms highlights a trade-off of increasing real-time capability in lieu of ef-
fective image reconstruction performance at higher number of ALs or deeper target
depths. Datasets collected from three different locations are used to evaluate the al-
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gorithms’ image reconstruction performances: Australian Institute of Marine Science
(AIMS) indoor saltwater tank, Defence Science and Technology Group (DSTG) indoor
freshwater tank, and the Port Adelaide River. A novel imaging set-up is presented to
conduct above-water imaging at the latter two locations.

The detection threshold and median algorithm’s reconstructed images are suit-
able for detection of single targets imaged from a horizontal imaging set-up in the
AIMS indoor saltwater tank. Its reconstructed images are discernible for a water
turbidity level of up to 3.43 attenuation lengths (ALs), where the saltwater contains
2.44 µg/L chlorophyll and 5.71 mg/L sediments. In addition, the overall target clas-
sification accuracy using this algorithm’s reconstructed images for sediment-only
saltwater conditions is above 95% . The tested sediment-only saltwater conditions
have up to 5.62 mg/L of sediments (equivalent to water turbidity level of 3.29 ALs).

The reconstructed images by the histogram averaging algorithm provides a better
representation of the targets than the detection threshold and median algorithm for
datasets collected from an above-water imaging set-up at the DSTG indoor freshwa-
ter tank and the Port Adelaide River. This makes the histogram averaging algorithm
more suitable for reconstructing images for above-water detection of submerged tar-
gets in natural water locations.

Nonetheless, the histogram averaging algorithm is unable to reconstruct dis-
cernible images of a target submerged beyond a depth of 2 m in the Port Adelaide
River. To enable discernible images of greater depth targets to be reconstructed,
two streams of work are required. First, it is necessary to develop a more advanced
image-reconstruction algorithm, which will require a better understanding of the
complex and variable nature of natural waters. Second, a better SPAD array flash
LiDAR imaging set-up must be created to ensure reliable data collection at natural
water locations, where the target location can be reliably validated.

Three different image-reconstruction algorithms are presented in Chapter 6 for
targets obscured by fog and imaged by a SPAD array flash LiDAR system. The
range gate and process algorithm successfully reconstructs images of two different
wooden frigate silhouettes obscured by a fog level of up to 14.1 m visibility and 3.69
ALs. This demonstrates that these reconstructed images can be utilised for target
detection. The overall accuracy of target classification on all reconstructed images
from this algorithm is 89.5%. However, the effectiveness of this algorithm relies on
fog having a limited span, which is then exploited by setting a range gate in the
SPAD array flash LiDAR system during data collection to avoid detecting photons
reflected from the fog, thereby providing a clearer image of the target. Consequently,
a more robust algorithm is necessary for scenarios where fog persists over longer
distances, obscuring the target’s location.

The finite mixture model algorithm successfully reconstructs images of three dif-
ferent shapes from SPAD LiDAR data captured through fog using a SPAD array flash
LiDAR system without a range gate set, in a fog level of up to 50.8 m visibility and
1.14 ALs. The reconstructed images provides discernible images of the targets, mak-
ing them suitable for target detection tasks. Overall shape classification accuracy of
the finite mixture model algorithm’s reconstructed images is 100% for different fog
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levels up to 50.8 m visibility and 1.14 ALs.
The computational efficiency of the Expectation-Maximization (EM) algorithm is

leveraged by the finite mixture model algorithm to reduce the computational time of
fitting a finite mixture model to a set of direct Time-of-Flight (dToF) measurements.
Moreover, a computational demand analysis is conducted and demonstrates that the
finite mixture model algorithm is real-time-capable if implemented on an embedded
board with a GPU, such as the Jetson TX2.

The histogram of dToF measurements collected in fog shares the two-peaks char-
acteristics with dToF measurements obtained through water. In particular, the first
peak originates from dToF measurements of the obscurant and the second peak orig-
inates from dToF measurements of the target. This implies that it may be possible to
extend the finite mixture model algorithm to reconstruct images of single targets in
natural water environments.

To enhance the fog level at which a target can be detected through effective image
reconstruction of data collected by a SPAD array flash LiDAR system, the Fourier de-
scriptor algorithm is the last algorithm presented in Chapter 6. Unlike the previous
pixelwise approaches, this algorithm analyses the dToF measurements registered by
all pixels collectively. Its focus is in global target localisation, where it utilises an
image feature called Fourier descriptor to determine the most likely location of the
target. Image reconstruction is possible by employing a simple conversion of the
binary images is associated with the Fourier descriptor most similar to the target’s
expected Fourier descriptor. The computational demand analysis highlights that the
Fourier descriptor algorithm is real-time-capable if it leverages the parallel compu-
tation capability of a GPU. Most of its computational expensive tasks can either be
parallelised or the task is designed to only process a small amount of data.

The global target localisation performance of this algorithm is more accurate than
the global target location values inferred from the finite mixture model algorithm,
for data collected in fog levels up to 25.4 m visibility and 2.28 ALs, which is at a
higher than the maximum fog level at which the finite mixture model algorithm can
reconstruct a discernible image of the target.

Target classification was not demonstrated for the reconstructed images of the
Fourier descriptor algorithm because it has only been evaluated for reconstructing
images of one shape. Nonetheless, the algorithm holds promise for extension to
shape classification. This is because Fourier descriptors exhibit unique characteristics
for different geometric shapes.

7.1 Future Work

There are several future directions for the studies presented in this thesis. Firstly,
Section 7.1.1 discusses potential enhancements for the Fourier descriptor algorithm
presented in Section 6.4 of Chapter 6. It includes a proposal for a hybrid approach
combining the finite mixture model algorithm (presented in Section 6.3 in Chapter
6) and the Fourier descriptor algorithm. Secondly, there is scope for extending the
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imaging of underwater targets to greater depths. This is elaborated on in Section
7.1.2. Finally, a broader research question comparing the two different approaches
(physics vs phenomenological) for the modelling of dToF measurement is discussed
in Section 7.1.3.

7.1.1 Better Target Classification in Fog

The Fourier descriptor algorithm developed for fog (in Section 6.4 of Chapter 6) can
undergo several improvements. Firstly, employing a more robust boundary-tracing
algorithm would enable a more accurate capture of the shape’s silhouette, thus ex-
tending the algorithm’s applicability to dToF measurements collected at fog levels
exceeding the algorithm’s current maximum reconstruction fog level of 25.4 m vis-
ibility or 2.28 ALs. Additionally, an enhanced boundary-tracing mechanism would
yield more precise Fourier shape descriptors, facilitating improved comparison with
the target’s expected Fourier descriptor.

Secondly, this algorithm could be expanded into a classifier for different shape
targets by utilising distinct Fourier shape descriptors for target localisation.

Thirdly, its localisation performance could be further enhanced by integrating
the finite mixture model algorithm described in Section 6.3 of Chapter 6. The finite
mixture model contains information regarding the fog and target locations for each
pixel. Leveraging this information could eliminate slices associated with certain dToF
values from undergoing Fourier shape descriptor calculation, thereby speeding the
algorithm’s computation.

7.1.2 Imaging into Natural Waters

To extend SPAD array flash LiDAR imaging to deeper waters (beyond 10 m), several
challenges must be addressed. Firstly, a deeper understanding of Inherent Optical
Properties (IOPs) for various natural water constituents is essential. This can be
achieved through empirical measurements or by extrapolating theoretical relation-
ships from existing literature. Preliminary research on the impact of natural water
properties on IOPs is available in [101], although it is not included in this thesis.

Secondly, acquiring a more powerful laser is necessary. Natural water induces
significant laser scattering, so the use of a more potent laser would ensure that at
least a few photons reach the target and are detected by the SPAD camera.

Thirdly, the development of a more sophisticated algorithm is crucial for extract-
ing target information from dToF measurements made by a SPAD array flash LiDAR
system. This new algorithm should focus on modelling photon travel through wa-
ter utilising IOPs measurements. By doing so, it would create a better model for
the dToF measurements and provide better image reconstruction of the submerged
target.
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7.1.3 Physics vs Phenomenological

While developing algorithms for dToF measurements of obscured targets collected
by a SPAD array flash LiDAR system, it becomes evident that existing image-
reconstruction algorithms typically adopt one of two approaches for depth estimation
of the target. They either employ a physics model of photon detection and propaga-
tion or investigate the phenomenology of the detected photons’ dToF measurements.
This prompts a future research question: in which medium does the accuracy gain
in reconstructed dToF values from modelling the physics of photon propagation and
detection outweigh the gain in processing speed from processing the dToF measure-
ments via the phenomenological perspective?

I hypothesise that mediums such as air, fog, and shallow clear natural water ben-
efit more from the phenomenological approach. Based on the characteristics dToF
measurements presented in Section 5.5.2 in Chapter 5 and Section 6.5.2.5 in Chap-
ter 6, the dToF measurements of detected photons reflected by the target can be
easily distinguished from the dToF measurements of the background for data col-
lected in these mediums. Therefore, a phenomenological approach is possible be-
cause an algorithm can be applied to autonomously distinguish between target and
background’s dToF measurements based on the distribution of dToF measurements.
In contrast, mediums with more obscurant (e.g. turbid natural water) benefit more
from a physics model. This is because these mediums have far more light scattering
properties than mediums such as air, fog and shallow clear natural water. Therefore,
the distribution of dToF measurements of detected photons in the latter mediums
may exhibit less structure. Consequently, employing the physics model may become
critical to identify detected photons as noise and filter them out to ensure effective
image reconstruction for accurate target detection and classification.
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Appendix A

Additional Details for the SPAD
array Flash LiDAR Systems

This chapter presents additional details of the different Single Photon Avalanche
Diode (SPAD) array flash Light Detection and Ranging (LiDAR) systems presented
in Table 3.1 in Section 3.4 of Chapter 3.

A.1 System B laser remarks

Telescope expander for Bright Solutions Laser A microscope objective is selected
such that the output beam from the laser will almost fill the 145 mm output
lens.

A.2 System C laser remarks

Diffuser for laser A diffuser is placed in front of the laser to make the system eye
safe and this results in a laser beam divergence of approximately 115◦. The
diffuser is a circle of tracing paper placed within a simple beam expander con-
sisting of two negative lenses spaced 40 mm apart. This gives a good even
illumination at an energy level of 10 mJ (measured over a 70 degree hemi-
sphere).
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Appendix B

Images of Targets Submerged in
the AIMS Indoor Saltwater Tank

This chapter shows an extended list of the reconstructed images and denoised binary
images discussed in Section 5.4 of Chapter 5. Each image shown in this Appendix is
created from a batch of 200 frames. Each section shows images processed from data
collected in saltwater conditions containing different types of marine constituents:
sediments, chlorophyll, and mixture of sediments and chlorophyll.

This space is intentionally left blank.
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B.1 Sediments

Table B.1 shows the reconstructed images at various sediment conditions. After-
wards, Table B.2 shows the denoised binary images at various sediment conditions.
The red box in each of the denoised binary images show the segmented image de-
termined by the target detection algorithm described in Section 5.4.3.2 of Chapter
5.

Table B.1: Reconstructed images of various shapes at differ-
ent sediment concentrations.

Sed.
Conc.
(mg/L)

No.
of
ALs
(w.r.t.
532nm)

Reconstructed Image

1.30 1.32

1.78 1.40
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2.74 1.84

3.22 2.03
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3.70 2.35

4.18 2.41

4.66 2.57
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5.14 2.83

5.62 3.29
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8.62 4.28

Table B.2: Denoised binary images of various shapes at dif-
ferent sediment concentrations with bounding box of the
selected shape showing on each image.

Sed.
Conc.
(mg/L)

No.
of
ALs
(w.r.t.
532nm)

Denoised Binary Image

1.30 1.32
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1.78 1.40

2.74 1.84

3.22 2.03
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3.70 2.35

4.18 2.41
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4.66 2.57

5.14 2.83

5.62 3.29
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8.62 4.28

B.2 Chlorophyll

Table B.3: Reconstructed image of various shapes at 2.46
µg/L of chlorophyll. (Measured the power ratio of a 532
nm which gives 1.91 ALs with respect to 532 nm)

Reconstructed Image
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B.3 Mixture of Sediments and Chlorophyll

Table B.4: Reconstructed image of various shapes at 2.44
µg/L and 5.71 mg/L. (Measured the power ratio of a 532
nm which gives 3.43 ALs with respect to 532 nm)

Reconstructed Image
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