
Representations of Depth Maps: Spherical
Harmonics and Wavelets

Author: Katrina Ashton

Supervisor: Jochen Trumpf

Course: ENGN3712 Engineering Research and Development Project

Submission: October 27, 2017

u5586882 i

Acknowledgments

I’d like to thank my supervisor Jochen Trumpf for his help and guidance. Additionally,

I’d like to thank Angus Gruen for proof reading my report and allowing me bounce

ideas off him.

I would also like to acknowledge Sean O’Brien, whose work the techniques investi-

gated in this report are intended to be used in conjunction with. Finally I would like

to acknowledge Lessig and Fiume, whose work the spherical Haar wavelets portion of

this report is based upon.

u5586882 ii

Abstract

This report investigates the suitability of spherical harmonics (SBFs) and spherical

Haar wavelets (SHWs) as basis functions for a model to represent depth maps. Depth

maps are useful in applications such as robotic mapping and 3D modelling.

The model is updated with new measurements using gradient descent. However, the

measurements are taken from a rotated and/or translated camera, so in order to do

this the model and the measurements need to be aligned. This report considers two

ways of performing this alignment. The first method is transforming the model to

be aligned with the camera. This is done by transforming the weights, but for both

bases this can only be used when the camera is not translated. The second method is

transforming the measurements to be aligned with the model. This method works for

both rotation and translation of the camera.

The report investigates the convergence behaviour and computational time of each

basis with each alignment method under ideal conditions, that is, with no measure-

ment error and full field of view for the camera. For the SBFs, it also investigates the

basin of attraction, robustness with respect to the scaling of the measurement gradients

and measurement uncertainty, and the effect of field of view.

The only significant difference between the two alignment methods for spherical har-

monic basis functions in these areas is in their computational time – the moved mea-

surements method is much faster. For the SHWs the two methods take a very similar

time, which is between the two speeds for the SBFs. The moved model method con-

verges faster than the moved measurements method for SHWs. The main limitation of

both methods for the SBFs is the difficulty and importance of choosing an appropriate

step size for the gradient descent. Choosing an appropriate step size is also important

for the SHWs, as well as the choice of data structure. For most situations using the

SBFs with the moved measurements method is the best choice.

u5586882 iii

Contents

Acknowledgements i

Abstract ii

1 Glossary and Notation 1

1.1 Abbreviations . 1

1.2 Notation . 1

1.3 Terminology . 2

2 Introduction 3

3 Background and Literature Review 5

3.1 Scene depth . 6

3.2 Light-field Cameras . 7

3.3 Rigid Body Motion . 8

3.4 Basis functions and Weights . 9

3.5 Maximum Likelihood Estimation . 9

3.6 Gradient Descent . 11

3.7 Spherical Coordinates . 12

3.8 Euler Angles . 13

3.9 Spherical Harmonics . 15

3.10 Rotating Spherical Harmonic Basis Functions: Wigner D Functions . . 17

3.11 Overview of Wavelets . 19

3.12 Haar Wavelets . 23

3.13 Haar Wavelets on the Sphere . 24

3.14 Rotating Haar Wavelets on the Sphere 25

3.15 Transforming Measurements . 27

4 Problem Set-up 28

4.1 Generating Points for Spherical Harmonic Model 29

u5586882 iv

4.2 Generating Points for Wavelet Model 31

4.3 Setting the Field of View . 32

4.4 Choosing measurement locations . 33

4.5 Creating the Initial Spherical Harmonic Model 33

4.6 Updating the Spherical Harmonic Model 34

4.7 Getting Euler Angles in Terms of a Rotated Frame 35

4.8 Creating Initial Wavelet Model . 37

4.9 Updating Wavelet Model . 38

4.10 Choosing Moved Measurements Method Implementation 40

5 Simulation Study 41

5.1 Resultant Observer Error . 42

5.2 Computational Time . 46

6 Additional Results for Spherical Harmonic Basis Functions 49

6.1 Translation . 49

6.2 Basin of attraction . 49

6.3 Robustness: Measurement Scaling . 51

6.4 Robustness: Measurement Uncertainty 53

6.5 Field of View . 53

7 Conclusion 55

8 Appendices 60

8.1 Code: Spherical Harmonics . 60

8.2 Code: Spherical Haar Wavelets . 62

8.3 Source code . 64

8.4 Additional figures . 102

u5586882 1

1 Glossary and Notation

1.1 Abbreviations

FOV: Field of View

FWT: Fast Wavelet Transform

MRA: Multiresolution Analysis

SBF: (Real) Spherical (Harmonic) Basis Function

SHW: Spherical Haar Wavelet

SOHO: Orthogonal and symmetric Haar wavelets [15]

1.2 Notation

Basis functions and weights, maximum likelihood estimation, gradient descent

(see Sections 3.4, 3.5, 3.6)

x = (x1, x2, ..., xN)T : data

t = (t1, t2, ..., tN)T : associated targets

b = (b0, b1, ..., bM−1)
T : basis functions

B =
[
b0(x) b1(x) . . . bM−1(x)

]
: matrix containing basis functions applied to

data

w = (w0, w1, ..., wM−1)
T : weights associated to each basis function such that Bw

approximates t

∇F : gradient of F

η: step size

Spherical coordinates (see Section 3.7)

θ: polar angle

φ: azimuthal angle

r: radius

u5586882 2

Euler Angles (see Section 3.8)

[α, β, γ]: ZY Z-Euler angles

Spherical Harmonics (see Section 3.9)

Ylm: complex spherical harmonic

Nlm: normalisation factor

Pm
l (x): Legendre associated polynomials

Slm: real spherical harmonic

Wavelets (see Sections 3.11, 3.12, 3.13)

Ψ: mother wavelet

Ψj,m(t): wavelet basis (for L2(R))

φj,m(t): scaling function

ψj,m(t): wavelet function

Sj,m: scaling coefficient

Wj,m: detail coefficient

Tj,k: spherical triangle

αj,k: area of Tj,k

τj,k: characteristic (indicator) function of Tj,k

1.3 Terminology

Moved model method: brings model and measurements into alignment by transforming

the model to be with respect to the body fixed frame of the camera.

Moved measurements method: brings model and measurements into alignment by

transforming the measurements to be with respect to the space fixed frame.

u5586882 3

2 Introduction

A depth map of a scene is a function provides the distance between a given (centre)

point (O) in the environment (Σ) and the point (P) in the scene (Ω) in any given

direction from the centre [20]. (See Figure 1). Being able to produce an accurate

depth map has a variety of applications, including 3D modelling and guidance and

control of unmanned vehicles.

O

P

Figure 1: Scene map

Depth can be measured either actively or passively. Active methods interact with the

environment directly, generally by emitting light or other radiation. For example, using

a laser scanner. Passive methods do not emit anything, they measure aspects of the

scene that are already present. For example, taking a photograph. Passive methods are

generally preferred when they are available, as they do not interfere with the system

being measured. However as passive methods are indirect, they can be more compli-

cated to use than active methods. The techniques investigated in this report will focus

on usage with passive methods, in particular using a light-field camera. Although they

may also be applicable for depth measurements obtained via different means.

Light field cameras allow for depth information to be obtained in a single image cap-

ture. The depth information is not measured by the camera directly – it needs to

u5586882 4

be computed from the light field data. The techniques described in this report are

designed for use with the observer described in O’Brien et al. [20]. This observer

uses a gradient observer approach. That is, given a current model of the scene and

a light field, the observer gives gradients. Each gradient corresponds to how much

the current scene model needs to be shifted in a certain direction in order to match

the depth information. This gradient is guaranteed to point in the correct direction,

but its magnitude may not be equal to the actual difference in depth between the

model and the real scene. In addition, there is no guarantee that the scales of the

gradients (i.e. how much the magnitude of the gradient differs from the difference

in depth between the model and the scene) will be constant. Light fields do techni-

cally contain complete depth information, including accurate magnitudes. However,

extracting this information relies on knowing the precise distance between points in

the images captured by each lens/pin-hole camera. These distances are tiny and so

cannot be measured without incurring some error. Because the distance is so small,

any errors have a large impact on the calculated depth. Therefore extracting accu-

rate depth information from light fields is not a trivial task and usually requires some

form of iterative algorithm. For more information on light field cameras see Section 3.2.

Once the depth information has been obtained, it needs to be represented in a useful

way. Which representation should be used and how to implement it is the focus of this

report. A suitable representation should be able to accurately reflect the scene and be

able to be updated efficiently with new depth measurements.

The aim of this report is to evaluate real spherical harmonic basis functions (SBFs)

and spherical Haar wavelets (SHWs) as possible representations of a depth map for

information obtained as described above.

u5586882 5

3 Background and Literature Review

This section details the necessary background information and gives overview of rele-

vant literature on scene depth, spherical harmonics and wavelets (see Sections 3.1, 3.9

and 3.11, respectively). More specifically, Haar wavelets and spherical Haar wavelets

are discussed in some detail in Sections 3.12 and 3.13, respectively. These topics are

core to this report, as the aim is to investigate the feasibility of using real spherical har-

monic basis functions (SBFs) or spherical Haar wavelets (SHWs) to model scene depth.

This report also covers the procedure for updating these models from measurements

from a camera in different poses. The first step in this process is to align the measure-

ments and the model somehow.

Rotating spherical harmonics (see Section 3.10) and spherical Haar wavelets (see Sec-

tion 3.14) allows for the SBF model and SHW model, respectively, to be brought into

alignment with measurements from a rotated camera. Ideally the report would also

discuss how to translate these models, however such a technique could not be located

in the literature for either spherical harmonics or spherical Haar wavelets.

The other way to attain alignment is to transform the measurements so that they

align with the model, this is discussed in Section 3.15. This method allows for both

translating and rotating the camera.

There are also some other topics that need to be covered in order to understand the

aforementioned sections. The techniques presented in this report are intended to be

used with depth measurements from a light-field camera, so Section 3.2 covers the

basics of how light-field cameras work. The spherical coordinate system is used for

the depth measurements, and is outlined in Section 3.7. A number of sections cover

the relevant theory for taking measurements with different camera poses: rigid body

motion (Section 3.3) and Euler angles (Section 3.8).

u5586882 6

Finally, the method for attaining the initial models and update them using the aligned

measurements also needs to be discussed. The wavelet model is constructed using the

Fast Wavelet Transform, discussed in the various sections on wavelets (3.11, 3.12, 3.13).

The update method is also based on information from these sections, and is described

in Section 4.9. The spherical harmonic model uses maximum likelihood estimation (see

Section 3.5) for the initial model, and gradient descent (see Section 3.6) to update it.

In order to use these methods an understanding of basis functions and weights (see

Section 3.4) is necessary.

3.1 Scene depth

There are two main questions about scene depth: how to obtain depth information and

how to model said information. The first is outside the scope of this report, whereas

the second is central to it.

There have been many different modelling techniques applied to scene maps, changing

to reflect both advances in measurement technology and what is being modelled. One

early model uses only cubic voxels [23]. That is, the environment is split into cubes,

and each cube is labelled as either Void, Full or Unknown. The model is built upon

data from a range sensor, and only became practical due to the advancements in range

sensing technology at the time, allowing for densely measured range data. This model

is intended to work in any static environment.

This report, however, will focus on one specific type of scene depth model: depth

maps. A Depth map is a function that take a direction and returns the depth in that

direction. This approach is suitable because the measurements this report is intended

to work with are tied to direction.

An example of a depth map representation is Newcombe and Davison [19], who use

data from a single moving camera. The modelling starts with structure from motion

u5586882 7

which generates a 3D feature point cloud. The surface is then approximated by fitting

a function to the data points. The base mesh is formed by polygonising the function’s

zero level set. The base mesh allows for view predictions, which are then compared

with true images, allowing for dense correspondence fields of sub-pixel accuracy to be

obtained. This correspondence information is then used to update the base mesh into

highly accurate local depth maps. Such a representation is only possible due to ad-

vances in both technology and modelling techniques.

Despite the development of new techniques, 3D voxels are still a very popular represen-

tation – although the depth reconstruction methods have also become more advanced.

Polygonal meshes are also popular, and meshes are the standard representation used

in computer graphics. Many algorithms use multiple depth representations, which are

then merged into a 3D object model [28].

As light-field cameras are a new measurement technology, new depth representations

should be explored in order to find one that is suitable for the new types of algorithms

enabled by this technology.

3.2 Light-field Cameras

Light field cameras, also known as plenoptic cameras, allow for different focus or depth

images to be obtained in a single capture [22]. The idea is similar to using two or more

adjacent standard cameras, i.e. stereo systems. This allows for images to be captured

from multiple view points, whose relative poses are known. The images can then be

interpolated in order to retrieve depth information. Note that binocular stereo systems

(2 cameras) exploit parallax along one axis and cannot offer depth estimates for con-

tours parallel to this axis [1]. Light field cameras do not have this issue as they capture

more than 2 images. They can also be made less bulky and require less calibration

than stereo systems [1].

The idea of light field cameras has been around since 1908 [16], but only recently

u5586882 8

has technology advanced to the point where they are feasible to construct. In 1992,

Adelson and Wang [1] constructed a working prototype that used a single main lens

along with a lenticular array placed at the sensor plane. Commercial light field cameras

are now becoming available [17, 9].

3.3 Rigid Body Motion

“Rigid body dynamics is the study of the motion in space of one or several bodies in

which deformation is neglected” [29]. That is, the distance between any two points on

such a body remains constant in time. To properly describe rigid body motion, two

frames are required: a space fixed (inertial) frame and a body fixed frame attached to

the rigid body.

The movement of a rigid body can be represented as a rotation (which changes its

orientation) and a translation (which changes its linear position). The orientation and

position of the rigid body can be defined with respect to the space fixed frame using

the rotation and translation that would give the space fixed frame the same orienta-

tion and translation as the body fixed frame. Together, orientation and position are

referred to as pose.

In the case of this report, the light field camera is the rigid body. The rotation and

translation referred to in this report are the transforms of the camera pose. This report

seeks to update a model defined with respect to the space fixed frame with measure-

ments that are made with respect to the body fixed frame of the camera. One way to

do this is transforming the model to be with respect to the body fixed frame – we will

call this the moved model method (see Sections 3.10 and 3.14). The other way is to

transform the measurements to be with respect to the space fixed frame – we will call

this the moved measurements method (see Section 3.15).

u5586882 9

3.4 Basis functions and Weights

Basis functions give a basis of a function space, that is any element of that function

space can be written as an infinite linear combination of basis functions. Note that

for most practical applications (including this report) working with an infinite number

of basis functions is not possible, so a truncated basis must be used. If we have prior

information about what is being modelled then this can be used to select an optimal

basis. For example, if it is known that the desired shape for a one-dimensional model is

a polynomial, then an appropriate set of basis functions would be 1, x, x2, ..., xn. Once

a set of basis functions has been established, they can be used to model an element

of the space they are a basis for using data sampled from that element. This is done

by finding weights wm for each basis function bm such that the linear combination∑
mwmbm(x) best approximates the data (x, t). The model can be updated by chang-

ing the weights, but the basis functions remain fixed.

More formally, we start with a data set of N inputs x = (x1, x2, ..., xN)T and asso-

ciated target values t = (t1, t2, ..., tn)T . We also have M basis functions bm, and define

b(xn) =

b0(xn)

b1(xn)

...

bM−1(xn)

and B =

b0(x1) b1(x1) . . . bM−1(x1)

b0(x2) b1(x2) . . . bM−1(x2)

...
...

. . .
...

b0(xN) b1(xN) . . . bM−1(xN)

.

The aim is to find a vector of weights w = (w1, ..., wM)T associated with each basis

function such that Bw best approximates t. The associated error function is a measure

of how close this approximation is. When using sum-squared error it is given by

ED(w) =
1

2

N∑
n=1

(tn −wT b(xn))2 =
1

2
(t−Bw)T (t−Bw)

3.5 Maximum Likelihood Estimation

Maximum likelihood estimation is a form of linear regression that seeks to find a set

of weights w that maximise the likelihood of a target t given data x [26]. It assumes

u5586882 10

that a target, t is then given by

t = y(x,w) + ε,

where y(x,y) is deterministic and ε is a zero-mean Gaussian random variable with

precision (inverse variance) β. Therefore the likelihood of a target t given data x is

p(t|x,w, β) = N (t|y(x,w), β−1).

This can be expanded for a set of N inputs, i.e. for x = (x1, x2, ..., xn)T with associated

target values t as defined in Section 3.4. However, this requires that the data is inde-

pendent and identically distributed (iid). The process of generating points described

in Section 4.1 will ensure that our points are iid, so we can use this method. The

likelihood is given by

p(t|x,w, β) =
N∑
n=1

N (tn|y(xn,w), β−1)

=
N∑
n=1

N (tn|wTb(xn), β−1).

As a simplification, we take the logarithm of the likelihood. As the logarithm is a

monotone function, a critical point of log(p(t|x,w, β)) will correspond to a critical point

of p(t|x,w, β). Thus we can minimise p(t|x,w, β) by maximising log(p(t|x,w, β)). The

logarithm of the likelihood is

ln p(t|x,w, β) =
N

2
ln β − N

2
ln(2π)− βE(w).

Using the sum-squares error function ED(w) (detailed in Section 3.4), this is

ln p(t|x,w, β) =
N

2
ln β − N

2
ln(2π)− β 1

2
(t−Bw)T (t−Bw).

As β and N are constant, maximising log(p(t|x,w, β)) is equivalent to minimising the

error function ED (see Section 3.4).

The directional derivative of the logarithm of the likelihood in direction ξ is

D ln p(t|x,w, β)(ξ) = βξT (BT t−BTBw).

u5586882 11

We want the directional derivative to be 0 in all directions ξ, therefore

BT t−BTBw = 0,

so

wML = (BTB)−1BT t.

Regularisation can be added to this solution in order to prevent over-fitting [26]. With

regularisation constant λ, the error becomes

E = ED(w) + λEW (w).

The regulariser used in this report is the following quadratic regulariser:

EW (w) =
1

2
wTw.

Including this regularisation gives

ln p(t|x,w, β) =
N

2
ln β − N

2
ln(2π)− β(

1

2
(t−Bw)T (t−Bw) + λ

1

2
wTw).

Then finding the directional derivative as above gives maximum likelihood solution

wML = (λI +BTB)−1BT t.

This Maximum Likelihood technique will be used to find the initial SBF model (see

Section 4.5).

3.6 Gradient Descent

Gradient descent finds a local minimum of a given function near some starting point.

To update w using gradient descent, the following formula is used [26]:

w(τ+1) = w(τ) − η∇ED(w(τ)),

where η is the step size and ED is the error function (see Section 3.4). The step size

is a term that balances how much we trust w(τ), the old estimation of w compared to

u5586882 12

the new data that is encoded in the gradient term ED(w(τ)). A small step size leads to

slow convergence, however a large step size can lead to overshoot and therefore prevent

convergence.

Differentiating ED with respect to w yields the gradient expression

∇ED(w) = (−B)(t−Bw) = B(Bw − t).

Substituting this into the above formula gives

w(τ+1) = w(τ) − ηB(Bw(τ) − t).

This gradient descent technique will be used to update the SBF model with new mea-

surements (x, t) (see Section 4.6). Note that the new measurements x are used to

calculate B (see Section 3.4).

3.7 Spherical Coordinates

The spherical coordinate system specifies the location of a point in R3 using two angles

and a radius: θ, φ, r. The radius is the distance between the origin and the point,

however there are a few different definitions of the angles in use in the literature. In

this report, θ is the polar angle and φ is the azimuthal angle, as pictured in Figure 2.

This report uses the angle ranges θ ∈ [0, π] and φ ∈ [0, 2π). Note that this definition of

polar and azimuthal angles must be made in relation to a given Cartesian coordinate

system, as the angles are defined with respect to the x, y and z axes.

The spherical coordinate system and the Cartesian coordinate system can be converted

between as follows:

r =
√
x2 + y2 + z2 x = r sin θ cosφ

θ = cos−1
z

r
y = r sin θ sinφ

φ = tan−1
y

x
z = r cos θ.

Note that tan−1 must take into account the quadrant of (x, y). In MATLAB, the func-

tion tan2 does this. Alternatively, sph2cart and cart2sph may be used. However,

u5586882 13

Figure 2: Spherical coordinate system – radial distance r, polar angle θ, azimuthal angle φ.

Source: [2]

care must be taken as these functions use elevation instead of polar angle. Elevation

is the angle from the xy-plane to the point as opposed to the angle from the z-axis.

3.8 Euler Angles

The existing literature on rotating spherical harmonics uses Euler angles, so this report

will also use them. Euler angles are three angles α, β, γ that define a rotation in

3D space; each angle is a rotation about an axis. However, there are 12 different

conventions for Euler angles, depending on which axes are chosen for each angle. The

Wigner D-Matrix method described in Section 3.10 uses the ZYZ convention, so this

report will also use it. Figure 3 shows how α, β and γ are defined using the ZYZ

convention.

In order to use the transforming measurements method, the Euler angles need to be

converted back into a rotation matrix.

A rotation of θ counter-clockwise about a coordinate axis can be expressed as the

u5586882 14

Figure 3: Euler angles – ZYZ convention. Source: [3]

following rotation matrices

Rx(θ) =

1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

Ry(θ) =

cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

Rz(θ) =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

These rotation matrices can be combined to form the overall rotation matrix Rzyz. To

aid readability, let

ca = cosα sa = sinα

cb = cos β sb = sin β

cg = cos γ sg = sin γ.

u5586882 15

Then

Rzyz = RzRy′Rz′

=

ca −sa 0

sa ca 0

0 0 1

cb 0 sb

0 1 0

−sb 0 cb

cg −sg 0

sg cg 0

0 0 1

=

cacb −sa casb

cbsa ca sasb

−sb 0 cb

cg −sg 0

sg cg 0

0 0 1

=

cacbcg − sasg −cacbsg − cgsa casb

cbcgsa + casg cacg − cbsasg sasb

−cgsb sbsg cb

Note that this matrix pre-multiplies a column vector, i.e. the rotation of a point (x, y, z)

is given by Rzyz(x, y, z)T . z, y′ and z′ are as shown in Figure 3 (page 14).

3.9 Spherical Harmonics

The spherical harmonics are the angular portion of the solution to Laplace’s equation

in spherical coordinates [30]. They can be used for modelling 3D objects, as they pro-

vide an orthogonal basis for L2(S2).

Modelling using spherical harmonics is often used to compare objects [25, 18]. They

are suitable for this because spherical harmonics only need a small set of homologous

landmarks to register objects as similar to one another [25]. Wigner D-matrices are

sometimes used to rotate the objects into a standard orientation so they can be com-

pared [18].

Fourier spherical harmonic (SPHARM) functions are a related way to do modelling

[25]. These functions, detailed in [4], expand an object surface into a series of spherical

harmonic functions. Scale, translation and rotation invariant descriptors are obtained

by rotating the parameter net and the object into standard positions. SPHARM func-

u5586882 16

tions also allow for general simply-connected objects to be represented, whereas spher-

ical harmonics used as basis functions for a depth map can only model star-shaped

objects. SPHARM functions are good for modelling 3D objects when all of the mea-

surements are available at the start, but are not suitable for updating a model with

new data.

Spherical harmonics have been popular in physics and chemistry, they have also been

used in geoscience and medical imaging and in computer graphics for applications such

as environment map rendering and representing bidirectional reflectance distribution

functions [15].

Spherical harmonic basis functions have global support, which prevents them from

efficiently representing low-frequency signals [15]. This means that a large number of

spherical harmonic basis functions are needed to model environments that are highly

asymmetric. However they are relatively easy to understand and implement and have

been relatively widely used for modelling. Thus they are worth investigating as a po-

tential basis for modelling scene depth.

The complex spherical harmonic Ylm can be written as [3]

Ylm(θ, φ) = (−1)mNlmP
m
l (cos(θ))eimφ,

where l ∈ {0, 1, 2, ..., n, ...} and m ∈ {−l,−l+1, ..., 0, ...l−1, l}, Nlm is the normalisation

factor

Nlm =

√
2l + 1

4π

(l −m)!

(l +m)!

and Pm
l (x) are the Legendre associated polynomials, that is

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x),

where Pl(x) is the usual Legendre polynomial of degree l,

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l.

u5586882 17

The real spherical harmonics can be found by combining complex conjugates, corre-

sponding to opposite values of m. Then the real spherical harmonics Slm can be defined

as [3]

Slm(θ, φ) =

NlmP

m
l (cos θ)

√
2 cos(mφ) m > 0

NlmP
m
l (cos θ) m = 0

Nl|m|P
|m|
l (cos θ)

√
2 sin(|m|θ) m < 0

3.10 Rotating Spherical Harmonic Basis Functions: Wigner

D Functions

Wigner D functions, sometimes called Wigner D matrices, are well known in the lit-

erature as a way to rotate complex spherical harmonics. These functions are given by

[3]

Dl
mm′(α, β, γ) = e−imαdlmm′(β)e−im

′γ,

dlmm′(β) = (−1)m−m
′√

(l +m)!(l −m)!(l +m′)!(l −m′)!

×
∑
s

(−1)s
(
cos β

2

)2l−2s−m+m′ (
sin β

2

)2s+m−m′

s!(l −m− s)!(l +m′ − s)!(m−m′ + s)!
,

where s runs through all the integer values for which the factorials involved exist.

These D functions can be replaced with ∆ functions that allow for the transforma-

tion of real spherical harmonics [3]:

∆l
mm′ = sign(m′)Φm(α)Φm′(γ)

dl|m′||m| + (−1)mdl|m|(−|m|)
2

− sign(m)Φ−m(α)Φ−m′(γ)
dl|m′||m| − (−1)mdl|m|(−|m|)

2
,

where sign(0) = 1 and

Φm(φ) =

√
2 cos(mφ) m > 0

1 m = 0

√
2 sin(|m|φ) m < 0

u5586882 18

However, these equations are intended for use with rotated spherical harmonics i.e.

they change the coefficients of an unrotated basis to the coefficients for a rotated basis.

Whereas this report requires that the basis stays the same. (See Figure 4. We want a

transform like (c), but we have one like (d)).

(a) Basis functions (untransformed)

(b) Initial model and scaled

basis functions used to cre-

ate it

(c) Transformed model with

original basis functions and

a new scaling

(d) Transformed model

with new basis functions

and original scaling

Figure 4: (Best viewed in colour). Difference between transforming coefficients of basis

functions (b) and transforming the basis functions themselves (c). The original basis functions

are shown in black, and the rotated ones in red. Note that all of the combinations of basis

functions used to create the models (blue shapes) are very approximate.

Transforming the coefficients is also possible using D functions. If Mlm are the coef-

ficients of the spherical harmonics in the old (unrotated) coordinate frame, then the

new coefficients Mlm′ in the rotated coordinate frame are given by [7]

Mlm′ =
n∑

m=−l

Dl
mm′Mlm,

where

Dl
mm′(α, β, γ) = eimγdlmm′(β)eim

′α

u5586882 19

and dlmm′ is the same as for when the D function is used to rotate spherical harmonics.

Propagating this change forwards to the real case results in the following equations

∆l
mm′ = sign(m′)Φm′(α)Φm(γ)

dl|m′||m| + (−1)mdl|m|(−|m|)
2

− sign(m)Φ−m′(α)Φ−m(γ)
dl|m′||m| − (−1)mdl|m|(−|m|)

2
,

where sign(0) = 1 and

Φm(φ) =

√
2 cos(mφ) m > 0

1 m = 0

−
√

2 sin(|m|φ) m < 0

Note that these rotation formulas are only exact when the order of the basis functions,

l, approaches infinity. As finding and storing weights for an infinite number of basis

functions is not practically possible, this means that any rotations performed on the

weights of the SBFs incur an error.

3.11 Overview of Wavelets

The term wavelet encompasses a wide field of basis functions. However, all wavelets

share common characteristics that can be useful in modelling. Wavelets can be de-

fined on function spaces with a variety of domains, such as the real line, intervals, the

square and the sphere. This report will be focusing on wavelets defined on the sphere.

However a brief explanation of wavelets on the real line will be given, as that is where

wavelets were originally defined and thus it is helpful in understanding the fundamental

properties of wavelets.

The original definition of a wavelet is a function Ψ ∈ L2(R) such that the family

of functions

Ψj,m(t) = 2j/2Ψ(2jt−m),

u5586882 20

where j and m are arbitrary integers, is an orthonormal basis in the Hilbert space

L2(R) [31]. Ψ is known as the mother wavelet.

Such wavelets are called first generation wavelets, whereas wavelets defined on a more

general setting are referred to as second generation wavelets [27]. Unlike first generation

wavelets, second generation wavelets are not necessarily translates and dilates of each

other. However, they still preserve the following 4 key properties of first generation

wavelets [27]:

1. Wavelets form a Riesz basis for a certain domain – for wavelets on the real

line, this is L2(R), for spherical wavelets it is L2(S2). They also form an un-

conditional basis for a variety of normed function spaces F . That is, for a

wavelet basis denoted {ψj,m|j,m}, we can represent a general function f ∈ F

as f =
∑

j,m γj,mψj,m, with unconditional convergence in the norm of F . Also,

simple characterisations of the F -norm of f in terms of the absolute value of its

wavelet coefficients γj,m exist.

2. One has explicit information on how to calculate the coefficients, i.e. on the coor-

dinate functionals ψ̃j,m where γj,m = ψ̃j,m(f). The wavelets are either orthogonal,

or the dual (biorthogonal) wavelets are known.

3. The wavelets and their duals are local in space and frequency.

4. Wavelets fit into the framework of multiresolution analysis (explained later in

this section). This allows use of the fast wavelet transform, which takes linear

time to go between samples of a function and its wavelet coefficients.

Note that these properties reference dual wavelets. For this report the wavelets and

their duals coincide, so the report will not include much detail on dual wavelets in

general. Interested readers are referred to Sweldens [27].

Wavelets do not only vary based on the domain of the function space they are a

basis of. Even within spherical wavelets, there are a number of different types, such

u5586882 21

as Haar, Lazy, Linear, Quadratic and Butterfly [24]. There can also be different ways

to implement a single type of wavelet, which will lead to different properties. In the

case of Haar wavelets, their scaling basis functions are constant on their support. So

the key problem is choosing how to partition the sphere [15]. Both of the algorithms

presented in [24] and [15], respectively, use triangular subdivisions, however the way

they choose the positions of the vertices leads to different properties.

It is also possible to start with a relatively simple wavelet, such as the Haar wavelet,

and then modify it to attain certain properties such as smoothness using a process

called lifting [27]. This allows the wavelet’s properties to be customised for an appli-

cation.

Spherical wavelets are relatively new, and thus have not yet been used in as wide

a variety of applications as spherical harmonics. Spherical wavelets have, however,

been used relatively commonly for 3D model compression [13, 21, 11]. They have also

been used as descriptors for 3D shapes [14] and watermarking for 3D meshes [12].

Wavelets are good for representing dissimilarities in a signal, due to their localisa-

tion in space and frequency [15]. This means that they are well suited for modelling

most scenes both compactly and accurately.

Another aspect of wavelets that makes them good for modelling is their hierarchi-

cal structure, which combined with their afore-mentioned localisation leads to fast

algorithms for basis projection and processing signals in the basis representation [15].

This hierarchical structure is very clear when considering the multiresolution analysis

(MRA).

The vast majority of wavelets are constructed following a MRA [31]. This is another

concept created for first generation wavelets that can be transferred to second genera-

tion wavelets, however modifications are required. The definition of the MRA for second

u5586882 22

generation wavelets keeps most of the terminology and symbols of the first generation

definition, however many of the meanings change [27]. The purposes of the parts is

generally the same as their namesake, however the properties and implementation can

be quite different. This report will only detail the MRA for second generation wavelets.

Let L2 = L2(X,Σ, µ) be a general function space, with X ⊂ Rn being the spatial

domain, Σ a σ-algebra, and µ a nonatomic measure on Σ. Then a MRA M of L2 is a

sequence of closed subspaces M = {Vj ⊂ L2|j ∈ J ⊂ Z} such that [27]

1. Vj ⊂ Vj+1,

2. ∪j∈JVj is dense in L2,

3. for each j ∈ J , Vj has a Riesz basis given by scaling functions {φj,k|k ∈ K(j)}.

MRAs allow for the definition of approximation S and detail coefficients W [31]. The

approximation coefficients at some level are the discrete approximation of the signal at

that level. The detail coefficients are the coefficients of the wavelet basis functions.

The fast wavelet transform (FWT) is a way of finding these coefficients for each level of

the MRA in linear time. The approximation coefficients at the lowest level are simply

samples of the function. These approximation coefficients can then be combined to

find the approximation and detail coefficients at the other levels, using the following

deconstruction algorithm [31]

Sj+1,m =
1√
2

∑
k

ckSj,2m+k =
1√
2

∑
k

ck−2mSj,k

Wj+1,m =
1√
2

∑
k

bkSj,2m+k =
1√
2

∑
k

bk−2mSj,k,

where ck depends on the wavelet being used as the basis and bk = (−1)kcNk−1−k (Nk

is the number of scaling coefficients).

The inverse FWT allows the reconstruction of all of the approximation coefficients

(including the original samples) from the approximation coefficients at the lowest level

u5586882 23

and the detail coefficients, using the following reconstruction algorithm

Sj−1,m =
1√
2

∑
k

cn−2kSj,k +
1√
2

∑
k

bn−2kWj,k.

One limitation of the FWT is that the function samples generally have to follow some

form of regular sampling scheme. Although it is possible to process irregular samples

to allow them to work for wavelets that are designed to work with regular samples [5].

Also, the approximation of the underlying continuous signal x(t) at a given level j

can be found using a combination of the approximation and detail coefficients as fol-

lows [31]

xj(t) =
∑
m

Sj,mφj,m(t) +
∑
m

Wj,mψj,m(t),

recall that φj,m(t) are the scaling functions and ψj,m are the wavelet functions.

3.12 Haar Wavelets

Haar wavelets on the real line are the simplest example of an orthogonal wavelet [31].

The mother wavelet Ψ(t) is one period of a block wave, and their scaling function φ(t)

is constant on an interval. The equations are as follows [31]

Ψ(t) =

1 0 ≤ t < 1

2

−1 1
2
≤ t < 1

0 elsewhere

φ(t) =

1 0 ≤ t < 1

0 elsewhere

The corresponding FWT cofficients are c0 = c1 = 1.

The key property of Haar wavelets is that they divide the domain using a nested

set of partitionings [27], the scaling functions are constant over their support and the

wavelet basis functions associated with a partition are exclusively defined over the child

partitions [15].

u5586882 24

3.13 Haar Wavelets on the Sphere

There are multiple ways to find the required partitioning of the sphere, and thus mul-

tiple ways to define Haar wavelets on the sphere. This report will use the orthogonal

and symmetric Haar wavelets (SOHO) defined in Lessig and Fiume [15].

The SOHO wavelet basis uses a novel partition scheme of spherical triangles T =

{Tj,k|j ∈ J , k ∈ K(j)}, as shown in Figure 5. The key part of this partitioning scheme

is the placement of the vertices. They are chosen so that the areas of the three outer

child triangles T kj+1,1, T
k
j+1,2 and T kj+1,3 are equal.

Figure 5: Subdivision of a spherical triangle. The labelling of the entities of a spherical

triangle Tj,k is shown in (a), the 4-fold subdivision yielding the child triangles in (b). Source:

[15].

The area of a spherical triangle Tj,k is denoted αj,k and τj,k is the characteristic function

of Tj,k.

The scaling basis functions φj,k are constant over their support Tj,k, with their value

u5586882 25

given by a normalisation constant ηj,k:

φj,k = ηj,kτj,k.

We choose ηj,k = 1/
√
αj,k, as this combined with the disjoint nature of the Tj,k for fixed

j gives that the φj,k on the same level are orthogonal [15].

The wavelet basis functions ψlj,k are as follows

ψ0
j,k =

Λ1

Λ0

τ0 +
1

Λ1

((−2a+ 1)τ1 + aτ2 + aτ3)

ψ1
j,k =

Λ1

Λ0

τ0 +
1

Λ1

(aτ1 + (−2a+ 1)τ2 + aτ3)

ψ2
j,k =

Λ1

Λ0

τ0 +
1

Λ1

(aτ1 + aτ2 + (−2a+ 1)τ3),

where

a =
α0 ±

√
α2
0 + 3α0α1

2α0

Λl =
√
αkj+1,l.

3.14 Rotating Haar Wavelets on the Sphere

Spherical Haar Wavelets (SHWs) are described completely by the location and associ-

ated values of the vertices of the subdividing spherical triangles (see Section 3.13). In

this report, the value associated to a vertex is the modelled depth in the direction of

that vertex. However, in a different application these values could be something else,

such as colour data.

The value of the vertices does not change with a rotation, therefore SHWs can be

rotated by simply rotating the positions of all of the vertices. This has to be done for

all of the subdividing triangles, not just those on a particular level. Note that this is

actually changing the basis, not the coefficients, as the scaling and wavelet functions

are defined with respect to the positions of the triangles. This is not, however, an issue

for the update method used (see Section 4.9).

u5586882 26

The simplicity of rotating the SHWs may raise the question of whether it is also

simple to translate them. Unfortunately, this is not the case. Translating the vertices

would mean that they are no longer located on the unit sphere. Thus the values should

change. However translation moves the vertices to points that are not aligned with the

direction of the original vertices (see the orange lines in Figure 6). So the translated

model cannot be formed just by changing the values. One possible solution is to define

new vertices, in the direction of the translated points (see the purple lines in Figure 6).

However, it is not guaranteed that these new vertices will form spherical triangles that

can be used to construct a SHW basis. Thus translating SHWs is considered outside

the scope of this report.

Figure 6: (Best viewed in colour). Difficulties in translating SHWs. The black point is the

origin, with the unit sphere shown in black around it. The blue points are the vertices of a

spherical triangle, with values equal to the magnitudes of the red arrows. This corresponds

to a 3D position shown by the red points. The green circle is the translated unit sphere, and

the corresponding translated red points are shown in purple. The orange lines show that the

blue and purple points are no longer aligned radially. The purple lines show the new radial

directions that pass through the purple points.

u5586882 27

3.15 Transforming Measurements

Measurements with origin O = [x, y, z] and rotation [α, β, γ] can be brought into align-

ment with a model with origin [0, 0, 0] and rotation [0, 0, 0] by first rotating the measure-

ments by [−γ,−β,−α] and then translating by [−x,−y,−z]. Once the measurements

are aligned with the model, they can be used to update it.

Unfortunately, the optimal way to update the model is not obvious. Spherical har-

monics and spherical Haar wavelets can only be updated in a radial direction. That

is, an arbitrary point [θ, φ, r] can only be moved to [θ, φ, r′]. This causes an issue, as

the measurement data is a gradient in a radial direction for the rotated measurements.

When the measurements are brought into alignment with the model, this gradient no

longer points in a radial direction, and so cannot be used directly to update the model.

This can be thought of as a point [θ, φ, r] on the model being mapped to a point

[θ′, φ′, r′] that does not lie along the same radial direction. There are two main ways

of using this gradient to update the model. One is to move the point [θ, φ, r] by r′ − r

in the θ, φ direction. The second is to find the point of the model in the θ′, φ′ direction

and update it to [θ′, φ′, r′] (see Figure 7, which shows the problem in 2D for simplicity).

A combination of these methods is also possible – moving a point in a direction between

θ, φ and θ′, φ′. The question of which of these methods is best is further complicated

by the fact that updating the spherical harmonics model does not just move a single

point; at the very least points in a small neighborhood around the target point will

also be moved. Section 4.10 will discuss which method was chosen for this report.

u5586882 28

Figure 7: (Best viewed in colour). Two ways to use a transformed measurement to update

a model in 2D. The space fixed frame is in black, with the body fixed frame in aqua. The

model is the brown line to the right. The pink line shows the measurement, with the gradient

shown in green. Ideally we would update the purple point ([θ, r]) on the model to the black

point ([θ′, r]). However we can only move the purple point to the blue point or the orange

point to the black point. This might be clearer from looking at the zoomed inset.

4 Problem Set-up

This report aims to evaluate both methods of updating spherical harmonic basis func-

tions (SBFs) and spherical Haar wavelets (SHWs), that is transforming the models or

the measurements (see Sections 3.10, 3.14 and 3.15) relative to each other, and to com-

pare SBFs and SHWs as basis functions. The code created for this report will generate

a set of base, measurement and testing points. It will then find an initial model using

the base points, which will be updated using the measurements. The error after each

update will be found by comparing the model to the testing points.

In particular, for SBFs the initial model will be found using maximum likelihood esti-

mation for least squares with regression (see Section 3.5). The model will be updated

using gradient descent (see Section 3.6). For SHWs, the initial model will be found

u5586882 29

using the FWT, which will also be used for updating the model (see Sections 3.11

and 3.13). For both SBFs and SHWs, the points will be chosen based on a simulated

trajectory, given by a Fibonacci spiral, which changes the field of view (FOV). The

measurements will then be selected in accordance with this new FOV.

4.1 Generating Points for Spherical Harmonic Model

The points need to be generated in spherical coordinates (see Section 3.7). That is, a θ,

φ and corresponding r value. The first step in generating the points is to decide which

shape to sample the points from. The shape used for this report is a cylinder, cho-

sen due to its simplicity. The height Hc and radius Rc for the cylinder are both variable.

There are three types of points that must be generated: ”base”, ”measurement” and

”test” points. The ”base” points are used to create the initial model (see Section 4.5).

The ”measurement” points are then used to update the model (see Section 4.6) - al-

though note that multiple sets of measurement points must be generated (see Section

4.4). The ”test” points are meant to represent the true shape – the model is compared

with them in order to see how well it approximates the shape.

The ”base” and ”test” points are both generated for an upright cylinder. The ”mea-

surement” points are generated by first generating points for an upright cylinder and

then rotating and/or translating those points according to given parameters. Therefore

a way to sample points from an upright cylinder is required. Note that the sampling

must be uniformly random, as spherical harmonics are extremely sensitive to symmetry

in data.

The sampling is performed by splitting the cylinder into 3 parts: the top disk, the

bottom disk and the mantle. The mantle can be thought of as a rectangle with one

edge joined to the opposite edge. To sample uniformly from the disk, a random value

for the radius R and an angle a need to be chosen. R ∈ [0, R2
c] and a ∈ [0, 2π]. Then

u5586882 30

uniformly sampled Cartesian coordinates are

x =
√
R cos(a), y =

√
R sin(a).

This can then be converted into spherical coordinates using z = Hc/2 for the top disk

and z = Hc/2 for the bottom disk (see Section 3.7).

Uniformly sampling from a rectangle is done by choosing a random xr ∈ [0, 2πRc]

and yr ∈ [−Hc/2, Hc/2]. The spherical coordinates are found directly from xr and yr,

instead of first converting them to the Cartesian coordinate system. xr already samples

a point on the circumference, so φ can be obtained by dividing by Rc. θ and r can be

found using trigonometry (see Figure 8). This gives

θ = π/2− tan−1(yr/Rc)

φ = xr/Rc

r = Rc/ sin(θ).

Figure 8: Sampling points from a cylinder – finding θ and r from yr and Rc

Now a way of transforming the points to obtain the ”measurement” points is needed.

This is done by first transforming the points into Cartesian coordinates, then rotating

u5586882 31

them using a rotation matrix (see Section 3.8 for the conversion from Euler angles

to a rotation matrix). The points can then be translated by subtracting the desired

coordinate shift and then transformed back into spherical coordinates.

If there is measurement uncertainty (u), it is included here. To do this, random num-

bers between −u/2 and u/2 are chosen, and then one of these numbers is added to

each radius of the spherical coordinates we found earlier.

In order to simulate starting with an imperfect model, the ”base” points are found

with a smaller cylinder radius and height than the ”measurement” and ”test” points.

In order to get the measurement gradients, points for the model and environment

are found with respect to the space fixed frame (no rotation or translation). These

points are transformed to be in relation to the body fixed frame. Directions are then

chosen for which to get measurement gradients (note that these must be uniform in

order to get good updates). The closest point in the transformed model point cloud

and the transformed environment point cloud are then found, and the gradient between

them is returned.

This method is necessary for translations to work. Points on the model can only

be found with respect to the space fixed frame. So finding the point on the model in a

certain direction defined with respect to the body fixed frame is difficult (see literature

on ray tracing such as Glassner’s introductory text [8]). Thus the point cloud method

is used. This method should be reasonably accurate when the point clouds are dense.

4.2 Generating Points for Wavelet Model

Generating points for the Spherical Haar Wavelet (SHW) model follows mostly the

same process as for the Spherical Harmonic model (see Section 4.6).

However, one limitation of the SHW basis functions used in this report is that they

u5586882 32

require a very specific sampling scheme. In order for them to work properly the sam-

ple points must form the vertices of the triangles described in Section 3.13. That is,

they form groups of four triangles where the outer three triangles all have the same area.

The sampling scheme is implemented as follows [15]. First, the geodesic bisector v1j,k is

chosen. Then the positions of the other two vertices v2j,k and v3j,k are chosen to satisfy

the following system of equations

cot

(
E

2

)
= cot(C) +

cot(β1/2) cot(γ/2)

sin(C)

cot

(
E

2

)
= cot(B) +

cot(β2/2) cot(γ/2)

sin(B)

cot

(
E

2

)
= cot(A) +

cot(b/2− β1/2) cot(c/2− β2/2)

sin(A)
,

where β1 = v2j,k, β2 = v3j,k, E denotes the spherical excess of the three outer child

domains and the other variables are as shown in Figure 5 (page 24).

Thus in order to allow for arbitrary points to be sampled the environment is given

as a function that takes θ and φ as inputs and returns the radius r in that direction.

For a cylinder with radius Rc and height Hc, the function fc is

fc(θ, φ) =

∣∣∣∣∣∣∣∣∣∣∣

Hc

2∗cos(θ) if θ ≤ tan−1
(

2Rc

Hc

)
or θ ≥ π − tan−1

(
2Rc

Hc

)
Rc

cos(π/2−θ) if θ > tan−1(2Rc

Hc
) and θ ≤ π

2

Rc

cos(θ−π/2) if θ > π
2

and θ < π − tan−1
(

2Rc

Hc

)

∣∣∣∣∣∣∣∣∣∣∣
.

This function was found based on the sampling scheme described in Section 4.1.

4.3 Setting the Field of View

The procedure described in Sections 4.1 and 4.2 generate points over the whole scene.

However, physical cameras do not take a 360° photo of everything around them – they

are limited by their FOV.

To implement this, the points were first generated over the whole scene as described

u5586882 33

in Section 4.1 and 4.2. Points were then filtered so that only points whose θ value was

within the vertical FOV and whose φ value was within the horizontal FOV were kept.

The center of the cameras was defined at θ = π/2 (i.e. on the horizontal plane) and

φ = π. φ = π was chosen instead of φ = 0 to simplify the filtering.

4.4 Choosing measurement locations

The new measurements are chosen such that the trajectory follows a Fibonacci spiral.

The latitude and longitude of the ith point in such a trajectory are given by [10]

lati = sin−1
(

2i

2N + 1

)
loni = 2πiΦ−1,

where Φ = 1 + Φ−1 = (1 +
√

5)/2 and i ranges from −N to N . N is chosen so that the

desired number of points is produced.

This corresponds to Euler angles [(lon + π) mod 2π, |lat− π/2|, 0]. Also, note that no

points are produced at the poles.

These Euler angles determine the rotation between each set of measurements, how-

ever a translation is also required. For simplicity, translation occurs in a loop, with the

ith position of the center of the shape given by

xi = r cos(ai), yi = r sin(ai), zi = 0,

where ai = 2πi/8.

4.5 Creating the Initial Spherical Harmonic Model

The model used for the spherical harmonic basis functions (SBFs) is a set of basis

functions with associated weights, as described in Section 3.4. In the case of this re-

port, each data-point xn is a row vector containing a θ value in the first column and

a φ value in the second. The associated target tn is then the corresponding radius (r

u5586882 34

value). The M = (k + 1)2 basis functions are spherical harmonics of up to order k.

The initial weights (and thus the initial model) are found using maximum likelihood

estimation, as described in Section 3.5. The data used in this step is the ”base” data,

as described in Section 4.1. As this is for the initial model, the FOV covers the entire

environment (i.e. the vertical FOV is chosen as π and the horizontal FOV as 2π).

4.6 Updating the Spherical Harmonic Model

The SBF model is then updated based on new data, the ”measurement” data described

in Sections 4.1 and 4.4. There are two different ways the model can be updated. The

first is transforming the weights in order to make the current model align with the new

measurements (see Section 3.10) and then using the ”measurement” data directly to

update it. The second is transforming the measurement data to align with the current

model (see Section 3.15) and then using this aligned measurement data to update the

current model. Figure 9 gives an example of each of these methods.

(a) Initial model with un-

aligned measurements

(b) Transform the measure-

ments so they are aligned

with the model

(c) Transform the model so

it is aligned with the mea-

surements

Figure 9: Two ways to update a model with new unaligned measurements. The model is

shown in black, and the measurements are shown in red.

Once the model and ”measurement” data are aligned, gradient descent is then used to

update the weights of the model. Note that the formula for gradient descent provided

in Section 3.6 uses the actual measurements, but we only have the gradients (that is,

the amount that a point on the model needs to move in a radial direction to match the

u5586882 35

measurement). However, this gradient is the same as Bw− t, so if we let the gradient

be ∆t, then we can use the following formula for gradient descent

w(τ+1) = w(τ) − ηB∆t

When using gradient descent it is very important to choose the correct step size. If the

step size is too large, it can result in overshoot, if it is too small then the method will

take too long to converge. A step size of 10−3 was chosen for this report, using trial

and error.

When the weights are transformed, they need to be transformed back after the update

step in order to allow for comparisons with the other method and the ”test” data. How-

ever, as some error is introduced with every transformation, the transformed weights

are used for the next update step. This requires that the next transform is in terms of

the previous transform, instead of in terms of the initial state of the model. How to

do this is detailed in Section 4.7.

4.7 Getting Euler Angles in Terms of a Rotated Frame

The aim of this section is to detail how to transform Euler angles [α, β, γ] defined with

respect to an original frame into Euler angles [α′, β′, γ′] defined with respect to a ro-

tated frame (described in Euler angles [α0, β0, γ0]) of that frame. (See Section 3.8 for

an overview of Euler angles).

This can be done using rotation matrices and then transforming them back into Euler

angles. Recall that the rotation matrix corresponding to Euler angles [α, β, γ] is given

by

Rzyz = RzRy′Rz′ =

cacbcg − sasg −cacbsg − cgsa casb

cbcgsa + casg cacg − cbsasg sasb

−cgsb sbsg cb

For the initial rotation, this matrix corresponds to angles [α0, β0, γ0]. So for the initial

rotation matrix Rzyz0 we will write

u5586882 36

Rzyz0 =

ca0cb0cg0 − sa0sg0 −ca0cb0sg0 − cg0sa0 ca0sb0

cb0cg0sa0 + ca0sg0 ca0cg0 − cb0sa0sg0 sa0sb0

−cg0sb0 sb0sg0 cb0

The inverse of a rotation matrix is its transpose, so the inverse rotation is

R−1zyz0 = RT
zyz0 =

ca0cb0cg0 − sa0sg0 cb0cg0sa0 + ca0sg0 −cg0sb0

−ca0cb0sg0 − cg0sa0 ca0cg0 − cb0sa0sg0 sb0sg0

ca0sb0 sa0sb0 cb0.

Therefore the new rotation matrix Rzyzn with respect to [α0, β0, γ0] is given by

Rzyzn = RzyzR
−1
zyz0

=

cacbcg − sasg −cacbsg − cgsa casb

cbcgsa + casg cacg − cbsasg sasb

−cgsb sbsg cb

ca0cb0cg0 − sa0sg0 cb0cg0sa0 + ca0sg0 −cg0sb0

−ca0cb0sg0 − cg0sa0 ca0cg0 − cb0sa0sg0 sb0sg0

ca0sb0 sa0sb0 cb0

We can work out this matrix product using MATLAB, so for simplicity let

Rzyzn =

cacbcg − sasg −cacbsg − cgsa casb

cbcgsa + casg cacg − cbsasg sasb

−cgsb sbsg cb

ca0cb0cg0 − sa0sg0 cb0cg0sa0 + ca0sg0 −cg0sb0

−ca0cb0sg0 − cg0sa0 ca0cg0 − cb0sa0sg0 sb0sg0

ca0sb0 sa0sb0 cb0

=

r11 r12 r13

r21 r22 r23

r31 r32 r33

We then set this equal to

ca′cb′cg′ − sa′sg′ −ca′cb′sg′ − cg′sa′ ca′sb′

cb′cg′sa′ + ca′sg′ ca′cg′ − cb′sa′sg′ sa′sb′

−cg′sb′ sb′sg′ cb′

This gives [6, p. 45]

β′ = atan2(
√
r231 + r232, r33)

α′ = atan2(r23/ sin β′, r13/ sin β′)

γ′ = atan2(r32/ sin β′,−r31/ sin β′).

u5586882 37

Note that β′ must be calculated first.

4.8 Creating Initial Wavelet Model

The initial wavelet model is found using the FWT (the FWT is discussed in Section

3.11). When considering only one partition Tj,k (see Section 3.13), the analysis and

synthesis steps of the FWT can be expressed as compact matrix-vector products, with

analysis matrix Aj,k and synthesis matrix Sj,k. As the SHWs used in this report are

orthonormal, Aj,k = STj,k [15]. An analysis step is given by

λj,0

λj,1

λj,2

λj,3

=

hj,k,0 hj,k,1 hj,k,2 hj,k,3

hj,k,0 hj,k,1 hj,k,2 hj,k,3

hj,k,0 hj,k,1 hj,k,2 hj,k,3

hj,k,0 hj,k,1 hj,k,2 hj,k,3

λj+1,0

λj+1,1

λj+1,2

λj+1,3

and

γj,0

γj,1

γj,2

 =

gj,0,0 gj,0,1 gj,0,2 gj,0,3

gj,1,0 gj,1,1 gj,1,2 gj,1,3

gj,2,0 gj,2,1 gj,2,2 gj,2,3

λj+1,0

λj+1,1

λj+1,2

λj+1,3

and a synthesis step is given by

λj+1,0

λj+1,1

λj+1,2

λj+1,3

=

hj,k,0 gj,0,0 gj,1,0 gj,2,0

hj,k,1 gj,0,1 gj,1,1 gj,2,1

hj,k,2 gj,0,2 gj,1,2 gj,2,2

hj,k,3 gj,0,3 gj,1,3 gj,2,3

λj,k

γj,0

γj,1

γj,2

where λj,k are the scaling function coefficients and γj,m are the basis function coeffi-

u5586882 38

cients. Here, hl and gml are the filter coefficients. The values are given by [15]

hj,k,l =

√
αkj+1,l

√
αj,k

gj,0,0 = −
√
α1√
α0

gj,1,0 = gj,0,0 gj,2,0 = gj,0,0

gj,0,1 = −2a+ 1 gj,1,1 = a gj,2,1 = a

gj,0,2 = a gj,1,2 = gj,0,1 gj,2,2 = a

gj,0,3 = a gj,1,3 = a gj,2,3 = gj,0,1

The synthesis step gives the initial model; only the coarsest level of the scaling function

coefficients needs to be remembered, along with all of the basis function coefficients.

After these coefficients have been found they can then be filtered, retaining only the

most significant coefficients and setting the others to 0. This saves time and space, but

obviously prevents perfect reconstruction during the synthesis phase.

4.9 Updating Wavelet Model

Due to the four different types of coefficients and the localised nature of the Spherical

Haar Wavelet (SHW) functions, the gradient descent algorithm described in Section

3.6 is not used. However the method that is used implements a similar idea.

Each SHW function is zero outside of a specific spherical triangle (see Section 3.13).

Thus updating with a new measurement point can be done by adjusting the wavelet

coefficients of each spherical triangle that the point lies in. First, the point is mapped

to the unit sphere, with its distance out from the the model in the radial direction

stored as an associated gradient. Next, the spherical triangle on the highest level that

this point lies in is found and its wavelet coefficients adjusted accordingly (how exactly

this is done will be discussed later). Then the process is repeated with the children of

this spherical triangle. This process continues until the second lowest level is reached.

Note that the lowest level cannot be used with the current implementation, as the SHW

u5586882 39

functions for a spherical triangle are defined with respect to the children of that trian-

gle and these are not found for the lowest level. The scaling coefficients are not altered.

The adjustment of the wavelet coefficients for Tj,k is as follows:

ψ0
j,k = ψ0

j,k + ηnηl∇r(τ0/3 + τ1)

ψ1
j,k = ψ1

j,k + ηnηl∇r(τ0/3 + τ2)

ψ2
j,k = ψ2

j,k + ηnηl∇r(τ0/3 + τ3),

where ηn is a scaling constant that is used across all levels, and ηl is a scaling constant

that varies depending on the level of the triangle. ηn depends on the number of mea-

surements, it is chosen as lr
nmeas

. Where lr is the step size, as with gradient descent (see

Section 3.6). It is found using trial and error. nmeas is the number of measurements,

this term is necessary as the measurement gradients are found with respect to the

original model, but the update only does one point at a time. So this term counteracts

the way that updating one point changes the gradient for the other points. This still

introduces some error, as each point moves the model by a different amount in different

directions (ways to fix this will be discussed later).

ηl takes into account the fact that the wavelet functions are localised, and have dif-

ferently sized supports in each level. As this method updates one point at a time,

it makes sense to move the smaller triangles more than the bigger ones. Thus ηl is

chosen as j2

j3max
, where j is the current level and jmax is the lowest level. Note that the

denominator has a power one higher than the numerator. This accounts for the fact

that the wavelet coefficients are being updated on each level.

There are ways to combat the error introduced by updating one point at a time.

The most obvious is to use the un-updated model and the gradient to find the points

which the model would be moved to. Then when adding a new point the gradient

can be recalculated for that point based on the current model. This was judged to

have too large a time cost to be worth implementing at this stage, however it would

be worth investigating later to see how much it affects the convergence characteristics

u5586882 40

of the model. Another possibility is finding a way to use this method with batch up-

dates, however this would be difficult due to the fact that triangle which a single point

lies in needs to be located across different levels. So working out which triangles to

scan on the lower levels is a bit more involved than simply taking the children of the

current triangle. Also, the batch method would probably work by taking into account

how many points lie in each triangle. Thus if points are located one by one, wavelet

coefficients cannot be updated immediately. Instead, there would need to be some way

of storing which points (and the associated gradients) lie in which triangle and then

updating using this information (although it should still be possible to update one level

at a time).

4.10 Choosing Moved Measurements Method

Implementation

Recall that there are two main ways of updating the model with a new transformed

point [θ′, φ′, r′] (see section 3.15). The first is to take the point [θ, φ, r] that was in

alignment with the untransformed measurement point and move it to [θ, φ, r′]. The

second is to find the point of the model in the θ′, φ′ direction and update it to [θ′, φ′, r′].

A combination of these methods is also possible.

Intuitively, if the environment is locally similar (i.e. given a point [θ, φ, r] there will be

similar radius values to r for directions close to [θ, φ]) then moving the point [θ, φ, r]

to [θ, φ, r′] will be best. This is because the radius value should be reasonably close for

the θ, φ and θ′, φ′ directions. Likewise, if the model is locally similar then moving the

point of the model in the θ′, φ′ direction to [θ′, φ′, r′] will be better.

Note that both of these methods will work well when the θ, φ direction is close to

the θ′, φ′ direction. However, as the amount the point is moved increases, the effect of

a difference in directions is magnified.

u5586882 41

This report moves the point in the θ′, φ′ direction to [θ′, φ′, r′]. This was a somewhat

arbitrary choice, decided mainly by ease of implementation. A further investigation of

the benefits of each of these methods could be a good extension to this report.

5 Simulation Study

In this section, the moved model method and moved measurements methods, using

both a spherical harmonic basis (SBF) and a spherical Haar wavelet (SHW) basis, are

compared using MATLAB. The scene itself is simulated. This allows for test values

to be generated, reduces possible sources of error and allows for the effect of different

parameter values to be tested easily. The results in this section use the parameter val-

ues in Table 1 for both types of basis functions, with SBF-specific parameters given in

Table 2 and SHW-specific parameters given in Table 3, except where otherwise stated.

The full code of the simulation study is provided in Appendices 8.1 and 8.2.

Name Value Description

N 20 N for Fibonacci spiral (see Section 4.4)

nmeas 2000 Number of measurement points for each camera movement

nbase 10000 Number of points used to find initial model

ntest 10000 Number of test points

R 1.5 Radius of actual cylinder (used for test and measurement)

h 3 Height of actual cylinder (used for test and measurement)

R0 1 Radius of initial cylinder (used for initial model)

h0 2 Height of initial cylinder (used for initial model)

fovt π Vertical FOV

fovp 2π Horizontal FOV

scale 1 Scale for gradient (see Section 3.2)

uncer 0 Uncertainty in measurements (standard deviation)

Table 1: Parameter values used in simulation study, except where otherwise stated

u5586882 42

Name Value Description

n 40 Highest order of SBFs

lam 0.1 regularisation constant (see Section 3.5)

lr 0.001 step size (see Sections 3.6 and 4.6)

Table 2: Parameter values used in simulation study for spherical harmonic (SBF) basis,

except where otherwise stated

Name Value Description

level 4 highest level for SHWs

nc 1024 number of non-zero coefficients for SHWs

lr 100 step size (see Section 4.9)

Table 3: Parameter values used in simulation study for spherical Haar wavelet (SHW) basis,

except where otherwise stated

5.1 Resultant Observer Error

This section investigates the convergence rate with the parameters listed in Tables 1,

2 and 3. Note that these parameters are not realistic. This section focuses purely on

comparing the two methods and sets of basis functions under ideal circumstances. The

effect of error in the measurements, introducing a realistic FOV for the camera and

other parameter changes will be investigated for spherical harmonics (SBFs) in Section

6, however they could not be represented for spherical Haar wavelets (SHWs) due to

time constraints.

There was difficulty when choosing the step size for the SHWs, which lead to insuffi-

cient time to run a simulation until convergence. With lr = 500, the error appeared

to decrease normally (albeit slowly), until it reached about 0.29, after which it began

increasing. This indicates that the step size is too high (see Section 14). A step size

of 100 is used in this section, but it is only a guess based on some trial and error for

values below 500. There was not enough time to run the simulation until convergence.

u5586882 43

Thus it is yet to be confirmed whether the update method actually works as intended.

(a) Model found using moved model method

with SBF

(b) Model found using moved measurements

method SBF

(c) Model found using moved model method

with SHW basis

(d) Model found using moved measurements

method SHW basis

Figure 10: Models obtained by each method, under conditions listed in Tables 1, 2 and 3.

Figure 10 shows the models that are obtained after all 41 of the camera movements.

The models are supposed to be of upright cylinders with radius 1.5 and height 3, cen-

tered on the origin. Visually inspecting them, the two different methods of updating

seem to have little effect on the overall shape, however there are clear differences be-

tween the different bases. The SBF does well although there is a slight ”ripple” effect

on top and bottom discs and along the sides. The wavelet model has rounded sides,

and blocky parts around the edges of the top and bottom disks.

u5586882 44

These issues with the SHWs are at least partially due to the limitations of the ba-

sis functions, not the update methodology. Even when the environment is modelled

directly (i.e. the ”base” points are sampled from the correctly sized cylinder and no

further updates are made) these effects are still visible (see Figure 19 in Appendix 8.4).

Increasing the level of the SHWs to 7 and having 4096 non-zero coefficients improves

the accuracy of the model greatly (again, see Figure 19). These values were not chosen

for the main study as they take longer to run and require more memory to store the

coefficients. However in an application where accuracy is much more important than

time or memory constraints it is recommended to use a high value for these parameters.

0 5 10 15 20 25 30 35 40 45

Number of camera movements

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
um

-s
qu

ar
es

 e
rr

or
 c

om
pa

re
d

to
 te

st
in

g
da

ta

Moved model method (SBFs)
Moved measurements method (SBFs)
Moved model method (SHWs)
Moved measurements method (SHWs)

Figure 11: Sum-squared error for both methods and bases, under conditions listed in Tables

1, 2 and 3

Figure 11 shows the sum-squared error between the models and the test points. There

is a large difference between the two bases. The SHWs have a much slower convergence

rate than the SBFs, in fact their convergence rate appears linear which is obviously not

ideal. However, whether the convergence rate is linear or not cannot be determined

without seeing the full shape of the error graph before convergence.

u5586882 45

For the SBFs, the convergence rate of the two update methods is so similar that they

cannot be distinguished by eye. Table 4 quantifies the difference between the sum-

squared error for each method. This table shows that the difference is small enough to

be negligible, so the convergence rate and noise floor are essentially the same for both

methods.

Total difference Average difference Standard deviation

2.8505× 10−10 6.7869× 10−12 1.2245× 10−11

Table 4: Difference in sum-squared error between moved model method and moved measure-

ments method for SBFs, under conditions listed in Tables 1 and 2

For the SHWs, it can be seen that the moved model method converges faster than

the moved measurements method for the SHWs, which is not the case for the SBFs.

The moved model method for the SHWs is exact, which is not the case for the SBFs.

However as this simulation only included rotation (no simulation), the moved measure-

ments method should also not have any error (see Section 3.15). Thus this difference

may be an indication that the update method for SHWs is not working as expected,

and has some subtle interaction with the orientation of the model being updated.

Figure 12 shows the log of the sum-squared error plotted against the number of camera

movements for the SBFs, The slope is approximately linear for the first part, but then

begins flattening out after about 12 camera movements. This means that the con-

vergence rate is slower than exponential. Gradient descent generally has exponential

convergence. However, in this case we are optimising the least-squares distance to the

measurement points at each camera movement, whereas Figure 12 has the log of the

sum-squares error between the model and the test points. The error also plateaus after

about 17 camera movements, corresponding to when the error stops decreasing.

The first part of the log plot is approximately linear, so we can approximate the first

part of the convergence as exponential. This part has a gradient of −8.7165−(−3.9858)
30−10 −

u5586882 46

0 5 10 15 20 25 30 35 40 45

Number of camera movements

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Lo
g

of
 s

um
-s

qu
ar

ed
 e

rr
or

 o
f m

od
el

 c
om

pa
re

d
to

 te
st

in
g

da
ta

Moved model
Moved measurements

Figure 12: Log of sum-squares error for SBFs with each method, under conditions listed in

Tables 1 and 2

0.2365 and a (projected) y-intercept of −1.0555. So we can approximate the con-

vergence of the sum-squared error as following exp(−0.2365x − 1.0555), where x is

the number of camera movements. (Note that this can be written as Ceax, where

C = e−1.0555 and a = −0.2365).

5.2 Computational Time

The data structure used to implement the spherical Haar wavelets (SHWs) is not opti-

mised to take advantage of the sparse nature of the coefficients. Thus the results in this

section may not be indicative of how a well-optimised implementation would perform.

This is mostly relevant to comparing the times taken for the SHWs and and spherical

harmonic basis functions (SBFs), as improving the data structure would likely improve

the computational time of both update methods by a similar amount. Also, conclu-

sions can still be drawn about the current implementations of each method and basis.

Table 5 shows the computational times for each method with each basis. (These times

correspond to the results shown in Figures 11 and 10).

u5586882 47

Basis Method Average computational time (s) Standard deviation

SBF Moved model 82.9707 2.5056

SBF Moved measurements 1.1474 0.0618

SHW Moved model 30.4041 0.6168

SHW Moved measurements 29.9540 0.6480

Table 5: Computational time, under conditions listed in Tables 1, 2 and 3

As can be seen, the moved model method for spherical harmonics (SBFs) takes 72.312

times longer than the moved measurements method. This is with 2000 measurements

and basis functions of up to order 40 (so 1681 basis functions). If the number of

measurements increases or the number of basis functions decreases, then this ratio

will become lower. (This is shown in Figure 20). The difference in methods is much

smaller for the spherical Haar wavelets (SHWs), for which the moved model method

is only 1.015 times slower (and this difference may be due to error, as the values are

within a standard deviation). However both of the methods for the SHWs are signif-

icantly slower (about 26 times) than the moved measurements method for the SBFs,

although they are faster than the moved model method for the SBFs (about 2.8 times).

Figure 20 in Appendix 8.4 shows the relationship between the ratio of the times taken

for each method using the SBFs and the number of measurements (with n = 40) is

approximately linear. One possible reason that the relationship is not more linear in

this graph is that the data was collected in different batches. The 1000, 3000 and

4000 measurements data was collected together, as was the 1500, 2500, 3500 and 5000

measurement data, whereas the 2000 measurement data was collected by itself. These

results are sensitive to the state of the computer when the code is run, so that could

have resulted in errors. Although the ratio between the times for each method should

be less sensitive to this than the absolute times for each of the methods (as differences

in the state of the computer should effect both methods similarly). The line of best fit

for the model is −0.0091m + 94.175, where m is the number of measurements (found

u5586882 48

using the MATLAB function polyfit). This means the ratio will be 1 (i.e. the moved

model method will be just as fast as the moved measurements method) when m ≈ 104.

Figure 21 in Appendix 8.4 shows the relationship between the ratio of the times taken

for each method and the maximum order of the basis functions (with 2000 measure-

ments at each camera movement). Note that if the maximum order of basis functions

is n, then the number of basis functions is (n + 1)2. The relationship appears to be

quadratic, with line of best fit 0.0369n2 +0.3169n+1.1451 (also found using the MAT-

LAB function polyfit). This means that even with only one basis function (n = 0),

the moved measurements method will be faster for 2000 measurements. However, this

relationship can be combined with the relationship between the ratio and the number

of measurements (found above) to see which method will be faster for different combi-

nations of n and m.

How important computational time is depends on the application. If the applica-

tion seeks to run in or close to real-time, then a short computational time is extremely

important. For example, an autonomous robot constructing a model of its environment

and using said model to navigate as it travels. For other applications, computational

time may be less important. For example, constructing a 3D model of an environment

for use in a movie.

For applications that highly value computational time and do take an extremely large

number of measurements on each camera movement (i.e. around 104), the most suit-

able method would be the moved model method with SHWs. In other situations, the

moved measurements method with SBFs will likely be the fastest.

It may still be possible to use the moved model method with SBFs if accuracy is

not a priority, by decreasing the number of basis functions. However the moved mea-

surements method will almost certainly be a better choice for SBFs when speed is

required.

u5586882 49

6 Additional Results for Spherical Harmonic

Basis Functions

This section presents results for additional scenarios that were investigated for spherical

harmonic basis functions (SBFs) but not spherical Haar wavelets (SHWs). These

include translation with the moved measurements method, basin of attraction, various

robustness characteristics and field of view. This Section uses the parameter values

from Section 5 in Tables 1 and 2, except where stated otherwise.

6.1 Translation

The moved measurements method allows for the camera to be translated as well as

rotated. Allowing for translation is very important, as for applications such as robotic

mapping camera translation is essential.

Figure 13 shows the sum-squares error when the camera is translated in a circle of

radius 0.01, with all other aspects remaining the same as in Section 5.1. The conver-

gence behaviour shown in Figure 13 is very similar to that shown in Figure 11. The

total difference between the sum-squares error for the moved measurements method

with and without translation is 0.0065. Considering the fact that adding translation

modifies the trajectory, this difference is negligible.

6.2 Basin of attraction

This section investigates how the initial estimate of the model effects the convergence

to the test model. A wide basin of attraction is important for applications where a

good estimate of the scene is not available at the start.

Due to the large staring errors, N was increased for some of tests so that the overall

shape of the convergence could be observed. The overall shapes of the error graphs are

similar to Section 5.1, but with different starting points and gradients. Table 6 shows

u5586882 50

0 5 10 15 20 25 30 35 40 45

Number of camera movements

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
um

-s
qu

ar
ed

 e
rr

or
 o

f m
od

el
 c

om
pa

re
d

to
 te

st
in

g
da

ta

Figure 13: Sum-squared error for moved measurements method, with camera translation in

a circle and under conditions listed in Tables 1 and 3

the approximate convergence rates of the first part (the approximately linear down-

wards slope in the log graph of the sum-squared error) when starting with different

initial models. Note that the convergence rate applies for both methods – as in Section

5.1, any difference in convergence between the two methods was found to be negligible.

These results show that even if the initial model is far different to the actual scene,

the model will still converge. However, it will take longer. Note that the coefficient of

the x-term in the exponent is fairly similar across most of the initial models, but the

constant term varies by quite a bit. This indicates that the reduction in error after a

new set of measurements is fairly similar for most choices of initial model, even though

the initial error differs.

The fact that the convergence rates are the same for both methods means that they

are equally robust to changes in the initial model.

u5586882 51

Shape Radius Height N Convergence rate

Cylinder

150 300 50 exp(−0.2221x+ 10.3264)

75 150 50 exp(−0.2212x+ 8.925)

15 30 50 exp(−0.1857x+ 5.5328)

0.3 0.06 30 exp(−0.2290x+ 1.1024)

0.015 0.03 50 exp(−0.1236x+ 1.1194)

0.0015 0.003 30 exp(−0.2347x+ 1.1380)

Sphere
1 N/A 30 exp(−0.2112x− 0.4981)

3 N/A 30 exp(−0.2280x+ 0.4604)

Table 6: Convergence rates for various initial models. Note that the desired model in all

cases is a cylinder with radius 1.5 and height 3. The convergence rate is worked out using

the log of the sum-squares error as in Section 5.1.

6.3 Robustness: Measurement Scaling

This section investigates how scaling the measurement gradients effects the conver-

gence to the test model. Here, the measurement gradient is the amount a point on

the model needs to be moved in a certain radial direction in order for it to match the

measurement. This is important as the light field cameras that this work aims to be

used with can only provide relative gradient information. This testing is done with a

constant measurement scaling, which may not be accurate to real gradient information

from light field cameras. However, if the gradient scalings do not differ greatly these

results should still give an idea of the robustness with respect to different average gra-

dient scalings.

Note that changing the scaling has the same effect as changing the step size of the

gradient descent. Recall that we are using the following formula for gradient descent

(see Sections 3.6 and 4.6)

w(τ+1) = w(τ) − ηB∆t

u5586882 52

Where ∆t is the measurement gradient and η is the step size, for this section η = lr =

0.01 as in Table 2 in Section 5. It is clear that multiplying ∆t by a constant produces

the same effect as multiplying η by that same constant. This means that the effect of

changing the scaling can be offset by changing the step size.

0 5 10 15 20 25 30 35 40 45

Number of camera movements

0

1

2

3

4

5

6

7

S
um

-s
qu

ar
ed

 e
rr

or
 o

f m
od

el
 c

om
pa

re
d

to
 te

st
in

g
da

ta

#1027

Moved model
Moved measurements

(a) Measurement gradient scaling of 10

0 10 20 30 40 50 60 70

Number of camera movements

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
um

-s
qu

ar
ed

 e
rr

or
 o

f m
od

el
 c

om
pa

re
d

to
 te

st
in

g
da

ta

Moved model
Moved measurements

(b) Measurement gradient scaling of 5

0 10 20 30 40 50 60 70

Number of camera movements

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
um

-s
qu

ar
ed

 e
rr

or
 o

f m
od

el
 c

om
pa

re
d

to
 te

st
in

g
da

ta

Moved model
Moved measurements

(c) Measurement gradient scaling of 0.1

Figure 14: Sum-squares error for both methods for different measurement gradient scalings,

but all other parameters as listed in Tables 1 and 3

With a gradient scale of 5, overshoot occurs but the method ends up converging. With

a gradient scale of 10, convergence no longer occurs. On the other hand, with small

gradient scales, convergence is very slow. (See Figure 14). Note that the sum-squared

error of the two methods is still close enough that they cannot be distinguished by eye.

u5586882 53

6.4 Robustness: Measurement Uncertainty

This section investigates how introducing uncertainties to the measurements effects

the convergence to the test model. Robustness to measurement errors is important

because in a physical system there will be errors in the measurements. This section

used N = 30 in order to ensure that full convergence behaviour can be observed.

As in the previous sections, the sum-squared error of the two methods is close enough

to be negligible. (With a measurement uncertainty of 1, the total difference is 8.6756×

10−9 for 61 camera movements). The overall shape of the convergence is the same as

without measurement uncertainty, but the method converges to a noise floor instead

of 0 (see Figure 22 in Appendix 8.4). Figure 23 in Appendix 8.4 shows the relation

between this noise floor and the measurement uncertainty. This relationship appears to

be quadratic, with line of best fit 0.0067u2− 0.0001u+ 0.0001, where u is the standard

deviation of the measurements (found using the MATLAB function polyfit). How-

ever, more simulation data would be needed to confirm whether this is actually the case.

The measurement uncertainty appears to have the same effect for both methods. It

does not appear to significantly effect the convergence rate, but does result in a noise

floor. These methods appear to scale quadratically with the standard deviation (and

thus linearly with the variance), which is often the best that can be expected.

6.5 Field of View

This section investigates how limiting the FOV effects the convergence to the test

model. Robustness to a limited FOV is important as physical cameras do not have a

full FOV of everything around them.

When a limited FOV is introduced the methods take much longer to converge. The

values investigated for (vertical FOV, horizontal FOV) were (π/4, π/4), (π/4, π/3),

(π/3, π/3), (π/3, π/2), (π/2, π/2). Both methods were tested for N = 70 for these

u5586882 54

FOVs, and the difference between the sum-squared error of each method was again

found to be negligible. The methods did not converge with this many camera move-

ments. N = 500 was then used, but this was only done for the moved measurements

method due to time constraints. The results are shown in Figure 15. As expected, a

larger FOV results in faster convergence. Interestingly, the vertical FOV appears to

matter much more for the convergence than the horizontal FOV. This may just be due

to that fact that the scene being modelled is an upright cylinder, so the distance to the

scene in a direction varies vertically but not horizontally. Another interesting feature

is that the shape of the curve is different to when the FOV is not limited. It starts

reasonably steeply, then flattens out for a bit, becomes steeper again and finally slows

down and flattens out as it converges. The flat middle section likely indicates that

there is an overlap in information between camera movements. Camera movements

that look at entirely new points will provide more information, and therefore allow for

faster convergence, than when the camera is looking at an area that contains points

that have already been used to update the model. However, implementing an optimal

scheme for moving the camera by taking this into account is not a trivial task.

0 200 400 600 800 1000 1200

Number of camera movements

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
um

-s
qu

ar
ed

 e
rr

or
 o

f m
od

el
 c

om
pa

re
d

to
 te

st
in

g
da

ta Vertical FOV: pi/4, Horizontal FOV:pi/4
Vertical FOV: pi/4, Horizontal FOV:pi/3
Vertical FOV: pi/3, Horizontal FOV:pi/3
Vertical FOV: pi/3, Horizontal FOV:pi/2
Vertical FOV: pi/2, Horizontal FOV:pi/2

Figure 15: Sum-squared error for moved measurements method. N = 5000 and FOV varied.

All other paramters are as listed in Tables 1 and 2.

u5586882 55

Also, note that the way that the FOV is implemented, the number of measurements

sets the number of points generated over the whole scene. The points within the FOV

are then kept. This means that a wider FOV will also take in more measurements. The

number of measurements was set to 5000, although as stated earlier not all of these

measurements were used to update the model. This distorts the results, as it means the

number of measurement points is also changing with the FOV, which is not generally

the case for real cameras. Thus to get more meaningful results comparing FOVs the

code should be rewritten to allow for the number of measurement points within the

field of view to be set and these experiments repeated. Nevertheless, these results do

show that the overall shape is fairly consistent between different FOVs.

7 Conclusion

The only significiant performance difference found between the moved model method

and the moved measurements method for SBFs is in their computational time. The

moved measurements method was found to be approximately 72 times faster when

using the parameters in Tables 1 and 2. This ratio changes depending on the number

of measurements and basis functions (see Section 5.2), but for the vast majority of

applications the moved measurements method will be significantly faster. In addition,

the moved measurements method can be used with measurements taken from a camera

that has been translated, whereas currently the moved model method cannot. There-

fore it appears that the moved measurements method is superior.

This computational time difference between the two methods is barely present for

the SHWs. The moved measurements method is only about 1.015 times faster, and

this difference may just be due to error as it is well within 1 standard deviation of

the average times. Both of these methods are much slower (about 26 times) than the

moved measurements method for SBFs, but they are slightly faster than the moved

model method for SBFs (about 2.8 times). The relative slowness of the SHWs is likely

due to poor choice of data structure when implementing the coefficient storage.

u5586882 56

Both methods and bases have some issues. The main one is the importance of choosing

an appropriate step size and how this interacts with the measurement gradient scaling.

As explained in Section 6.3, changing the step size produces the same result as changing

the gradient scaling. So if the gradient scaling is not known then choosing an appro-

priate step size will be difficult. If the step size is too large, it can cause overshoot,

which can delay convergence or even stop the method from converging. If the step size

is too small, it will take too long to converge. The step size should therefore be chosen

conservatively to ensure that the method will actually converge. Also, note that the

gradient scaling may not be constant. However, if the model is updated appropriately

for the majority of measurements, then the error introduced by measurements with

large gradient scalings will eventually be overcome.

Unfortunately the SHWs were not fully investigated due to time constraints. Only

performance in ideal situations and computational time under those conditions were

found. There was also only one shape that was modelled (a cylinder), thus more shapes

should be tested for both the SHWs and the SBFs in order to find which ones each

basis is suited to modelling.

A slightly longer-term goal is investigating why the wavelet update method is not

working as desired. This could be due to not having found the right step size. However

if this is not the (only) problem then clearly a new method of updating should be found

and tested.

An interesting area of this project to pursue further would be investigating differ-

ent spherical wavelet bases. In particular, looking at lifting the spherical Haar wavelet

basis to get desirable properties such as smoothness (for an explanation of lifting see

Sweldens and Schroder’s work [24, 27]).

u5586882 57

References

[1] E. H. Adelson and J. Y. Wang. Single lens stereo with a plenoptic camera. IEEE

transactions on pattern analysis and machine intelligence, 14(2):99–106, 1992.

[2] Andeggs. 3d spherical.svg, 2009. URL https://en.wikipedia.org/wiki/File:

3D_Spherical.svg.

[3] M. A. Blanco, M. Flórez, and M. Bermejo. Evaluation of the rotation matri-

ces in the basis of real spherical harmonics. Journal of Molecular Structure:

THEOCHEM, 419(1):19–27, 1997.

[4] C. Brechbühler, G. Gerig, and O. Kübler. Parametrization of closed surfaces for

3-d shape description. Computer vision and image understanding, 61(2):154–170,

1995.

[5] W. Chen, S. Itoh, and J. Shiki. Irregular sampling theorems for wavelet subspaces.

IEEE Transactions on Information Theory, 44(3):1131–1142, 1998.

[6] J. J. Craig. Introduction to Robotics Mechatronics and Control. Pearson Educa-

tion, Inc, third edition, 1955.

[7] Z. Gimbutas and L. Greengard. A fast and stable method for rotating spherical

harmonic expansions. Journal of Computational Physics, 228(16):5621–5627, 2009.

[8] A. S. Glassner. An introduction to ray tracing. Elsevier, 1989.

[9] R. GmbH. Raytrix — 3d light field camera technology, 2016. URL https://www.

raytrix.de/.

[10] Á. González. Measurement of areas on a sphere using fibonacci and latitude–

longitude lattices. Mathematical Geosciences, 42(1):49–64, 2010.

[11] H. Hoppe and E. Praun. Shape compression using spherical geometry images.

In Advances in Multiresolution for Geometric Modelling, pages 27–46. Springer,

2005.

https://en.wikipedia.org/wiki/File:3D_Spherical.svg
https://en.wikipedia.org/wiki/File:3D_Spherical.svg
https://www.raytrix.de/
https://www.raytrix.de/

u5586882 58

[12] J. Jian-qiu, D. Min-ya, B. Hu-jun, and P. Qun-sheng. Watermarking on 3d mesh

based on spherical wavelet transform. Journal of Zhejiang University-Science A,

5(3):251–258, 2004.

[13] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compres-

sion. In Proceedings of the 27th annual conference on Computer graphics and in-

teractive techniques, pages 271–278. ACM Press/Addison-Wesley Publishing Co.,

2000.

[14] H. Laga, H. Takahashi, and M. Nakajima. Spherical wavelet descriptors for

content-based 3d model retrieval. In Shape Modeling and Applications, 2006. SMI

2006. IEEE International Conference on, pages 15–15. IEEE, 2006.

[15] C. Lessig and E. Fiume. SOHO: orthogonal and symmetric Haar wavelets on the

sphere. ACM Transactions on Graphics (TOG), 27(1):4, 2008.

[16] G. Lippmann. Epreuves reversibles donnant la sensation du relief. J. Phys. Theor.

Appl., 7(1):821–825, 1908.

[17] I. Lytro. Lytro - home. URL https://www.lytro.com/.

[18] R. J. Morris, R. J. Najmanovich, A. Kahraman, and J. M. Thornton. Real spher-

ical harmonic expansion coefficients as 3d shape descriptors for protein binding

pocket and ligand comparisons. Bioinformatics, 21(10):2347–2355, 2005.

[19] R. A. Newcombe and A. J. Davison. Live dense reconstruction with a single

moving camera. In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 1498–1505. IEEE, 2010.

[20] S. O’Brien, J. Trumpf, R. Mahony, and V. Ila. An infinite-dimensional observer

for depth estimation using plenoptic cameras. Unpublished draft, 2017.

[21] E. Praun and H. Hoppe. Spherical parametrization and remeshing. In ACM

Transactions on Graphics (TOG), volume 22, pages 340–349. ACM, 2003.

https://www.lytro.com/

u5586882 59

[22] R. Raghavendra, B. Yang, K. B. Raja, and C. Busch. A new perspective—face

recognition with light-field camera. In Biometrics (ICB), 2013 International Con-

ference on, pages 1–8. IEEE, 2013.

[23] Y. Roth-Tabak and R. Jain. Building an environment model using depth infor-

mation. Computer, 22(6):85–90, 1989.

[24] P. Schröder and W. Sweldens. Spherical wavelets: Efficiently representing func-

tions on the sphere. In Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques, pages 161–172. ACM, 1995.

[25] L. Shen, H. Farid, and M. A. McPeek. Modeling three-dimensional morphological

structures using spherical harmonics. Evolution, 63(4):1003–1016, 2009.

[26] C. Soon Ong and C. Walder. Introduction to statistical machine learning,

2017. URL https://machlearn.gitlab.io/isml2017/lectures/05_Linear_

Regression_1.pdf. Lecture notes.

[27] W. Sweldens. The lifting scheme: A construction of second generation wavelets.

SIAM journal on mathematical analysis, 29(2):511–546, 1998.

[28] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[29] G. Vilmart. Rigid body dynamics. 2015.

[30] E. W. Weisstein. Spherical harmonic. URL http://mathworld.wolfram.com/

SphericalHarmonic.html.

[31] P. Wojtaszczyk. A Mathematical Introduction to Wavelets. Cambridge University

Press, 1997.

https://machlearn.gitlab.io/isml2017/lectures/05_Linear_Regression_1.pdf
https://machlearn.gitlab.io/isml2017/lectures/05_Linear_Regression_1.pdf
http://mathworld.wolfram.com/SphericalHarmonic.html
http://mathworld.wolfram.com/SphericalHarmonic.html

u5586882 60

8 Appendices

8.1 Code: Spherical Harmonics

This simulation study includes various functions, split into ones for spherical harmonic

basis functions (SBFs) and spherical Haar wavelets (SHWs). This section will present

the code for the SBFs. Figure 16 shows the dependencies of the various functions.

Figure 16: Code dependencies diagram. Arrows go from function A towards function B iff A

calls B

A brief explaination of each function is listed below. The code itself is included on the

following pages

1. move func: this is the main function, can set the values of the parameters listed

in Table 1 and 2. Finds and saves sum-squared error and models for both meth-

ods.

2. generate points: generate points, can set shape, camera orientation and posi-

tion, FOV and measurement uncertainty.

u5586882 61

3. new scoord: takes points in spherical coordinates, a rotation and a translation

as input. Returns those points under the transformations, also in spherical coor-

dinates.

4. transform weights: takes weights and a rotation as input. Returns new

weights that correspond to a rotated model.

5. find coeff rot: use Wigner D-functions to find a single rotated weight

6. eul2rotm: takes ZYZ Euler angles as input and returns the corresponding rota-

tion matrix

7. plot sbf: takes weights as input and plots the corresponding model.

8. getweights initial: takes points and maximum order of basis functions as

input and returns weights for a model fitting the data using Maximum Likelihood

9. r2delR: takes a measurement, the model and a scale. Returns the amount the

model needs to move in the direction of the measurement in order for the model

to match the measurement, multiplied by the scale.

10. grad descent: takes a model and measurements as input, updates the model

to better fit the measurements using gradient descent.

11. get sse: takes test points and a model as input, returns the sum-squared differ-

ence between the radius of the model and the test points in the directions of the

test points

12. angle2Rsph: takes a direction (θ, φ) and basis weights as input and returns the

radius of the model in that direction.

13. generate mp: generate points on a model.

14. generate grads: takes a point cloud for a model, a point cloud for an environ-

ment and directions, generates gradients between the model and environment in

those directions.

u5586882 62

15. getuniformdir: takes a shape, returns uniform directions for that shape.

16. mm: takes gradients, a model and the camera rotation and translation, returns

aligned measurement points using the moved measurements method.

8.2 Code: Spherical Haar Wavelets

This simulation study includes various functions, split into ones for spherical harmonic

basis functions (SBFs) and spherical Haar wavelets (SHWs). This section will present

the code for the SHWs. Figure 17 shows the dependencies of the various functions.

Note that this code is based on Lessig’s implementation, available at http://www.

dgp.toronto.edu/~lessig/soho/. Some of the functions had to be modified in order

to allow them to work with depth information instead of colour information. That is,

making them work with a function f(θ, φ) = r, instead of sampling colour data from

a coloured sphere that has been mapped to a rectangular image. Code for unmodified

functions is not provided in this report, but many such functions are necessary in order

for my code to be able to run.

A brief explaination of each function is listed below. The code itself is included on

the following pages

1. move func: this is the main function, can set the values of the parameters listed

in Table 1 and 3. Finds and saves sum-squared error and models for both meth-

ods.

2. stri: this is a class which represents a spherical triangle. It has a field which

points to its children.

3. generate points: (same as for SBFs) generate points, can set shape, camera

orientation and position, FOV and measurement uncertainty.

4. new scoord: (same as for SBFs) takes points in spherical coordinates, a rotation

and a translation as input. Returns those points under the transformations, also

in spherical coordinates.

http://www.dgp.toronto.edu/~lessig/soho/
http://www.dgp.toronto.edu/~lessig/soho/

u5586882 63

Figure 17: (Best view in colour). Code dependencies diagram. Black arrows go from function

A towards function B iff A calls B. Orange arrows go from function A to class B iff A is a

method of B. Function names in black were written entirely by me. Function names in

blue are modified from Lessig’s SOHO code. Function names in green are unmodified from

Lessig’s SOHO code, the dependencies for these functions are not shown in order to avoid

over-complicating the diagram.

5. eul2rotm: (same as for SBFs) Takes ZYZ Euler angles as input and returns the

corresponding rotation matrix

6. plot wav: takes a stri and maximum level as input and plots the corresponding

model.

7. get sse: takes test points and a stri as input, returns the sum-squared difference

between the radius of the model and the test points in the directions of the test

points

8. getRfromT: takes a direction (θ, φ), a stri and a maximum level as input and

returns the radius of the model in that direction.

9. update wavelet: takes a stri, a maximum level, a point on the unit sphere and

u5586882 64

its corresponding radius, and a step size as input and returns an updated stri.

10. checkPointInsideSTri: takes a stri and a point and returns whether that

point lies within that stri.

11. sampleSphericalMapF: takes a stri, a function, a maximum level and the num-

ber of samples as input, returns a stri with samples from the function mapped

onto the stri.

12. sampleSphericalMapF: takes the vertices of a stri, barycentric weights on that

stri, a function and a number of samples, returns a stri with samples from that

function.

13. getFunctionHandlesBasis: get function handles for given basis.

14. getForestPlatonicSolid: takes a platonic solid and level as input, and returns

a forest of partitions derived from the platonic solid up to the level.

15. dswtSynthesiseFull: takes a forest, performs the synthesis step of the fast

wavelet transform.

16. getTresholdsLargestK: takes a synthesised forest and a number of coefficients,

returns the threshold for which there are exactly that number of coefficients over

the threshold in the forest.

17. approxSWT: takes a synthesised forest and a threshold, sets all coefficients in

that forest which are lower than the threshold to 0.

18. dswtAnalyseFull: takes a synthesised forest, performs the analysis step of the

fast wavelet transform

19. rotateForest: takes a forest and a rotation, returns that forest with the rota-

tion applied

8.3 Source code

Spherical harmonic basis functions:

u5586882 65

function move func(typeb, typem, R0, h0, R, h, N, n, fovt, fovp, scale, ...

p1n, p2n, sse1n, sse2n, varn, uncer, nmeas, modflag)

%Set parameters

%Number of points

ntest = 10000;

nbase = 10000;

npc = 10ˆ5;

%n = 40;

lam = 0.1;

lr = 10ˆ(-3);

resplot = 150;

%Generate data points

base = generate points(typeb, [0,0,0], eye(3), nbase, pi, 2*pi, 0, R0, h0);

test = generate points(typem, [0,0,0], eye(3), ntest, pi, 2*pi, 0, R, h);

pceb = generate points(typem, [0,0,0], eye(3), npc, pi, 2*pi, 0, R, h);

%Find initial model using base data

wb = getweights initial(base(:,1:2), base(:,3), n, lam);

w1o = wb;

w1 = wb;

w2 = wb;

err ms = zeros(N+1,1);

err mm = zeros(N+1,1);

sse = get sse(wb, n, test);

sse = sse/size(test,1);

err ms(1) = sse;

err mm(1) = sse;

times = zeros(N, 3);

tic

u5586882 66

roto = eye(3);

Oo = [0, 0, 0];

for i = -N:N

%Rotate according to Fibonacci Spiral

invrat = (1+sqrt(5))/2 -1;

lat = asin(2*i/(2*N+1));

lon = 2*pi*i*invrat;

lon = mod(lon+pi, 2*pi);

lat = abs(lat-pi/2);

%opposite rotation

invrote = [lon, lat, 0];

rote = [-invrote(3), -invrote(2), -invrote(1)];

invrot = eul2rotm(invrote);

rot = invrot';

%Translate in a loop

% r = 0.01;

% ang = 2*pi*i/8;

% O = [r*cos(ang), r*sin(ang), 0];

O = [0,0,0];

pce = new scoord(pceb(:,1), pceb(:,2), pceb(:,3), O, rot);

pcm1 = generate mp(w1, n, npc, uncer, O, rot);

pcm2 = generate mp(w2, n, npc, uncer, O, rot);

[thetam, phim] = getuniformdir(nmeas, fovt, fovp, 'cylinder', O, rot, R, h);

meas1 = generate grads(pce, pcm1, thetam, phim, scale);

meas2 = generate grads(pce, pcm2, thetam, phim, scale);

times(i+N+1,1) = toc;

if modflag==1

rotn = rot*roto';

bn = atan2(sqrt(rotn(3,1)ˆ2+rotn(3,2)ˆ2), rotn(3,3));

if bn == 0

u5586882 67

an = 0;

gn = atan2(-rotn(1,2), rotn(1,1));

elseif bn==pi

an = 0;

gn = atan2(rotn(1,2), -rotn(1,1));

else

an = atan2(rotn(2,3)/sin(bn), rotn(1,3)/sin(bn));

gn = atan2(rotn(3,2)/sin(bn), -rotn(3,1)/sin(bn));

end

an = an + pi;

gn = gn+pi;

roten = [an,bn,gn];

%Get the transformed weights

w1 = transform weights(w1o, n, roten);

%Input measurements to transformed model

r1 = meas1(:,3) + angle2Rsphfull(w1, n, meas1(:,1), meas1(:,2));

w1 = grad descent(meas1(:,1:2), r1, n, w1, lr);

w1o = w1;

w1 = transform weights(w1, n, invrote + [pi, 0, pi]);

sse = get sse(w1, n, test);

sse = sse/size(test,1);

err ms(i+1+N+1) = sse;

end

times(i+N+1,2) = toc;

%Input measurements to original model

u5586882 68

[X, r2] = mm(meas2, w2, n, invrot, -O);

% ms = [X, r2];

% plot sbf(w2, n, resplot);

% plot points(ms);

w2 = grad descent(X, r2, n, w2, lr);

sse = get sse(w2, n, test);

sse = sse/size(test,1);

err mm(i+1+N+1) = sse;

times(i+N+1,3) = toc;

roto = rot;

Oo = O;

end

if modflag==1

plot sbf(w1, n, resplot);

title('Updated model (transform model method)')

xlabel('x')

ylabel('y')

zlabel('z')

saveas(gcf, p1n);

end

plot sbf(w2, n, resplot);

title('Updated model (transform measurements method)')

xlabel('x')

ylabel('y')

zlabel('z')

saveas(gcf, p2n);

if modflag==1

u5586882 69

figure;

plot(err ms)

title('Sum-squared Error (transform model method)')

xlabel('Number of camera movements')

ylabel('Sum-squared error of model compared to testing data')

saveas(gcf, sse1n);

end

figure;

plot(err mm)

title('Sum-squared Error (transform measurements method)')

xlabel('Number of camera movements')

ylabel('Sum-squared error of model compared to testing data')

saveas(gcf, sse2n);

save(varn, 'times', 'w1', 'w2', 'err ms', 'err mm', 'base', 'test', 'N');

end

function points = generate points(type, O, rot, n, fovt, fovp, uncer, varargin)

if strcmp(type,'cylinder')

nvar = numel(varargin);

if nvar < 1

R = 1;

h = 2;

elseif nvar < 2

R = varargin{1};

h = 2;

else

R = varargin{1};

h = varargin{2};

end

Ac = 2*pi*Rˆ2; %Area of circles (top and bottom)

Ar = 2*pi*R*h; %Area of rectangle (side)

u5586882 70

nr = int32(n/((Ac/Ar)+1)); %Number of points in rectangle

nc = int32((n - nr)/2); %Number of points in each circle

rrt = rand(nc,1); %radius (random)

rrt = Rˆ2*rrt; %Scale up

art = rand(nc,1);

art = 2*pi*art;

xt = sqrt(rrt).*cos(art);

yt = sqrt(rrt).*sin(art);

zt = h/2;

rt = sqrt(xt.ˆ2+yt.ˆ2+zt.ˆ2);

thetat = acos(zt./rt);

phit = atan2(xt,yt);

xrr = rand(nr,1);

xrr = 2*pi*R*xrr;

yrr = rand(nr,1);

yrr = h*yrr - h/2;

thetar = pi/2 - atan(yrr/R);

phir = xrr/R;

st = sin(thetar);

rr = R./st;

rrb = rand(nc,1);

rrb = Rˆ2*rrb;

arb = rand(nc,1);

arb = 2*pi*arb;

xb = sqrt(rrb).*cos(arb);

yb = sqrt(rrb).*sin(arb);

zb = -h/2;

rb = sqrt(xb.ˆ2+yb.ˆ2+zb.ˆ2);

thetab = acos(zb./rb);

phib = atan2(xb,yb);

u5586882 71

%Make pit and phib go from 0 to 2pi instead of -pi to pi

phit = pi + phit;

phib = pi+phib;

theta = [thetat; thetar; thetab];

phi = [phit; phir; phib];

r = [rt; rr; rb];

elseif strcmp(type,'sphere')

nvar = numel(varargin);

if nvar < 1

R = 1;

else

R = varargin{1};

end

delta = pi/sqrt(n);

theta = 0:delta:pi;

phi = 0:2*delta:2*pi;

[phi,theta] = meshgrid(phi,theta);

N = numel(theta);

theta = reshape(theta, [N, 1]);

phi = reshape(phi, [N, 1]);

r = R*ones(N, 1);

elseif strcmp(type,'spherep')

nvar = numel(varargin);

if nvar < 1

R = 1;

else

R = varargin{1};

end

u5586882 72

delta = pi/sqrt(n);

theta = 0:delta:pi;

phi = 0:2*delta:2*pi;

[phi,theta] = meshgrid(phi,theta);

N = numel(theta);

theta = reshape(theta, [N, 1]);

phi = reshape(phi, [N, 1]);

r = R*ones(N,1) + rand(N, 1)/100;

else

error('Invalid type. Valid types are: cylinder, sphere')

end

%Combine into points array and match rotation, translation and fov

points = [theta, phi, r];

points = new scoord(points(:,1), points(:,2), points(:,3), O, rot);

theta = points(:,1);

phi = points(:,2);

r = points(:,3);

%theta = pi/2 is center of camera

fovti = find(abs(theta-pi/2)<= fovt/2);

%phi = pi is center of the camera to make it easier to find (instead of

%0)

fovpi = find(abs(phi-pi)<= fovp/2);

fovi = intersect(fovti, fovpi);

theta = theta(fovi);

phi = phi(fovi);

r = r(fovi);

u5586882 73

r = r + (uncer*rand(numel(r),1)-uncer/2);

points = [theta, phi, r];

end

function out = new scoord(theta, phi, r, t, rot)

[x,y,z] = sph2cart(phi-pi, pi/2-theta, r);

v = [x,y,z]';

% rotM = eul2rotm(rot);

v = rot*v;

% v = rot(:,1:3)*v;

% v = rot(:,4:6)*v;

% v = rot(:,7:9)*v;

v = v';

x = v(:,1);

y = v(:,2);

z = v(:,3);

x = x-t(1);

y = y-t(2);

z = z-t(3);

[phi, theta, r] = cart2sph(x,y,z);

theta = abs(theta-pi/2);

phi = pi + phi;

out = [theta, phi, r];

end

u5586882 74

function w = transform weights(wo, n, rot)

w = wo;

for l = 0:n

wo = w;

for m = -l:l

i = lˆ2+l+m+1;

w(i) = find coeff rot(wo, l, m, rot);

end

end

end

function c = find coeff rot(co, L, M, rot)

%zyz convention

alpha = rot(1);

beta = rot(2);

gamma = rot(3);

c = 0;

for m = -L:L

c = c+ D(L, m, M, alpha, beta, gamma)*co(Lˆ2+L+m+1);

end

end

function Dlmk = D(l,m,k, alpha, beta, gamma)

dlmk1 = d(l, abs(k), abs(m), beta) + (-1)ˆm*d(l, abs(m), -abs(k), beta);

dlmk2 = d(l, abs(k), abs(m), beta) - (-1)ˆm*d(l, abs(m), -abs(k), beta);

Dlmk = sig(k)*az op(k, alpha)*az op(m, gamma)*dlmk1/2 ...

-sig(m)*az op(-k, alpha)*az op(-m, gamma)*dlmk2/2;

end

function dlmk = d(l, m, k, beta)

sum = 0;

for s = 0:(l+abs(m))

u5586882 75

if (l-m-s)<0 | | (l+k-s)<0 | | (m-k+s)<0

continue

end

denom = factorial(s)*factorial(l-m-s)*factorial(l+k-s)*factorial(m-k+s);

sum = sum + (-1)ˆ(s)*cos(beta/2)ˆ(2*(l-s)-m+k)*sin(beta/2)ˆ(2*s+m-k)/denom;

end

dlmk = (-1)ˆ(m-k)*sqrt(factorial(l+k)*factorial(l-k)*factorial(l+m)*factorial(l-m))*sum;

end

function Phi = az op(m, ang)

if m>0

Phi = sqrt(2)*cos(m*ang);

elseif m==0

Phi = 1;

else

Phi = -sqrt(2)*sin(abs(m)*ang);

end

end

function sign = sig(x)

if x < 0

sign = -1;

else

sign = 1;

end

end

function M = eul2rotm(eul)

a = eul(1);

b = eul(2);

g = eul(3);

s1 = sin(a);

u5586882 76

s2 = sin(b);

s3 = sin(g);

c1 = cos(a);

c2 = cos(b);

c3 = cos(g);

%ZYZ

M = [c1*c2*c3-s1*s3, -c3*s1-c1*c2*s3, c1*s2;

c1*s3+c2*c3*s1, c1*c3-c2*s1*s3, s1*s2;

-c3*s2, s2*s3, c2];

end

function plot sbf(w, n, res)

delta = pi/res;

theta = 0:delta:pi;

phi = 0:2*delta:2*pi;

[phi,theta] = meshgrid(phi,theta);

N = numel(theta);

M = size(theta, 1);

theta = reshape(theta, [N, 1]);

phi = reshape(phi, [N, 1]);

R = zeros(N,1);

for l = 0:n

r = angle2Rsph(l, theta, phi);

R = R + (w(lˆ2+1:lˆ2+2*l+1)'*r)';

end

figure

hold on

r = abs(R);

x = r.*sin(theta).*cos(phi);

y = r.*sin(theta).*sin(phi);

u5586882 77

z = r.*cos(theta);

x = reshape(x, [M,M]);

y = reshape(y, [M,M]);

z = reshape(z, [M,M]);

r = reshape(r, [M,M]);

h = surf(x,y,z,r);

camlight left

camlight right

lighting phong

alpha(h, 0.5)

% map positive regions to red, negative regions to green

colormap(redgreencmap([2]))

set(h, 'LineStyle','none')

grid off

end

function [w,R] = getweights initial(X, r, n, lam)

%getweights initial takes

% X= [theta, phi] measurement directions

% r= coressponding radii

% n = maximum order of basis functions

% lam = regularisation constant

theta =X(:,1);

phi = X(:,2);

R = zeros(size(X,1), (n+1)ˆ2);

for l=0:n

u5586882 78

R(:,lˆ2+1:lˆ2+2*l+1) = angle2Rsph(l, theta, phi)';

end

w = (lam*eye((n+1)ˆ2) + R'*R)\(R'*r);

end

function delR = r2delR(X, r, w, n, scale)

theta =X(:,1);

phi = X(:,2);

Rmod = zeros(size(X,1), 1);

for l = 0:n

rl = angle2Rsph(l, theta, phi);

Rmod = Rmod + (w(lˆ2+1:lˆ2+2*l+1)'*rl)';

end

delR = scale*(Rmod-r);

end

function [w, R] = grad descent(X, delR, n, w, lr)

%X contains the theta and phi values, one set of values in each row

%t contains the corresponding r values

theta = X(:,1);

phi = X(:,2);

R = zeros(size(X,1), (n+1)ˆ2);

%ae = (n+1)ˆ2/sum(abs(w));

for l=0:n

R(:,lˆ2+1:lˆ2+2*l+1) = angle2Rsph(l, theta, phi)';

end

w = w - lr*((R'*(delR)));

end

u5586882 79

function sse = get sse(w, n, test)

theta = test(:,1);

phi = test(:,2);

r = test(:,3);

R = zeros(size(r,1), 1);

for l = 0:n

rl = angle2Rsph(l, theta, phi);

R = R + (w(lˆ2+1:lˆ2+2*l+1)'*rl)';

end

sse = (r-R).ˆ2;

sse = sum(sse);

end

function R = angle2Rsph(l, theta, phi)

%angle2Rsph takes

% l= degree of spherical harmonic

% theta = matrix of theta (polar angle) values

% phi = matrix of corresponding phi (azimuthal angle) values

%and returns

% R= matrix of corresponding radial distance values for order m =-l:l

% The orders vary along the rows, and theta and phi values vary along the

% columns

len = size(theta, 1);

P = legendre(l,cos(theta));

N = zeros(l, len);

S = zeros(l, len);

C = zeros(l, len);

N0 = sqrt((2*l+1)/(4*pi));

for m = 1:l

N(m,:) = repmat(sqrt((2*l+1)/(4*pi)*factorial(l-m)/factorial(l+m)), [1,len]);

S(m,:) = sin(m*phi);

C(m,:) = cos(m*phi);

u5586882 80

end

if l>0

R0 = sqrt(2)*N.*P(2:end,:).*S;

R1 = N0.*P(1,:);

R2 = sqrt(2)*N.*P(2:end,:).*C;

R = [flipud(R0); R1; R2];

else

R = N0.*P;

end

end

function points = generate mp(w, nm, n, uncer, t, rot)

delta = pi/sqrt(n);

theta = 0:delta:pi;

phi = 0:2*delta:2*pi;

[phi,theta] = meshgrid(phi,theta);

N = numel(theta);

theta = reshape(theta, [N, 1]);

phi = reshape(phi, [N, 1]);

%radius is point on the model

r = angle2Rsphfull(w,nm, theta, phi);

%uncertainty

r = r + (uncer*rand(numel(r),1)-uncer/2);

points = new scoord(theta,phi,r,t,rot);

end

u5586882 81

function grads = generate grads(pce, pcm, theta, phi, scale)

%radius e and radius m are given by closest point in each cloud

%r is the difference (delR)

r = zeros(numel(phi), 1);

for i = 1:numel(theta)

[~,ie] = min((pce(:,1)-theta(i)).ˆ2+(pce(:,2)-phi(i)).ˆ2);

re = pce(ie, 3);

[~,im] = min((pcm(:,1)-theta(i)).ˆ2+(pcm(:,2)-phi(i)).ˆ2);

rm = pcm(im, 3);

r(i) = re-rm;

end

%uncertainty

r = scale*r;

grads = [theta, phi, r];

end

function [theta, phi] = getuniformdir(n, fovt, fovp, type, O, rot, varargin)

if strcmp(type,'cylinder')

nvar = numel(varargin);

if nvar < 1

R = 1;

h = 2;

elseif nvar < 2

R = varargin{1};

h = 2;

else

R = varargin{1};

h = varargin{2};

end

u5586882 82

n= n*(fovt*fovp)/(2*piˆ2);

Ac = 2*pi*Rˆ2; %Area of circles (top and bottom)

Ar = 2*pi*R*h; %Area of rectangle (side)

nr = int32(n/((Ac/Ar)+1)); %Number of points in rectangle

nc = int32((n - nr)/2); %Number of points in each circle

rrt = rand(nc,1); %radius (random)

rrt = Rˆ2*rrt; %Scale up

art = rand(nc,1);

art = 2*pi*art;

xt = sqrt(rrt).*cos(art);

yt = sqrt(rrt).*sin(art);

zt = h/2;

rt = sqrt(xt.ˆ2+yt.ˆ2+zt.ˆ2);

thetat = acos(zt./rt);

phit = atan2(xt,yt);

xrr = rand(nr,1);

xrr = 2*pi*R*xrr;

yrr = rand(nr,1);

yrr = h*yrr - h/2;

thetar = pi/2 - atan(yrr/R);

phir = xrr/R;

st = sin(thetar);

rr = R./st;

rrb = rand(nc,1);

rrb = Rˆ2*rrb;

arb = rand(nc,1);

arb = 2*pi*arb;

xb = sqrt(rrb).*cos(arb);

yb = sqrt(rrb).*sin(arb);

u5586882 83

zb = -h/2;

rb = sqrt(xb.ˆ2+yb.ˆ2+zb.ˆ2);

thetab = acos(zb./rb);

phib = atan2(xb,yb);

%Make pit and phib go from 0 to 2pi instead of -pi to pi

phit = pi + phit;

phib = pi+phib;

theta = [thetat; thetar; thetab];

phi = [phit; phir; phib];

r = [rt; rr; rb];

%transform into view point

points = [theta, phi, r];

points = new scoord(points(:,1), points(:,2), points(:,3), O, rot);

theta = points(:,1);

phi = points(:,2);

r = points(:,3);

%theta = pi/2 is center of camera

fovti = find(abs(theta-pi/2)<= fovt/2);

%phi = pi is center of the camera to make it easier to find (instead of

%0)

fovpi = find(abs(phi-pi)<= fovp/2);

fovi = intersect(fovti, fovpi);

theta = theta(fovi);

phi = phi(fovi);

elseif strcmp(type,'sphere')

theta = rand(n,1);

phi = rand(n,1);

u5586882 84

theta = theta*(fovt);

phi = phi*(fovp);

end

end

function [X, r] = mm(meas, w, n, rot, t)

sgn = sign(meas(:,3));

p = new scoord(meas(:,1), meas(:,2), abs(meas(:,3)), t, rot);

p(:,3) = sgn.*p(:,3);

r = p(:,3) + angle2Rsphfull(w, n, p(:,1), p(:,2));

X = p(:,1:2);

end

Spherical Haar wavelets:

function move func(fb, N, level, nc, fovt, fovp, scale, ...

p1n, p2n, sse1n, sse2n, varn, uncer, modflag, resplot, nmeas, type, varargin)

nvar = numel(varargin);

if nvar < 1

Rc = 1;

hc = 2;

elseif nvar < 2

Rc = varargin{1};

hc = 2;

else

Rc = varargin{1};

hc = varargin{2};

end

u5586882 85

%Set parameters

platonic solid = 'octahedron';

basis = 'osh';

fhs = getFunctionHandlesBasis(basis);

%Generate data points

forest = getForestPlatonicSolid(platonic solid, level, fhs.enforce equal area);

base = sampleSphericalMapF(forest, fb, 1, level, 0);

if nvar < 1

test = generate points(type, [0,0,0], eye(3), 10000, pi, 2*pi, 0);

elseif nvar < 2

test = generate points(type, [0,0,0], eye(3), 10000, pi, 2*pi, 0, Rc);

else

test = generate points(type, [0,0,0], eye(3), 10000, pi, 2*pi, 0, Rc, hc);

end

%Find initial model using base data

ab = dswtAnalyseFull(base, level, fhs.filters analysis, fhs.normalize);

thresholds = getThresholdLargestK(ab, level, nc, fhs.approx);

ab = approxSWT(ab, level, thresholds, fhs.approx);

ab = dswtSynthesiseFull(ab, level, fhs.filters synthesis, fhs.denormalize, 0, 1);

a1o = ab;

a1 = ab;

a2 = ab;

err ms = zeros(N+1,1);

err mm = zeros(N+1,1);

sse = get sse(ab, test, level);

err ms(1) = sse;

err mm(1) = sse;

u5586882 86

times = zeros(N, 3);

tic

roto = eye(3);

Oo = [0, 0, 0];

for i = -N:N

%step size for update wavelet

lr = 100/(nmeas);

%Rotate according to Fibonacci Spiral

invrat = (1+sqrt(5))/2 -1;

lat = asin(2*i/(2*N+1));

lon = 2*pi*i*invrat;

lon = mod(lon+pi, 2*pi);

lat = abs(lat-pi/2);

%opposite rotation

invrote = [lon, lat, 0];

rote = [-invrote(3), -invrote(2), -invrote(1)];

invrot = eul2rotm(invrote);

rot = invrot';

%Translate in a loop

% r = 0.01;

% ang = 2*pi*i/8;

% O = [r*cos(ang), r*sin(ang), 0];

O = [0,0,0];

%get measurements

a1r = rotateForest(a1o, rot);

a2r = rotateForest(a2, rot);

if nvar < 1

meas = generate points(type, O, rot, nmeas, fovt, fovp, uncer);

elseif nvar < 2

u5586882 87

meas = generate points(type, O, rot, nmeas, fovt, fovp, uncer, Rc);

else

meas = generate points(type, O, rot, nmeas, fovt, fovp, uncer, Rc, hc);

end

thetam = meas(:,1)';

phim = meas(:,2)';

R m = meas(:,3)';

%Find the gradients

R b1 = getRfromT(thetam,phim,a1r, level);

delR1 = scale*(R m-R b1);

R b2 = getRfromT(thetam,phim,a2r,level);

delR2 = scale*(R m-R b2);

times(i+N+1,1) = toc;

%% moved model method

if modflag==1

rotn = rot*roto';

bn = atan2(sqrt(rotn(3,1)ˆ2+rotn(3,2)ˆ2), rotn(3,3));

if bn == 0

an = 0;

gn = atan2(-rotn(1,2), rotn(1,1));

elseif bn==pi

an = 0;

gn = atan2(rotn(1,2), -rotn(1,1));

else

an = atan2(rotn(2,3)/sin(bn), rotn(1,3)/sin(bn));

gn = atan2(rotn(3,2)/sin(bn), -rotn(3,1)/sin(bn));

end

an = an + pi;

gn = gn + pi;

u5586882 88

roten = [an,bn,gn];

rotn = eul2rotm(roten);

%Get the transformed forest

a1 = rotateForest(a1o, rotn);

x1 = sin(thetam).*cos(phim);

y1 = sin(thetam).*sin(phim);

z1 = cos(thetam);

for j = 1:numel(thetam)

a1 = update wavelet(a1, stri(a1), level, [x1(j);y1(j);z1(j)], ...

delR1(j), [], {}, lr);

end

%zeroing all except nc coefficients

thresholds = getThresholdLargestK(a1, level, nc, fhs.approx);

a1 = approxSWT(a1, level, thresholds, fhs.approx);

% reconstruct the approximated signal

a1o = dswtSynthesiseFull(a1, level, ...

fhs.filters synthesis, fhs.denormalize, 0, 1);

invrote1 = invrote + [pi, 0, pi];

invrot1 = eul2rotm(invrote1);

a1 = rotateForest(a1o, invrot1);

sse = get sse(a1, test, level);

err ms(i+1+N+1) = sse;

end

times(i+N+1,2) = toc;

u5586882 89

%% moved measurements method

%Note that do not multiply by the delR2 values, as want a point on the

%unit sphere

x2 = sin(thetam).*cos(phim);

y2 = sin(thetam).*sin(phim);

z2 = cos(thetam);

meas align = invrot*[x2;y2;z2];

x2 = meas align(1,:); y2 = meas align(2,:); z2 = meas align(3,:);

for j = 1:numel(thetam)

a2 = update wavelet(a2, stri(a2), level, [x2(j);y2(j);z2(j)], ...

delR2(j), [], {}, lr);

end

%zeroing all except nc coefficients

thresholds = getThresholdLargestK(a2, level, nc, fhs.approx);

a2 = approxSWT(a2, level, thresholds, fhs.approx);

% reconstruct the approximated signal

a2 = dswtSynthesiseFull(a2, level, ...

fhs.filters synthesis, fhs.denormalize, 0, 1);

sse = get sse(a2, test, level);

err mm(i+1+N+1) = sse;

times(i+N+1,3) = toc;

roto = rot;

Oo = O;

end

if modflag==1

figure;

u5586882 90

plot wav(a1, level, resplot)

title('Updated model (transform model method)')

xlabel('x')

ylabel('y')

zlabel('z')

saveas(gcf, p1n);

end

figure;

plot wav(a2, level, resplot)

title('Updated model (transform measurements method)')

xlabel('x')

ylabel('y')

zlabel('z')

saveas(gcf, p2n);

if modflag==1

figure;

plot(err ms)

title('Sum-squared Error (transform model method)')

xlabel('Number of camera movements')

ylabel('Sum-squared error of model compared to testing data')

saveas(gcf, sse1n);

end

figure;

plot(err mm)

title('Sum-squared Error (transform measurements method)')

xlabel('Number of camera movements')

ylabel('Sum-squared error of model compared to testing data')

saveas(gcf, sse2n);

save(varn, 'times', 'a1', 'a2', 'err ms', 'err mm', 'base', 'test', 'N');

end

u5586882 91

function points = generate points(type, O, rot, n, fovt, fovp, uncer, varargin)

if strcmp(type,'cylinder')

nvar = numel(varargin);

if nvar < 1

R = 1;

h = 2;

elseif nvar < 2

R = varargin{1};

h = 2;

else

R = varargin{1};

h = varargin{2};

end

Ac = 2*pi*Rˆ2; %Area of circles (top and bottom)

Ar = 2*pi*R*h; %Area of rectangle (side)

nr = int32(n/((Ac/Ar)+1)); %Number of points in rectangle

nc = int32((n - nr)/2); %Number of points in each circle

rrt = rand(nc,1); %radius (random)

rrt = Rˆ2*rrt; %Scale up

art = rand(nc,1);

art = 2*pi*art;

xt = sqrt(rrt).*cos(art);

yt = sqrt(rrt).*sin(art);

zt = h/2;

rt = sqrt(xt.ˆ2+yt.ˆ2+zt.ˆ2);

thetat = acos(zt./rt);

phit = atan2(xt,yt);

xrr = rand(nr,1);

xrr = 2*pi*R*xrr;

yrr = rand(nr,1);

yrr = h*yrr - h/2;

thetar = pi/2 - atan(yrr/R);

u5586882 92

phir = xrr/R;

st = sin(thetar);

rr = R./st;

rrb = rand(nc,1);

rrb = Rˆ2*rrb;

arb = rand(nc,1);

arb = 2*pi*arb;

xb = sqrt(rrb).*cos(arb);

yb = sqrt(rrb).*sin(arb);

zb = -h/2;

rb = sqrt(xb.ˆ2+yb.ˆ2+zb.ˆ2);

thetab = acos(zb./rb);

phib = atan2(xb,yb);

%Make pit and phib go from 0 to 2pi instead of -pi to pi

phit = pi + phit;

phib = pi+phib;

theta = [thetat; thetar; thetab];

phi = [phit; phir; phib];

r = [rt; rr; rb];

elseif strcmp(type,'sphere')

nvar = numel(varargin);

if nvar < 1

R = 1;

else

R = varargin{1};

end

delta = pi/sqrt(n);

theta = 0:delta:pi;

phi = 0:2*delta:2*pi;

u5586882 93

[phi,theta] = meshgrid(phi,theta);

N = numel(theta);

theta = reshape(theta, [N, 1]);

phi = reshape(phi, [N, 1]);

r = R*ones(N, 1);

elseif strcmp(type,'spherep')

nvar = numel(varargin);

if nvar < 1

R = 1;

else

R = varargin{1};

end

delta = pi/sqrt(n);

theta = 0:delta:pi;

phi = 0:2*delta:2*pi;

[phi,theta] = meshgrid(phi,theta);

N = numel(theta);

theta = reshape(theta, [N, 1]);

phi = reshape(phi, [N, 1]);

r = R*ones(N,1) + rand(N, 1)/100;

else

error('Invalid type. Valid types are: cylinder, sphere')

end

%Combine into points array and match rotation, translation and fov

points = [theta, phi, r];

u5586882 94

points = new scoord(points(:,1), points(:,2), points(:,3), O, rot);

theta = points(:,1);

phi = points(:,2);

r = points(:,3);

%theta = pi/2 is center of camera

fovti = find(abs(theta-pi/2)<= fovt/2);

%phi = pi is center of the camera to make it easier to find (instead of

%0)

fovpi = find(abs(phi-pi)<= fovp/2);

fovi = intersect(fovti, fovpi);

theta = theta(fovi);

phi = phi(fovi);

r = r(fovi);

r = r + (uncer*rand(numel(r),1)-uncer/2);

points = [theta, phi, r];

end

function out = new scoord(theta, phi, r, t, rot)

[x,y,z] = sph2cart(phi-pi, pi/2-theta, r);

v = [x,y,z]';

% rotM = eul2rotm(rot);

v = rot*v;

% v = rot(:,1:3)*v;

% v = rot(:,4:6)*v;

% v = rot(:,7:9)*v;

v = v';

u5586882 95

x = v(:,1);

y = v(:,2);

z = v(:,3);

x = x-t(1);

y = y-t(2);

z = z-t(3);

[phi, theta, r] = cart2sph(x,y,z);

theta = abs(theta-pi/2);

phi = pi + phi;

out = [theta, phi, r];

end

function M = eul2rotm(eul)

a = eul(1);

b = eul(2);

g = eul(3);

s1 = sin(a);

s2 = sin(b);

s3 = sin(g);

c1 = cos(a);

c2 = cos(b);

c3 = cos(g);

%ZYZ

M = [c1*c2*c3-s1*s3, -c3*s1-c1*c2*s3, c1*s2;

c1*s3+c2*c3*s1, c1*c3-c2*s1*s3, s1*s2;

-c3*s2, s2*s3, c2];

end

u5586882 96

function plot wav(stris, level, res)

delta = pi/res;

theta = 0:delta:pi;

phi = 0:2*delta:2*pi;

[phi,theta] = meshgrid(phi,theta);

N = numel(theta);

M = size(theta, 1);

theta = reshape(theta, [N, 1]);

phi = reshape(phi, [N, 1]);

rm = getRfromT(theta,phi,stris,level);

x = rm.*sin(theta).*cos(phi);

y = rm.*sin(theta).*sin(phi);

z = rm.*cos(theta);

x = reshape(x, [M,M]);

y = reshape(y, [M,M]);

z = reshape(z, [M,M]);

r = reshape(rm, [M,M]);

surf(x,y,z,r);

xlabel('x');

ylabel('y');

zlabel('z');

grid off;

u5586882 97

end

function sse = get sse(a, test, level)

theta = test(:,1);

phi = test(:,2);

R t = test(:,3);

R a = getRfromT(theta,phi,a,level);

sse = (R t-R a).ˆ2;

sse = mean(sse);

end

function R = getRfromT(theta,phi,stris,level)

x = sin(theta).*cos(phi-pi);

y = sin(theta).*sin(phi-pi);

z = cos(theta);

N = numel(theta);

%Interpolation.

%%From coeffs

R = zeros(size(theta));

for i = 1:N

[scaleRi, waveRi] = rscale(stris, level, [x(i);y(i);z(i)], 0, 0);

R(i) = (scaleRi+waveRi)/4;

end

u5586882 98

end

%%

function [scaler, waver] = rscale(stris, level, p, scaler, waver)

%

% data = getPartitionDataPoint(partition, level, p)

%

% Get the value of the partition on level \a level in which \a p lies.

for(i = 1 : numel(stris))

if(1 == checkPointInsideSTri(stris(i), p))

if(getLevel(stris) < level)

% recursively traverse tree

childs = getChilds(stris(i));

c = mean(stris(i).s coeff);

scaler = scaler + c/sqrt(getArea(stris(i)));

cs = stris(i).w coeffs;

A1 = (sqrt(getArea(childs(2)))+sqrt(getArea(childs(3))) + ...

sqrt(getArea(childs(4))))/3;

%work out which subtriangle point is in

%in t0

if (1 == checkPointInsideSTri(childs(1), p))

A0 = sqrt(getArea(childs(1)));

waver = waver + cs(1,1)*A1/A0;

waver = waver + cs(1,2)*A1/A0;

waver = waver + cs(1,3)*A1/A0;

end

%in t1

if (1 == checkPointInsideSTri(childs(2), p))

a0 = getArea(childs(1));

a1 = getArea(childs(2));

u5586882 99

a = (a0 - sqrt(a0ˆ2+3*a0*a1))/(3*a0);

waver = waver + cs(1,1)*(-2*a+1)/A1;

waver = waver + cs(1,2)*a/A1;

waver = waver + cs(1,3)*a/A1;

end

%in t2

if (1 == checkPointInsideSTri(childs(3), p))

a0 = getArea(childs(1));

a1 = getArea(childs(2));

a = (a0 - sqrt(a0ˆ2+3*a0*a1))/(3*a0);

waver = waver + cs(1,1)*a/A1;

waver = waver + cs(1,2)*(-2*a+1)/A1;

waver = waver + cs(1,3)*a/A1;

end

%in t3

if (1 == checkPointInsideSTri(childs(4), p))

a0 = getArea(childs(1));

a1 = getArea(childs(2));

a = (a0 - sqrt(a0ˆ2+3*a0*a1))/(3*a0);

waver = waver + cs(1,1)*a/A1;

waver = waver + cs(1,2)*a/A1;

waver = waver + cs(1,3)*(-2*a+1)/A1;

end

[scaler, waver] = rscale(childs, level, p, scaler, waver);

end

return;

end % end point is inside current stri

end % end for all elements in partition

u5586882 100

end

function basen = update wavelet(base, stris, level, p, delR, is, child arr, scale)

basen = stri(base);

for i = 1 : numel(stris)

if(1 == checkPointInsideSTri(stris(i), p))

levelc = getLevel(stris);

if(levelc < level)

scalel = (levelc)ˆ2/levelˆ3;

% recursively traverse tree

childs = getChilds(stris(i));

%work out which subtriangle point is in

%in t0 - center triangle: need to change all 3 wavelets

if (1 == checkPointInsideSTri(childs(1), p))

for j=1:3

stris(i).w coeffs(:,j) = stris(i).w coeffs(:,j) + ...

scale*delR*scalel/3;

end

end

%in t1

if (1 == checkPointInsideSTri(childs(2), p))

stris(i).w coeffs(:,1) = stris(i).w coeffs(:,1) + scale*delR*scalel;

end

%in t2

if (1 == checkPointInsideSTri(childs(3), p))

stris(i).w coeffs(:,2) = stris(i).w coeffs(:,2) + scale*delR*scalel;

end

u5586882 101

%in t3

if (1 == checkPointInsideSTri(childs(4), p))

stris(i).w coeffs(:,3) = stris(i).w coeffs(:,3) + scale*delR*scalel;

end

is = [is, i];

child arr{end +1} = stris;

basen = update wavelet(basen, childs, level, p, scale*delR, is, ...

child arr, scale);

else

basen = set children level(basen, level, is, child arr);

return;

end

end

end

end

function basen = set children level(base, level, is, child arr)

basen = stri(base);

if level > 1

c = base;

for l = 1:level-2

li = is(l);

c = getChilds(c(li));

end

li = is(level-1);

bc = child arr{level-1};

c(li).w coeffs = bc.w coeffs;

c(li).childs = child arr{level};

u5586882 102

child arr{level-1} = c;

basen = set children level(basen, level-1, is, child arr);

end

li = is(1);

bc = child arr{1};

basen(li).w coeffs = bc(li).w coeffs;

basen(li).childs = child arr{2};

end

8.4 Additional figures

0 5 10 15 20 25 30 35 40 45

Number of camera movements

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
um

-s
qu

ar
es

 e
rr

or
 c

om
pa

re
d

to
 te

st
in

g
da

ta

Moved model method (SHWs)
Moved measurements method (SHWs)

Figure 18: Sum-squares error for SHWs with step size 500, all other parameters as in Tables

1 and 3.

u5586882 103

(a) Model found for SHWs with level = 4,

nc = 1024

(b) Model found for SHWs with level = 7,

nc = 4096

Figure 19: Models obtained using points sampled from the environment with no update step

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of measurements at each camera movement

45

50

55

60

65

70

75

80

85

90

R
at

io
 o

f t
im

e
ta

ke
n

fo
r

ea
ch

 m
et

ho
d

Figure 20: Ratio of time taken for the moved model method to time taken for the moved

measurements method for varying numbers of measurements at each camera movement. All

other parameters are as listed in Tables 1 and 2. The ratios are averaged over 41 camera

movements. The line of best fit −0.0091m+ 94.175 is also shown.

u5586882 104

10 15 20 25 30 35 40

Maximum order of basis functions

0

10

20

30

40

50

60

70

80

R
at

io
 o

f t
im

e
ta

ke
n

fo
r

ea
ch

 m
et

ho
d

Figure 21: Ratio of time taken for the moved model method to time taken for the moved

measurements method for varying maximum order of basis functions. 2000 measurements

were taken at each camera movement. All other parameters are as listed in Tables 1 and 2.

The ratios are averaged over 41 camera movements. The line of best fit 0.0369n2 +0.3169n+

1.1451 is also shown.

0 10 20 30 40 50 60 70

Number of camera movements

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
um

-s
qu

ar
ed

 e
rr

or
 o

f m
od

el
 c

om
pa

re
d

to
 te

st
in

g
da

ta

Moved model
Moved measurements

Figure 22: Sum-squares error for a measurement uncertainty of 1, with N = 30. Note that

this corresponds to 61 batches of measurements. All other parameters are as listed in Table

1 and 3.

u5586882 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Measurement uncertainty

0

1

2

3

4

5

6

7

N
oi

se
 fl

oo
r

#10-3

Figure 23: Noise floor found by averaging sum-squares error between 29 and 61 camera

movements. N = 30 and measurement uncertainty varied. All other parameters are as listed

in Table 1 and 3. The line of best fit 0.0067u2 − 0.0001u + 0.0001 is also shown, where u is

the standard deviation of the measurements.

	 Acknowledgements
	 Abstract
	Glossary and Notation
	Abbreviations
	Notation
	Terminology

	Introduction
	Background and Literature Review
	Scene depth
	Light-field Cameras
	Rigid Body Motion
	Basis functions and Weights
	Maximum Likelihood Estimation
	Gradient Descent
	Spherical Coordinates
	Euler Angles
	Spherical Harmonics
	Rotating Spherical Harmonic Basis Functions: Wigner D Functions
	Overview of Wavelets
	Haar Wavelets
	Haar Wavelets on the Sphere
	Rotating Haar Wavelets on the Sphere
	Transforming Measurements

	Problem Set-up
	Generating Points for Spherical Harmonic Model
	Generating Points for Wavelet Model
	Setting the Field of View
	Choosing measurement locations
	Creating the Initial Spherical Harmonic Model
	Updating the Spherical Harmonic Model
	Getting Euler Angles in Terms of a Rotated Frame
	Creating Initial Wavelet Model
	Updating Wavelet Model
	Choosing Moved Measurements Method Implementation

	Simulation Study
	Resultant Observer Error
	Computational Time

	Additional Results for Spherical Harmonic Basis Functions
	Translation
	Basin of attraction
	Robustness: Measurement Scaling
	Robustness: Measurement Uncertainty
	Field of View

	Conclusion
	Appendices
	Code: Spherical Harmonics
	Code: Spherical Haar Wavelets
	Source code
	Additional figures

