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Abstract

In many computer vision applications, a desired model of some type is computed by minimiz-
ing a cost function based on several measurements. Typically, one may compute the model
that minimizes the L2 cost, that is the sum of squares of measurement errors with respect to
the model. The simplicity of L2 methods is well appreciated, but they suffer from a drawback
when it comes to robustness against outliers; even a single outlier may change the L2 solution
drastically. This thesis is primarily focused on the development of simple and robust Lq opti-
mization methods, for q ranging from 1 to 2 (excluding 2), for problems in the area of computer
vision. The proposed Lq optimization methods minimize the sum of the q-th power of errors
and give more robust results than least squares methods in the presence of outliers. We par-
ticularly consider two classes of problems: Firstly, Lq-closest-point problems, where we seek
a point for which the sum of the q-th power of distances from a given set of measurements is
the minimum. Secondly, Lq non-linear parameter estimation problems, where parameters of
a model are estimated by minimizing the sum of the q-th power of distances to a given set of
points.

The proposed Lq-closest-point algorithms are inspired by the Weiszfeld algorithm, a clas-
sic algorithm for finding the L1 mean of a set of points in a Euclidean space. The proposed
Lq-closest-point algorithms inherit all the properties of the Weiszfeld algorithm, such as prov-
able convergence to the global Lq minimum, analytical updates, simple to understand and easy
to code. We specifically propose the following algorithms: First of all, we propose a general-
ization of the Weiszfeld algorithm to find the Lq mean of a set of points in a Euclidean space.
We refer to this as the Lq Weiszfeld algorithm. We then propose a generalization of the Lq
Weiszfeld algorithm to find the Lq mean of a set of points on a Riemannian manifold of non-
negative sectional curvature and apply it to rotation averaging and Symmetric Positive-Definite
matrices averaging problems. In addition to the proof of convergence, we relax the bounds on
maximum distance between points on manifold to ensure convergence. Furthermore, we pro-
pose a generalization of the Lq Weiszfeld algorithm to find the Lq-closest-point to a set of
affine subspaces, possibly of different dimensions, in a Euclidean space and apply it to the
triangulation problem.

In addition to the closest-point problems, we propose an algorithm to find an Lq solution
of a non-linear parameter estimation problem, specifically the bundle adjustment problem. An
advantage of the proposed algorithm is that an efficient least squares optimization method,
namely the Levenberg-Marquardt method, is used to find a robust solution to the problem,
even an Lq solution.

In all the cases, our experimental results confirm the fact that in the presence of outliers the
proposed Lq algorithms give superior results than least squares algorithms.

ix

Draft Copy – 22 October 2014



x

Draft Copy – 22 October 2014



Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Distance Minimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Lq Averaging or Lq-Closest-Point Problems . . . . . . . . . . . . . . . 2
1.1.2 Lq Non-linear Parameter Estimation Problems . . . . . . . . . . . . . . 2

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Lq-Closest-Point Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Solution Strategy: Weiszfeld-style Algorithms . . . . . . . . . . . . . 4
1.3.2 Advantages of Weiszfeld-style Algorithms . . . . . . . . . . . . . . . 5

1.4 Lq Non-linear Parameter Estimation Problems . . . . . . . . . . . . . . . . . . 5
1.4.1 Solution Strategies: the Levenberg-Marquardt Method . . . . . . . . . 6

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Lq Optimization for Points in IRN . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Lq Optimization for Points on a Riemannian Manifold . . . . . . . . . 8

1.5.2.1 Lq Rotation Averaging . . . . . . . . . . . . . . . . . . . . . 9
1.5.2.2 Lq Averaging for Symmetric Positive-Definite (SPD) Matrices 9

1.5.3 Lq Optimization for Subspaces . . . . . . . . . . . . . . . . . . . . . . 9
1.5.3.1 Lq-closest-point to Subspaces . . . . . . . . . . . . . . . . . 10

1.5.4 Lq Non-linear Parameter Estimation . . . . . . . . . . . . . . . . . . . 11
1.5.4.1 Lq Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background: L1 Optimization for Points 13
2.1 Measure of Central Tendency . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Geometric Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 History: Fermat-Weber Problem . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Properties of Geometric Median . . . . . . . . . . . . . . . . . . . . . 18

2.3 Weiszfeld Algorithm for Points in IRN . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Different Interpretations of the Weiszfeld Algorithm . . . . . . . . . . 19

2.3.1.1 Gradient Descent Form . . . . . . . . . . . . . . . . . . . . 19
2.3.1.2 Iterative Re-weighted Least Squares (IRLS) Form . . . . . . 20

2.3.2 Generalizations of the Weiszfeld algorithm . . . . . . . . . . . . . . . 21

xi

Draft Copy – 22 October 2014



xii Contents

2.4 Weiszfeld Algorithm on a Riemannian Manifold . . . . . . . . . . . . . . . . . 21
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Lq Optimization for Points in IRN 25
3.1 Lq Weiszfeld Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 L2 Mean for Points in IRN . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Properties of the Lq Cost Function for Points in IRN . . . . . . . . . . . 27
3.1.4 Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Convergence of Descent Algorithms . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Example of Uncountably many Fixed Points . . . . . . . . . . . . . . 30

3.3 Proof of Convergence of the Lq Weiszfeld Algorithm . . . . . . . . . . . . . . 33
3.3.1 Decreasing Lq Cost for Points in IRN . . . . . . . . . . . . . . . . . . 35
3.3.2 Lq Minimum on Given Points: . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Convergence Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Robustness Against Different Number of Outliers . . . . . . . . . . . . 41
3.5.3 Relative Position of Points in IR3 . . . . . . . . . . . . . . . . . . . . . 43

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Lq Optimization for Points on a Riemannian Manifold 45
4.1 Introduction / Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Lq Weiszfeld Algorithm for Points on a Riemannian Manifold . . . . . . . . . 47

4.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Weakly Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Convexity and minima of the Lq Cost . . . . . . . . . . . . . . . . . . 51
4.2.5 Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Application I: Lq Optimization on SO(3) . . . . . . . . . . . . . . . . . . . . 52
4.3.1 L2 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Lq Geodesic Mean in SO(3) . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Lq Multiple Rotation Averaging . . . . . . . . . . . . . . . . . . . . . 55

4.4 Application II: Lq Averaging on SPD manifold . . . . . . . . . . . . . . . . . 57
4.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 L2 Averaging for SPD Matrices . . . . . . . . . . . . . . . . . . . . . 59

4.4.2.1 Euclidean Metric . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2.2 Affine Invariant Metric . . . . . . . . . . . . . . . . . . . . 60
4.4.2.3 Log-Euclidean Metric . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Lq Averaging for SPD Matrices . . . . . . . . . . . . . . . . . . . . . 60
4.4.3.1 Discussion Related to the Affine-Invariant Metric . . . . . . 61

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.1 Rotation Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1.1 Single Rotation Averaging . . . . . . . . . . . . . . . . . . . 62

Draft Copy – 22 October 2014



Contents xiii

4.5.1.2 Multiple Rotation Averaging . . . . . . . . . . . . . . . . . 63
4.5.2 SPD Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2.1 Convergence Behavior . . . . . . . . . . . . . . . . . . . . . 67
4.5.2.2 Robustness Against Different Number of Outliers . . . . . . 68

4.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.1 Convergence Theorem: Proof of Theorem 4.6 . . . . . . . . . . . . . . 69

4.6.1.1 Continuous Update function W . . . . . . . . . . . . . . . . 70
4.6.1.2 Non-Increasing Lq Cost . . . . . . . . . . . . . . . . . . . . 71
4.6.1.3 Finite set S . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.1.4 Convergent Sequence (xt) . . . . . . . . . . . . . . . . . . . 72
4.6.1.5 Convergence to a point yj . . . . . . . . . . . . . . . . . . . 72
4.6.1.6 Convergence to the Lq minimum . . . . . . . . . . . . . . . 73

4.6.2 Continuity of Logarithm map: Proof of Theorem 4.3 . . . . . . . . . . 74
4.6.3 Toponogov’s Theorem for κ ≥ 0: Proof of Theorem 4.2 . . . . . . . . 75

4.7 Remarks and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.1 Bounds for Convergence on SO(3) . . . . . . . . . . . . . . . . . . . 77
4.7.2 A Flexible Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.3 More on SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.4 More on the Initial Point . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Lq Optimization for Subspaces 79
5.1 Introduction / Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Lq-Closest-Point to Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Comparison with Lq Optimization for Points . . . . . . . . . . . . . . 83
5.2.2 Weighted L2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.3 Solution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.4 Lq Cost Function Restricted on a Subspace . . . . . . . . . . . . . . . 86
5.2.5 Properties of the Lq Cost Function . . . . . . . . . . . . . . . . . . . . 86

5.3 L2-closest-point to Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Lq Solution Strategy I: Gradient Descent Approach . . . . . . . . . . . . . . . 87

5.4.1 Non-Increasing Lq Cost Function . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.3 Proof of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.4 Minimization on a Subspace . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.5 Strict Convexity of the Lq Cost Function . . . . . . . . . . . . . . . . . 93

5.5 Lq Solution Strategy II: General Approach . . . . . . . . . . . . . . . . . . . . 95
5.5.1 Minimization on a Subspace . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Experimental Results: Triangulation . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.1 Convergence Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.2 Robustness to Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Draft Copy – 22 October 2014



xiv Contents

6 Lq-Bundle Adjustment 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Solution Strategies: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1.1 Modified Error Vector . . . . . . . . . . . . . . . . . . . . . 109
6.3.1.2 Attenuation Factor . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 L2 or Squared Error Function (SE): . . . . . . . . . . . . . . . . . . . 111
6.5 Proposed Lq Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.1 Lq Cost Function: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5.2 Lq Optimization using Iterative Re-Weighted Least Square (IRLS): . . 115
6.5.3 Absolute Value Function (AV): . . . . . . . . . . . . . . . . . . . . . 116

6.6 Proposed Huber Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.1 Huber Function: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.2 Standard Huber Function . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6.3 Proposed Isotropic Huber (IsoH) Function . . . . . . . . . . . . . . . . 120
6.6.4 Re-Thresholded Huber Function: . . . . . . . . . . . . . . . . . . . . 122

6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.7.1 Convergence Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.7.2 Robustness to Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7.3 Convergence from Different Starting Points . . . . . . . . . . . . . . . 126

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusion 129
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1.1 RANSAC-style Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 130
7.1.2 Multi-body Structure and Motion (MSaM) through Model Selection . . 131

Draft Copy – 22 October 2014



List of Figures

1.1 Lq optimization for points in IRN . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Lq optimization for points on a Riemannian manifold . . . . . . . . . . . . . . 8
1.3 Lq-closest-point to the subspaces . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Facility location problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Mechanical setup for the Fermat-Weber problem . . . . . . . . . . . . . . . . 17
2.3 Weiszfeld Algorithm (Gradient Descent form) . . . . . . . . . . . . . . . . . . 19
2.4 Weiszfeld Algorithm on manifold . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Example of uncountably many fixed points (starting from a fixed point) . . . . 31
3.2 Example of uncountably many fixed points (starting from a general point out-

side unit circle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Convergence behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Robustness against different number of outliers . . . . . . . . . . . . . . . . . 42
3.5 Relative position of points in IR3 . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Rotation averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Multiple rotation averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 NotreDame set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Convergence behavior of single rotation averaging . . . . . . . . . . . . . . . . 63
4.5 Absolute rotation accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Relative rotation accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Convergence behavior of averaging of SPD matrices . . . . . . . . . . . . . . 68
4.8 Robustness against different proportion of outliers (Log-Euclidean metric) . . . 69

5.1 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Corner point estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Lq-closest-point to subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Lq-closest-point to subspaces (Gradient Descent approach) . . . . . . . . . . . 88
5.5 Lq-closest-point to subspaces (General approach) . . . . . . . . . . . . . . . . 95
5.6 Triangulation results for Dinosaur dataset . . . . . . . . . . . . . . . . . . . . 100
5.7 Robustness to outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Bundle Adjustment iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Squared Error function (1D plot) . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Squared Error function (2D contour plots) . . . . . . . . . . . . . . . . . . . . 112

xv

Draft Copy – 22 October 2014



xvi LIST OF FIGURES

6.4 Proposed Lq cost function (1D plots) . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Proposed Lq functions (2D contour plots) . . . . . . . . . . . . . . . . . . . . 117
6.6 Huber function (1D plot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.7 Huber functions (2D contour plots) . . . . . . . . . . . . . . . . . . . . . . . . 121
6.8 Convergence behavior of the proposed algorithms . . . . . . . . . . . . . . . . 124
6.9 Robustness to outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.10 Convergence from different starting points (L1-bundle adjustment) . . . . . . . 126

7.1 Multi-body Structure and Motion . . . . . . . . . . . . . . . . . . . . . . . . . 131

Draft Copy – 22 October 2014



List of Tables

3.1 Example of Uncountably many Fixed Points (Starting from a Fixed point) . . . 31
3.2 Example of Uncountably many Fixed Points (Starting from a random point

outside a unit circle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Rotation Averaging computation time . . . . . . . . . . . . . . . . . . . . . . 64

xvii

Draft Copy – 22 October 2014



xviii LIST OF TABLES

Draft Copy – 22 October 2014



Chapter 1

Introduction

In this thesis, we propose several methods to minimize a more robust cost function than a
least squares cost function for different types of target functions used in the computer vision
applications. Specifically, we are interested in the minimization of an Lq cost function, for
1 ≤ q < 2, where the sum of the q-th power of errors or distances is minimized. It is
known that Lq cost functions, especially for q = 1, are more robust to outliers than L2 or least
squares cost functions that minimize the sum of squared errors. Generally, Lq optimization
methods use relatively complex optimization strategies compared to least squares methods.
Nonetheless, the proposed algorithms make a trade-off between simplicity and robustness by
iteratively minimizing a weighted L2 cost function to find the more robust Lq solution. As a
result, the proposed methods are simple to understand, easy to formulate and do not require
any new optimization strategy. Thus, the proposed Lq algorithms involve a simple iterative
extension of least squares methods. Furthermore, from an implementation point of view an
existing least squares implementation can be modified to give a more robust Lq solution.

In the following section we will start by discussing the two classes of problems that are
solved in thesis followed by a discussion on challenges in solving Lq cost functions, in sec-
tion 1.2. In section 1.3 and section 1.4 we will give an overview of the Lq-closest-point prob-
lems and Lq parameter estimation problems, respectively, in detail. In section 1.5 we summa-
rize the contributions of this thesis followed by the thesis outline, in section 1.6.

1.1 Distance Minimization Problems

In this thesis, we focus on two basic classes of distance minimization problems, that are Lq-
closest-point (or Lq averaging) problems and Lq non-linear parameter estimation problems.
Given a set of measurements, such as points, lines, subspaces, or their mixture, the Lq-closest-
point problem is to find a point for which the sum of the q-th power of distances to the given
measurements is the minimum. On the other hand, the Lq non-linear parameter estimation
problem is to find a model that best describes a given set of data points by estimating model
parameters via minimizing the sum of the q-th power of distances to all the given points.
Clearly, both the problems have been extensively studied in the literature, but our objective is
to propose methods that are simple to understand and easy to implement. Below we discuss
these problems in detail.

1
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2 Introduction

1.1.1 Lq Averaging or Lq-Closest-Point Problems

The Lq averaging or Lq-closest-point algorithm finds the Lq mean or the Lq-closest-point to
a set of given measurements such as points, lines, subspaces, etc. Specifically, we solve the
problems of finding the Lq mean of a set of points in IRN and on a Riemannian manifold
of non-negative curvature; and the problem of finding the Lq-closest-point to a set of affine
subspaces.

Given a set of measurements {S1,S2, . . . ,Sn} in some metric space, the Lq mean or Lq-
closest-point is defined as a point for which the sum of the q-th power of distances to the given
measurements is the minimum. Depending on the type of problem these measurements Si can
be points, lines, subspaces, or a mixture of these. Here we are only interested in points in IRN ,
points on a Riemanninan manifold of non-negative curvature and affine subspaces in IRN . The
Lq minimization function takes the following form

min
x

k

∑
i=1

d(x,Si)
q , (1.1)

where d(·, ·) is a distance function and 1 ≤ q < 2. We refer to the minimum of this function
as the Lq mean or Lq-closest-point.

1.1.2 Lq Non-linear Parameter Estimation Problems

The other class of distance minimization problems that we solve here is non-linear parameter
estimation problems where we try to estimate parameters β of a model that best fits a given set
of points. Let xi be a noisy measurement of a vector x̄i. Assuming that the measurement xi is
related by a non-linear function fi to a parameter vector β. The Lq minimization function takes
the following form,

min
β

k

∑
i=1

d(xi, fi(β))q , (1.2)

where d(·, ·) is a distance function. We refer to the minimum of this function as an Lq mini-
mum.

Applications: The applicability of the proposed algorithms in the area of computer vision is
shown by solving the following problems: Firstly, we solve the rotation averaging problem,
where several noisy observations of a rotation are averaged to get a better estimates of the rota-
tion; Secondly, averaging of a set of Symmetric Positive-Definite (SPD) matrices is performed.
Thirdly, we solve the triangulation problem, where a point in 3D space is obtained by finding a
closest-point to the backtracked lines obtained from several noisy projections of the 3D point.
Lastly, we solve the bundle adjustment problem, a non-linear parameter estimation problem.
Given a set of images of a scene, bundle adjustment simultaneously estimates camera motion
and 3D structure of the scene. Note that the applicability of the proposed algorithms is not only
limited to the problems in the area of computer vision, rather a wide range of distance/error
minimization problems can be solved by using the proposed algorithms.
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§1.2 Challenges 3

For q = 2, the above mentioned problems have been studied extensively in the literature
and their theory is well established. However, we are interested in finding the Lq solution of
the problems, for 1 ≤ q < 2. Below we discuss some of the challenges in finding the Lq

solution of the problems.

1.2 Challenges

Generally, least squares techniques are preferred whenever a simple and easy to understand
solution of a problem is desired because these techniques are well studied and have simple for-
mulation. In addition to being simple, least squares techniques are efficient because generally
a closed form solution exists for these problems. However, least squares methods suffer from
a major drawback when it comes to the robustness against outliers; even a single outlier in the
data set can considerably deviate the solution from its true value. Thus, in order to make a
least squares technique work for data with outliers, an outlier removal procedure is required as
a pre-processing step. Due to this, least squares techniques are not very useful when there are
outliers in data.

Thus, there is a need to explore other cost functions that are more robust to outliers. It is
known that Lq cost functions, for 1 ≤ q < 2, are more robust to outliers than least squares
functions. But the minimization of Lq cost functions generally require different optimiza-
tion strategies than least squares optimization techniques. Therefore, it is important to devise
methods that fit in the existing literature of least squares techniques and do not require new
optimization strategies.

Generally, an iterative method is used to minimize an Lq cost function, for 1 ≤ q < 2.
Iterative minimization techniques rely on finding an update in the descent direction to decrease
the cost in successive iterations. There are several techniques in the literature to find an update
in the descent direction, for example, line search, differentiation, etc. The efficiency of iter-
ative methods primarily depend on how quickly these updates are computed. Therefore, it is
important to propose methods that use simple techniques for the computation of updates.

After adding up all the above mentioned complications to the solution strategy, the imple-
mentation of an Lq optimization method is no longer an easy task, especially compared to least
squares optimization strategies. Thus, a final issue of easy implementation has to be resolved
to get new algorithms work for real world problems.

The proposed Lq optimization algorithms address all of the above mentioned issues. These
new techniques not only find a robust Lq solution but also trivially fit in the existing literature
of the least squares techniques because they minimize weighted least squares cost functions to
find an Lq solution. As a result, the proposed algorithms are simple to understand and easy to
implement.

1.3 Lq-Closest-Point Problems

In this section we discuss the proposed algorithms to solve the Lq-closest-point problems along
with their advantages. The Lq-closest-point algorithms proposed in this thesis are inspired by
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the Weiszfeld algorithm [Weiszfeld, 1937] that finds the L1 mean of a set of points in IRN .

Weiszfeld Algorithm: Given a set of points {y1, y2, · · · , yk}, the Weiszfeld algorithm finds
the L1 mean by iteratively minimizing a weighted L2 cost function,

min
x

k

∑
i=1

wt
i ‖x− yi‖2 ,

where wt
i = ‖xt − yi‖−1 and xt is the estimate of the L1 mean at an iteration t. A major

advantage of the Weiszfeld algorithm is that the iterative updates are quick to compute because
updates in descent directions are computed analytically.

1.3.1 Solution Strategy: Weiszfeld-style Algorithms

We show that the Lq-closest-point problems can be solved using a Weiszfeld inspired ap-
proach, that is, by minimizing a weighted L2 cost function. We propose a generalization of
the Weiszfeld algorithm to find the Lq mean of a set of points in IRN . The algorithm is referred
to as the Lq Weiszfeld algorithm. The Lq Weiszfeld algorithm finds the Lq mean of a set of
points in IRN by iteratively minimizing a weighted L2 function,

min
x

k

∑
i=1

wt
i d(x, yi)

2 , (1.3)

where wt
i is a weight associated with d(x, yi) at the iteration t. We give a proof that if we

choose wt
i = d(xt, yi)

q−2 and iteratively minimize (1.3) then it will result in the minimization
of the corresponding Lq cost function, that is Cq = ∑k

i=1 d(x, yi)
q .

Furthermore, we prove that the Lq Weiszfeld algorithm can also be used to find the Lq mean
of a set of points on a Riemannian manifold of non-negative sectional curvature, and to find
the Lq-closest-point to a given set of affine subspaces in IRN . The proposed algorithms inherit
all the features of the Weiszfeld algorithm and are provably convergent to the Lq minimum.

Note: The Lq Weiszfeld algorithm is the same as the Iterative Re-weighted Least Squares
(IRLS) technique, where a weighted least squares cost function is solved iteratively to find a
relatively robust solution compared to the least squares technique. The IRLS techniques have
existed in the literature for a long time, but here we show that for a particular choice of weights
the IRLS algorithm converges to the desired Lq minimum, for 1 ≤ q < 2. The proposed
technique must not be confused with the IRLS technique in compressed sensing [Daubechies
et al., 2008; Chartrand and Yin, 2008; Eldar and Mishali, 2009], because in this thesis we solve
a more general class of problems rather than the problems with a sparse solution. Here a solu-
tion to these problems can possibly be non-sparse. In other words, in our problems of interest
it is robustness, and not sparsity, that is the goal.
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1.3.2 Advantages of Weiszfeld-style Algorithms

The basic reason for proposing Weiszfeld-style algorithms is to overcome the disadvantages
of least squares methods with a little compromise on their advantages. Just like the Wesizfeld
algorithm, the proposed algorithms find the Lq solution of a problem by iteratively minimizing
a weighted L2 function. Therefore, the advantages of least squares methods in terms of simple
formulation are inherited readily. The proposed algorithms being iterative optimization meth-
ods are not as efficient as least squares methods, but explicit computation of updates makes
up for the high computational cost. Some of the advantages of the proposed Weiszfeld-style
algorithms are summarized below:

• Provably Convergent: A major advantage of the proposed algorithms is that they are
guaranteed to converge to the Lq minimum, for 1 ≤ q < 2. For each algorithm, we
identify the convergence conditions and give a detailed proof of convergence.

• Analytical Updates: When proposing a new method it is important to show that the
algorithm is efficient and can be applied to real world problems. The proposed algo-
rithms are iterative gradient descent methods. Generally, gradient descent methods use
a complex and computationally expensive process, such as line search, to find an update
in the descent direction. On the contrary, the proposed algorithms have the advantage
of computing updates analytically; hence do not require any complex strategy to find
updates. As a result, the proposed algorithms are easy to implement and efficient.

• Optimization Strategy: Generally, the minimization of least squares cost functions is
preferred because of their simple optimization strategies. On the other hand, the mini-
mization of an Lq cost function requires a new optimization strategy that is sometimes
very different than that of least squares optimization costs. However, the proposed algo-
rithms do not require any new optimization strategy because the minimization of an Lq

cost function is achieved by minimizing a weighted least squares cost function. There-
fore, existing least squares optimization strategies are used to minimize the Lq cost func-
tions.

• Simple to Understand: Since the theory of least squares methods is well established,
the fact that the proposed algorithms solve weighted L2 functions makes the proposed
algorithms simple to understand.

• Easy to Implement: Since the proposed algorithms minimize weighted least squares
cost functions and do not require any new optimization strategy, any existing least
squares implementation of a problem can be exploited to find the Lq solution. Thus,
the implementation of the Lq algorithm requires less effort than other Lq optimization
methods in the literature that require specialized toolboxes to solve a problem.

1.4 Lq Non-linear Parameter Estimation Problems

In this section we discuss the Lq non-linear parameter estimation problem and the proposed
solution strategy. We are particularly interested in the bundle adjustment problem and its so-
lution using the Levenberg-Marquardt (LM) method. The Levenberg-Marquardt method is a
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numerical method for solving non-linear least squares problems. We show that a non-linear
least squares method, that is the LM method, can be used to find an Lq solution of the bundle
adjustment problem.

Let xi be a noisy measurement of a vector x̄i and X be a vector obtained by concatenating
all measurements: X = (x1, x2, . . . , xN), where N is the total number of measurements. The
true vector X̄ = (x̄1, x̄2, · · · , x̄N) is assumed to be related by a non-linear function f to a
parameter vector β, that is X̄ = f (β). Typically, the LM method minimizes the squared norm
of a vector function as

min
β

ETE , (1.4)

where E is an error vector computed from the values of X and f (β). Depending on the cost
function to be minimized, there are several ways of computing the error vector E. For example,
when minimization of the least squares cost is desired then the vector E is taken as the differ-
ence of vectors X and f (β), E = X− f (β). Then from (1.4), the least squares cost function to
be minimized is

C2(X, β) = ∑
i
‖ei‖2 = ∑

i
d(xi, fi(β))2 , (1.5)

where d(xi, fi(β)) is the Euclidean distance between a measured value xi and a predicted value
fi(β); and ei = xi − fi(β), while it is assumed that the true vector x̄i is related by a function
fi to a parameter vector β, that is x̄i = fi(β).

1.4.1 Solution Strategies: the Levenberg-Marquardt Method

We show that the Levenberg-Marquardt method can be used to find a robust solution to this
problem, especially an Lq solution. The proposed technique is very simple and only requires
a modification of the error vector E. Thus, the minimization of a desired cost function is
achieved by replacing the error vector E in (1.4) with a modified error vector E′. This new
vector is obtained by modifying each component of E. This modification will result in the
minimization of a desired cost function rather than a standard least squares cost function. The
resultant minimization function is,

min
β

(E′)T(E′) , (1.6)

or equivalently,

min
β

∑
i

e′Ti e′i . (1.7)

For example, if we choose e′i = ei/‖ei‖(2−q)/2, then the above equation results in the mini-
mization of an Lq cost function, that is the sum of the q-th power of errors. The resultant cost
function can be minimized by using the LM method and does not require any new optimization
strategy.

Since the proposed algorithm modifies a least squares technique, namely the LM method,
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Figure 1.1: Lq optimization for points in IRN: The above figure shows three fixed (green) points
and a starting (red) point from which the sum of the q-th power of distances to fixed (green)

points is to be minimized.

to find a robust solution, the proposed algorithm trivially fits in the existing domain of the stan-
dard least squares techniques. Even from an implementation point of view the minimization of
a desired Lq function only requires a slight modification of an existing L2 technique. Thus, the
resultant algorithm is easy to understand and code.

1.5 Contributions

We apply the proposed algorithms to several problems in the area of computer vision. To
illustrate the techniques, we consider in detail the following problems:

1. Lq optimization for points in IRN .

2. Lq optimization for points on a Riemannian manifold.

• Lq rotation averaging.

• Lq averaging for Symmetric Positive-Definite matrices.

3. Lq optimization for subspaces:

• Lq-closest-point to affine subspaces.

4. Lq non-linear parameter estimation.

• Lq bundle adjustment.

In the rest of the chapter we will summarize these contributions.

1.5.1 Lq Optimization for Points in IRN

Here we propose a generalization of the Weiszfeld algorithm to find the Lq mean of a set of
points in IRN , for 1 ≤ q < 2. The algorithm uses a Weiszfeld inspired approach to find
the solution and is therefore referred as the Lq Weiszfeld algorithm. Given a set of points
{y1, y2, . . . , yk}, we seek a point x ∈ IRN , for which the sum of the q-th power of distances
to all the given points is the minimum, as shown in fig. 1.1. The minimization function is then

min
x∈IRN

k

∑
i=1
‖x− yi‖q ,
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Figure 1.2: Lq optimization for points on a Riemannian Manifold: The above figure represents
a manifold with some given fixed points (red). The Lq Weiszfeld algorithm finds a point (white)

for which the sum of the q-th power of distances to all the given points is the minimum.

where ‖ · ‖ is the Euclidean distance and 1 ≤ q < 2.
The Lq Weiszfeld algorithm is simply an extension of the Weiszfeld algorithm to find the

Lq mean. We identify the critical argument in the Weiszfeld algorithm, and show that it may be
generalized to find the Lq solution, where 1 ≤ q < 2. In addition to the proof of convergence of
the Lq Weiszfeld algorithm, we identify the conditions under which a general gradient descent
algorithm converges. Our proofs of convergence of the Lq-closest-point algorithms, including
the Lq Weiszfeld algorithm, are based on these conditions.

1.5.2 Lq Optimization for Points on a Riemannian Manifold

Just like the Lq optimization for points in IRN , we propose a generalization of the Lq Weiszfeld
algorithm to find the Lq mean of a set of points on a Riemannian manifold of non-negative
curvature. The Weiszfeld algorithm has already been generalized to find the L1 mean of a set
of points on a Riemannian manifold of non-negative curvature [Fletcher et al., 2009]. We not
only show that the Lq Weiszfeld algorithm can be used to find the Lq mean of a set of points but
we further relax the bounds on the maximum possible distance between points on manifold.

Given a set of points {y1, y2, . . . , yk} on a Riemannian manifold of non-negative curvature
M, we seek a point x ∈ M, for which the sum of the q-th power of geodesic distances to all
the given points is the minimum, as shown in fig. 1.2. A geodesic is a generalization of the
notion of straight line to Riemannian manifolds. The minimization function is then

min
x∈M

k

∑
i=1

d(x, yi)
q ,

where d(·, ·) is a geodesic distance between two points on M. Note that the Lq Weiszfeld
algorithm for points in IRN is a special case of the Riemannian version of the algorithm where
sectional curvature is null and geodesic distance is the Euclidean distance.

Starting from an initial estimate of the Lq mean, the proposed algorithm updates a current
estimate by transferring all of the given points to the tangent space centered around a current
estimate. The updated solution is then projected back to the manifold and the process is re-
peated until convergence. The key idea in the proof of convergence of the algorithm is to show
that the projected solution results in a decrease in the Lq cost function.
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We apply the Lq algorithm to the problems of finding the Lq mean of a set of rotations and
of Symmetric Positive-Definite (SPD) matrices. These two problems are discussed below:

1.5.2.1 Lq Rotation Averaging

We apply the proposed algorithm to the problem of rotation averaging where several estimates
of a rotation are averaged to find a better estimate. A rotation matrix is used to perform a
rotation in the Euclidean space. The problem of Lq rotation averaging takes two forms: single
rotation averaging in which several estimates of a single rotation are averaged to give the best
estimate; and multiple rotation averaging, in which relative rotations Rij are given, and absolute
rotations Ri are computed to satisfy the compatibility constraint RijRi = Rj. For single-rotation
averaging the algorithm provably finds the global Lq optimum. However, for multiple rotation
averaging no such proof exists.

The problem of rotation averaging has significant applications to structure and motion and
to non-overlapping camera calibration. It has been studied quite extensively in the past, both
in computer vision and in other fields. Some interesting applications of averaging include
camera network calibration [Tron and Vidal, 2009], sensor network localization [Cucuringu
et al., 2012a] and molecule problem in structural biology [Cucuringu et al., 2012b].

1.5.2.2 Lq Averaging for Symmetric Positive-Definite (SPD) Matrices

We use the proposed algorithm to solve the problem of finding the Lq mean of a set of symmet-
ric positive-definite (SPD) matrices. The space of SPD matrices is not a vector space; instead,
it is a Riemannian manifold that constitutes a convex half-cone in the vector space of matrices.
The structure of the Riemannian manifold of SPD matrices depends on the metric induced.
Some of the popular metrics that we discuss are: the Euclidean metric, the Log-Euclidean met-
ric [Arsigny et al., 2007]. and the Affine-Invariant metric [Pennec et al., 2006; Fletcher and
Joshi, 2004; Lenglet et al., 2004; Moakher, 2005]. In this case we are more interested in the
Log-Euclidean metric because the SPD manifold has a null sectional curvature when endowed
with the Log-Euclidean metric and it does not suffer from the drawbacks of other metrics.

In the area of computer vision and medical imaging SPD matrices have a lot of applica-
tions. In medical imaging SPD matrices are used to model the anatomical variability of the
brain [Fillard et al., 2007] and to encode the principal diffusion directions in Diffusion Tensor
Imaging (DTI) [Fletcher and Joshi, 2007; Pennec et al., 2006]. Furthermore, SPD matrices
are widely used in computer vision for motion analysis and texture segmentation [Brox et al.,
2003]; and to model the appearance of objects for tracking [Porikli et al., 2006; Tyagi et al.,
2008]. Clearly, the application of SPD matrices is not only limited to the area of computer
vision and medical imaging. Outside the domain of computer vision, in physics SPD matrices
can be used as stress-strain tensors [Moakher, 2006; Salençon, 2001] and they can also be used
to solve partial differential equations (PDEs) [Borouchaki et al., 1997].

1.5.3 Lq Optimization for Subspaces

Here we address the problem of finding the Lq-closest-point to a set of affine subspaces. The
problem of finding the Lq mean of a set of points in IRN is a special case of the problem of
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S3

X S2

S1

PS1
(X) PS2

(X)

PS3
(X)

Figure 1.3: Lq-closest-point to affine subspaces: The above figure shows three subspaces
(lines), S1, S2 and S3. We seek a point X for which the sum of the q-th power of orthogo-
nal distances is the minimum, ∑i d(X,Si)

q. Gray points represent the orthogonal projections
of a red point X, on subspaces.

finding the Lq-closest-point to a set of affine subspaces in IRN where all the subspaces are
zero dimensional, that is points. Thus, the proposed algorithm is a generalization of the Lq

Weiszfeld algorithm for higher dimensional subspaces in IRN .

1.5.3.1 Lq-closest-point to Subspaces

In most of the computer vision applications information can be represented by affine subspaces,
for example, multi-body structure and motion, objects under different illumination settings,
etc. We present a method, based on the Lq Weiszfeld algorithm, to find an Lq-closest-point,
“intersection” point, to a set of affine subspaces. Once again the minimization of an Lq cost
function is achieved by iteratively minimizing a weighted L2 cost function.

For a given set of affine subspaces {S1,S2, . . . ,Sk}, possibly of different dimensions,
the Lq-closest-point to the given subspaces is the one for which the sum of the q-th power of
orthogonal distances is the minimum, as shown in fig. 1.3. The minimization function is

min
X∈IRN

k

∑
i=1
‖X−PSi(X)‖q ,

where ‖ · ‖ is the Euclidean norm and PSi(X) is an orthogonal projection of a point X on the
i-th subspace Si.

The problem has significant applications in the field of geometrical computer vision. We
consider the problem of triangulation in which a 3D point in space is determined by finding the
point of intersection of lines, where each line is passing through the center of the camera and
intersecting the image plane at the corresponding image point. Due to various types of noise
in image point measurements these lines are a skewed form of the original lines. As a result,
these skewed lines do not intersect at a single point, possibly these lines may not intersect at
all. So the problem is reduced to finding the optimal point of intersection of 1-dimensional
subspaces, that is lines, in IR3.
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Figure 1.4: Bundle Adjustment: We seek camera matrices Pi and a 3D point X for which the
sum of re-projection errors ∑i d(PiX, xi)

q is the minimum.

1.5.4 Lq Non-linear Parameter Estimation

In parameter estimation problems we want to fit a model to a given set of measurements. We
specifically consider the bundle adjustment problem where camera parameters and 3D structure
of a scene are recovered simultaneously from multiple images of the scene.

1.5.4.1 Lq Bundle Adjustment

Given multiple images of a scene, bundle adjustment [Hartley and Zisserman, 2004; Triggs
et al., 2000a; Engels et al., 2006] simultaneously estimates camera matrices and 3D points in
the scene and is therefore a non-linear optimization problem. Several techniques exist in the
literature to minimize a non-linear least squares problem, such as the Gauss-Newton method,
the Leveberg-Marquardt (LM) method, Trust Region methods, etc. The LM method, a least
squares technique, has become a fairly standard optimization technique to solve the bundle
adjustment problem. By using the proposed techniques the Levenberg-Marquardt method can
be used to solve for a robust solution of the bundle adjustment problem, especially an Lq

solution.
Given a set of image point measurements xij, bundle adjustment solves for camera ma-

trices Pi and 3D points Xj such that xij = PiXj. In practice, due to the noise in image point
measurement the reprojected point P̂iX̂j is not same as the measured image point xij, as shown
in fig. 1.4. The problem is then to find an optimal estimate of the camera parameter P̂i and the
3D point X̂j such that the error between the measured image points xij and the estimated image
points P̂iX̂j is minimized. The Lq cost function to be minimized takes the following form,

min
P̂i ,X̂j

∑
i,j

d(P̂iX̂j, xij)
q .

When compared to the least squares problem, this problem is considered as a hard problem
and is solved using complex optimization strategies.

By using the proposed techniques the Levenberg-Marquardt method can be used to find a
solution of the above problem. We propose several strategies to minimize robust cost functions,
especially the Lq cost function. The minimization of the Lq cost function is achieved using two
different methods. The first method, we call the Lq method, minimizes the sum of the q-th
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power of distances using a modified difference vector in the LM method. The second method,
Iterative Re-Weighted Least Squares (IRLS), finds an Lq solution by iteratively minimizing a
weighted least squares cost function, an Lq Weiszfeld inspired approach.

1.6 Thesis Outline

The rest of the thesis contains one background chapter and four contribution chapters. In
chapter 2, we start by reviewing the L1 optimization techniques where we provide a brief
overview the Weiszfeld algorithm for points in IRN and on a Riemannian manifold of non-
negative sectional curvature. The main contributions of this thesis are presented in chapters 3,
4, 5 and 6. In chapter 3, we propose a generalization of the Weiszfeld algorithm to find the
Lq mean of a set of points in IRN , referred as the Lq Weiszfeld algorithm; and then identify
the conditions under which descent algorithms are guaranteed to converge. In chapter 4, we
further extend the theory presented in chapter 2 by proposing an algorithm, based on the Lq

Weiszfeld algorithm, to find the Lq mean of a set of points on a Riemannian manifold of
non-negative sectional curvature. In addition to the proof of convergence of the algorithm,
we relax the bounds on the maximum distance between points on manifold. Furthermore, we
show that the proposed algorithm can be used to find the Lq mean of a set of rotations and
Symmetric Positive-Definite matrices, and our experimental results confirm that the Lq mean
is more robust to outliers than the L2 mean. In chapter 5, we propose an extension of the Lq

Weiszfeld algorithm to find the Lq-closest-point to a set of affine subspaces. Chapter 6 presents
several methods to find a robust solution, especially an Lq solution, of the bundle adjustment
problem. Finally, in chapter 7 we conclude the thesis.
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Chapter 2

Background: L1 Optimization for
Points

In this chapter we review the existing techniques in the literature to find the L1 mean of a set of
points in IRN and on a Riemannian manifold of non-negative curvature. Given a set of points,
the L1 mean is a point for which the sum of distances to all the given points is the minimum.
The L1 mean is also known as the Geometric Median, a generalization of the univariate median
to higher dimensional spaces. A well known algorithm to find the L1 mean of a set of points
in IRN is the Weiszfeld algorithm [Weiszfeld, 1937]. The Weiszfeld algorithm is provably
convergent iterative method that does not require computation of derivatives or line-search.
Therefore it is very easy to understand and code. The iterative update is very quick to compute
and in practice, the algorithm is quick to converge.

The Weiszfeld algorithm has been studied extensively in the past and several extensions of
the algorithm have also been proposed. However, in this thesis we are only interested in the
Weiszfeld algorithm [Weiszfeld, 1937] and its extension for points on a Riemannian manifold
[Fletcher et al., 2009]. It is known that the L1 mean or geometric median of a set of points is
more robust than the L2 mean or arithmetic mean. For instance, if all of the given points lie
in a one dimensional space, that is a line, then the L2 mean is the usual arithmetic mean of
the points, whereas the geometric median is the median. Thus, the geometric median is less
affected by the presence of distant (outlier) values. Our interest in this problem relates to its
robustness to outliers.

In the following section we will discuss several measures of centrality. We dedicate the rest
of the chapter for discussion on the Geometric median or L1 mean, the Weiszfeld algorithm
and its extension for points on a Riemannian manifold.

2.1 Measure of Central Tendency

In statistics, a measure of central tendency is a single value that attempts to describe a set of
data by identifying the central position within that set of data. It is also known as an average
of the data. Some of the most common measures of central tendency are the arithmetic mean,
the median and the mode. The arithmetic mean is also known as the L2 mean. Depending
on univariate or multivariate data these measures of central tendency are computed differently.
For example, a univariate median is the middle value that separates the higher half from the

13
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14 Background: L1 Optimization for Points

lower half of the data; however, a multivariate median can be computed in several ways, a
straightforward way is to compute univariate median for each component of the input vectors.

We are only interested in one particular type of multivariate median, that is, the geometric
median. Therefore, we focus our discussion on the arithmetic mean and the median. In the rest
of the section we discuss the mean and the median.

2.1.1 Mean

There are several types of mean, for example, the arithmetic mean, the geometric mean, the
Fréchet mean, etc. Among these measures, the arithmetic mean is commonly used where an
L2 cost function, that is the sum of squared distances, is minimized. The arithmetic mean is
also referred as the L2 mean. The Fréchet mean also minimizes the sum of squared distances
but in this case the data lies on a surface, specifically, on a Riemannian manifold. Therefore,
here we only consider the arithmetic mean and the Fréchet mean.

Arithmetic Mean: For a given set of measurements {y1, y2, . . . , yk}, the arithmetic mean
minimizes the sum of squared distances,

min
x

k

∑
i=1
‖x− yi‖2 ,

where ‖ · ‖ is the Euclidean norm. By solving the above equation the arithmetic mean is simply
the sum of all measurements yi divided by the number of observations in the data set,

x̄ =
1
k

k

∑
i=1

yi ,

Regardless of whether the data is univariate or multivariate data, the arithmetic mean is com-
puted by using the same method.

Fréchet Mean: Just like the arithmetic mean, the Fréchet mean also minimizes an L2 cost
function but in this case data points lie on a surface or, more generally, on a Riemannian
manifold. Unlike many other means, the Fréchet mean is defined on a space whose elements
cannot necessarily be added together or multiplied by scalars. The minimization function is
still a sum of squared distance function,

min
x

k

∑
i=1

d(x, yi)
2 ,

where d(·, ·) is a distance function. It is also known as the Karcher mean, named after Hermann
Karcher.
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§2.1 Measure of Central Tendency 15

2.1.2 Median

The median is of central importance in robust statistics, as it is the most robust measure of
central tendency having a breakdown point of 50% which means that as long as no more than
half of the data is outliers, the median will not give an arbitrarily large result. Unlike the mean,
the univariate median and multivariate median have different forms. There are several types of
multivariate medians but they all share a common property, that is, for one-dimensional data
they are the same as the univariate median. In the rest of the section we will discuss the uni-
variate and multivariate medians in detail.

Univariate Median: For a given set of points on a line, that is one-dimensional data, the me-
dian is the middle value that separates the higher half from the lower half of the dataset. The
median of a finite list of numbers can be found by arranging all the observations from lowest
value to highest value and picking the middle one. If there is an even number of observations,
then the median is the mean of the two middle values. Note that the median is only defined on
the order of data and is independent of any distance metric. Thus, the median of a set of points
will not change, unless more than 50% of the points are shifted to some other value.

Multivariate Median: As mentioned before that the extension of the univariate median to
multi-dimensional data is not straight forward and there are several measures of median for
mutli-dimensional data. When the dimension is two or higher, there are multiple concepts
that extend the definition of the univariate median. However, these multivariate medians agree
with the univariate median for one-dimensional data. Some of the commonly used multivariate
medians are summarized below.

• Marginal Median: For a given set of vectors, a marginal median is defined to be the
vector whose components are univariate medians.

• Geometric Median or L1 Mean: The geometric median of a given set of points mini-
mizes the sum of distances to all the given points. It is also known as the L1 mean. The
geometric median is unique when given points are non-collinear. This is the same as
the median when applied to one-dimensional data, but it is not the same as taking the
median of each dimension independently.

There are several other generalizations of the multivariate median such as the affine equivari-
ant Oja median [Oja, 1983; Niinimaa et al., 1990], the Halfspace median [Tukey, 1975], etc.
Some common ideas of breakdown, equivariance, symmetry and computational convenience
for several definitions of multivariate median are discussed in [Small, Dec. 1990].

Since we are only interested in the geometric median, a detailed discussion of multivariate
medians is out of the scope of this thesis. We dedicate the rest of the chapter for discussion on
the geometric median and algorithms to find it. In the next section we discuss the geometric
median in more detail.
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16 Background: L1 Optimization for Points

2.2 Geometric Median

The geometric median of a discrete set of sample points in a Euclidean space is the point that
minimizes the sum of distances to the sample points. This generalizes the univariate median,
and provides a measure of central tendency in higher dimensions. The geometric median is an
important estimator of location in statistics. It is also a standard problem in facility location,
where it models the problem of locating a facility to minimize the cost of transportation.

The median of a data set is a robust estimate of centrality. It has a different character from
the arithmetic mean as is illustrated by different breakdown properties. In the case of the mean
it suffices to have a single point at infinity to send the mean to infinity. On the other hand, at
least 50% of the data must be moved to infinity to force the median to do the same.

Given a set of points {y1, y2, . . . , yk} in some metric space, the L1 mean or geometric
median is a point x̄ that minimizes the sum of distances to all given points,

x̄ = argmin
x

k

∑
i=1

d(x, yi) , (2.1)

where d(·, ·) is a distance function. A well-known and provably convergent algorithm for
finding the L1 mean of a set of points in IRN is the Weiszfeld algorithm [Weiszfeld, 1937].

2.2.1 History: Fermat-Weber Problem

A special case of the above problem is known as Fermat’s problem where the L1 solution of
3 sample points in a plane is desired. This problem was originally posed by Pierre de Fermat
to Evangelista Torricelli, who solved it. Its solution is known as the Fermat point of a triangle
with each sample point as a vertex. The more general form of the problem for more than
3 points in IRN was studied by Alfred Weber [Weber, 1909] and therefore is known as the
Fermat-Weber problem.

The Fermat-Weber problem is a well studied problem in the area of operations research
[Kulin and Kuenne, 1962; Plastria and Elosmani, 2008; Weiszfeld and Plastria, 2009]. In the
area of operations research and computational geometry the Fermat-Weber problem is studied
in the context of the facility location problem. The goal is to find an optimal location for the
placement of a set of facilities to reduce the distance to each of the fixed demand points. The
Fermat-Weber problem is the simplest form of facility location problem where the location
of a single facility is desired such that the distance to each of the fixed demand points is the
minimum, as shown in fig. 2.1.

A mechanical system is shown in fig. 2.2 to demonstrate the working of the Fermat-Weber
problem. In fig. 2.2 each given point yi is represented by a pulley. Strings are passed through
pulleys and unit weights are attached to one end of the strings. The other ends of all the strings
are tied together. This mechanical system will reach an equilibrium state. At this point all the
forces (due to unit weights) in all directions will cancel each other and there will be no change
in the location of the knot connecting the strings. The final location of the knot is also the L1

solution in case of points in IR2 (2.1), because at the minimum point all the unit magnitude
forces cancel each other. It follows that at this point the gradient of (2.1) is zero, it is shown in
(2.4) that the gradient of (2.1) is in fact the sum of unit vectors.
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§2.2 Geometric Median 17

Figure 2.1: Facility location problem: The problem is to find an optimal location for the place-
ment of a single facility (factory) such that the sum of distances to all resources (forest, city,

airport and seaport) is the minimum.

Figure 2.2: Mechanical setup for the Fermat-Weber problem: Each pulley represents a fixed
point. Strings are passed over the pulleys and unit weights are attached to one end of string
while other ends are tied together. The system will eventually reach an equilibrium state and

that point will be the L1 minimum.
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18 Background: L1 Optimization for Points

2.2.2 Properties of Geometric Median

Here we discuss some properties of the geometric median. For a detailed discussion on multi-
variate medians and their properties see [Small, Dec. 1990].

• For the 1-dimensional case, the geometric median coincides with the median. This is
because the univariate median also minimizes the sum of distances from the points.

• Uniqueness: The geometric median is unique whenever the points are not collinear.

• Equivariance: The geometric median is equivariant for Euclidean similarity transfor-
mations, including translation and rotation. This means that one would get the same
result either by transforming the geometric median, or by applying the same transforma-
tion to the sample data and finding the geometric median of the transformed data.

• Breakdown point: The geometric median has a breakdown point of 0.5. That is, up to
half of the sample data may be arbitrarily corrupted, and the median of the samples will
still provide a robust estimator for the location of the uncorrupted data.

In the next section we discuss the Weiszfeld algorithm to find the L1 mean or geometric
median of a set of points in IRN .

2.3 Weiszfeld Algorithm for Points in IRN

The Weiszfeld algorithm solves for the L1 minimum of a set of points in IRN . Given a set of
points {y1, y2, . . . , yk} where yi ∈ IRN , their L1 mean or geometric median is the point x that
minimizes the cost function

C1(x) =
k

∑
i=1
‖x− yi‖ , (2.2)

where ‖ · ‖ is the Euclidean norm.
The Weiszfeld algorithm updates a current estimate xt to

xt+1 =
∑k

i=1 wt
i yi

∑k
i=1 wt

i

, (2.3)

where wt
i = ‖xt − yi‖−1. If all of the given points are non-collinear then the cost function C1

has a unique minimum, and the sequence of iterates xt will converge to the minimum of the
cost (2.2), except if it gets stuck at one of the points yi, as explained next.

Continuity of the Update: If one of the iterations xt approaches one of the points yi, then
the weight wt

i becomes very large, and in the limit, the update step, as given by (2.3) becomes
undefined. However, this is a removable singularity. Suppose that one of the points, say y1 is
the one closest to an iteration xt, then one may replace all the weights by w̃t

i = wt
i /wt

1 and
w′1 = 1 without altering the update. With these weights, the update step is well-defined, and
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§2.3 Weiszfeld Algorithm for Points in IRN 19

(a) Iteration 1 (b) Iteration 2

Figure 2.3: Weiszfeld Algorithm (Gradient Descent Form): (a) shows three fixed points (green)
and a starting point (red) from which the sum of distances to fixed points (green) is to be
minimized. (b) shows an updated point (red) after one iteration of the Weiszfeld algorithm in

the descent direction.

continuous, even when xt is equal to one of the points yi. Although this renormalization of
weights removes the apparent singularity in the definition of the update step, we shall continue
to use the formula wt

i = ‖xt − yi‖−1, just so as to avoid complicating the exposition.
Although this trick removes the singularity at the points yi, the update so defined results

in xt+1 = xt = yi whenever xt equals yi exactly. Thus, the sequence of iterations gets stuck
at yi. In this case, it cannot be concluded (and is not generally true) that yi is the minimum of
the cost function.

Getting Stuck: This possibility of “getting stuck” at a value xt = yi is perhaps the main
theoretical flaw of the Weiszfeld algorithm. From a practical point of view, however, it is not
a significant issue. This eventuality is rarely if ever encountered in practice. If it is, there are
ways to handle it.

A simple strategy if xt coincides with one of the yi is to displace the iterate xt slightly and
continue. It may be shown that successive iterates will “escape” from some point yi, not the
minimum, by approximately doubling the distance at each iteration. A second possibility is to
start the iteration at some point with cost smaller than the cost of any of the points yi, in which
case it is not possible that an iteration will return to approach one of the points.

2.3.1 Different Interpretations of the Weiszfeld Algorithm

The Weiszfeld algorithm can be viewed as a gradient descent algorithm, Iterative Re-Weighted
Least Squares (IRLS) algorithm and Weighted mean algorithm. Below we discuss several
interpretations of the Weiszfeld algorithm.

2.3.1.1 Gradient Descent Form

The Gradient of the cost function (2.2) is

∇C1 = −
k

∑
i=1

yi − x
‖yi − x‖ . (2.4)
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20 Background: L1 Optimization for Points

Given a current estimate of the L1 minimum xt at iteration t, the next estimate of the minimum
in the descent direction is computed as

xt+1 = xt − λ∇C1 , (2.5)

where λ is the update step size, fig. 2.3. The value of λ in case of the Weiszfeld algorithm is

λ =
1

∑k
i=1 wt

i

,

where wt
i = ‖xt− yi‖−1. By substituting the value of λ and∇C1 in (2.5), an updated estimate

xt+1 is computed as

xt+1 =
∑k

i=1 wt
i yi

∑k
i=1 wt

i

.

An advantage of the Weiszfeld algorithm is that the descent direction and step size is computed
in closed form. Therefore each iteration of the Weiszfeld is fast as compared to other gradient
descent algorithms that compute the step size using complex strategies such as line search, etc.

2.3.1.2 Iterative Re-weighted Least Squares (IRLS) Form

Note that (2.3) updates a current estimate xt by computing a weighted mean of points yi. An
alternative interpretation of the Weiszfeld algorithm is that it can be viewed as an Iterative
Re-weighted Least Squares method. At iteration t, the weighted least squares cost function is

xt+1 = argmin
x

k

∑
i=1

wt
i ‖x− yi‖2 , (2.6)

where wt
i = ‖xt − yi‖−1. By taking the derivative of the weighted Least Squares function

and equating to zero we get an update function same as (2.3). At each step xt+1 is the exact
minimum of the weighted problem. Thus, the Weiszfeld algorithm solves a special type of the
IRLS cost function to achieve the L1 solution.

From the above discussion it is obvious that the L1 solution can be obtained by minimizing
either an L1 cost or a weighted L2 function as in (2.6). This makes the Weiszfeld algorithm
very simple to understand and easy to implement. For a details convergence proof and condi-
tions of convergence see [Weiszfeld, 1937].

We propose a generalization of the Weiszfeld algorithm, the Lq Weiszfeld algorithm, to find
the Lq mean of a set of points in IRN , for 1 ≤ q < 2. The Lq mean of a set of points minimizes
the sum of the q-th power of distances. The Lq Weiszfeld algorithm inherits all the properties
of the Weiszfeld algorithm.
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§2.4 Weiszfeld Algorithm on a Riemannian Manifold 21

2.3.2 Generalizations of the Weiszfeld algorithm

Several generalizations of the Weiszfeld algorithm have also been proposed. Some of the gen-
eralizations are summarized below:

L1 Generalizations of the Weiszfeld Algorithm: The original paper by Weiszfeld [Weiszfeld,
1937] gave an algorithm for the problem of finding the point in IRN that minimizes the sum of
distances to a given set of points. Since then it has been generalized to L1-closest-point prob-
lems in Banach spaces [Eckhardt, 1980], rotation space SO(3) [Hartley et al., 2011, 2013] and
general Riemannian manifolds [Fletcher et al., 2009; Yang, 2010]. The characteristic of the
Weiszfeld algorithm and its generalizations is that they are provably convergent iterative L1

optimization algorithms that do not require computation of derivatives or line-search, and in
therefore, the algorithms are quick to converge in practice.

Lq Generalization of the Weiszfeld Algorithm: The Weiszfeld algorithm has been studied
extensively in other fields of research and is even generalized to solve different form of the
problem. A Weiszfeld [Weiszfeld, 1937] inspired solution strategy to solve for the minimum
of Lq norm of the problem has also been proposed in [Brimberg and Love, 1993; Brimberg and
Chen, 1998; Brimberg, 2003; Morris and Verdini, 1979]. Note that in [Brimberg and Love,
1993] Lq norm is minimized, that is

min
x

k

∑
i=1

wi‖x− yi‖q.

This generalization must not be confused with the type of problem we solve in this thesis.
That is fundamentally different from the type of problems we solve, where the sum of the q-th
power of distances is minimized, that is

min
x

k

∑
i=1

d(x, yi)
q.

For points in IRN the distance function is d(x, yi) = ‖x− yi‖2.

2.4 Weiszfeld Algorithm on a Riemannian Manifold

We now discuss an extension of the Weiszfeld algorithm to find the L1 minimum of a set of
points on a Riemannian manifold of non-negative sectional curvature [Fletcher et al., 2009].
Given a set of points, {y1, y2, . . . , yk} on a Riemannian manifold M, of non-negative sec-
tional curvature the L1 mean or geodesic median is a point x ∈ M for which the sum of
geodesic distances

C1(x) =
k

∑
i=1

d(x, yi) =
k

∑
i=1
‖ logx(yi)‖ , (2.7)
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(a) Initial Setup (b) Update in Tangent Space (c) Projected Solution

Figure 2.4: Weiszfeld Algorithm on Manifold: (a) represents a manifold with some given fixed
points (red) and a starting point (white). (b), the Weiszfeld algorithm is applied to the trans-
formed points (green) in the tangent space (red plane) and an updated point (blue) is computed
in a descent direction. (c), the updated point in the tangent space is mapped back to the mani-

fold. This procedure is repeated until convergence.

is minimized, where d(·, ·) is the geodesic distance between two points on the manifold M
and logx(y) is the logarithm map that takes a point y ∈ M to the tangent space TxM ofM
centered at x ∈ M.

Given some points on a Riemannian manifold and an initial estimate of their L1 mean. An
updated solution is computed by transferring all the given points to the tangent space of the
manifold centered at the current estimate; see fig. 2.4. The point is then transferred back to the
manifold. This process is repeated until convergence. This technique is convergent [Fletcher
et al., 2009] on manifolds of non-negative sectional curvature, provided all the points lie in a
suitably small convex set, as will be described in later chapters.

The gradient of the cost function (2.7) is

∇C1(x) = −
k

∑
i=1

logx(yi)

‖ logx yi‖
.

A current solution xt is updated in the descent direction as

xt+1 = expxt(−λ ∇C1(xt)) , (2.8)

where λ is the step size for the gradient descent algorithm and expxt(v) is the exponential map
that maps a vector v ∈ TxtM to a point onM.

In case of the Weiszfeld algorithm the step size is

λ =
1

∑k
i=1 1/d(xt, yi)

.

By substituting the value of λ in (2.8) we get

xt+1 = expxt

(
∑k

i=1 logxt(yi) / ‖ logxt(yi)‖
∑k

i=1 1 / ‖ logxt(yi)‖

)
. (2.9)
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It may be written more simply as

xt+1 = expxt

(
∑k

i=1 wt
i logxt(yi)

∑k
i=1 wt

i

)
. (2.10)

where wt
i = d(xt, yi)

−1 = ‖ logxt(yi)‖−1. This update equation is seen to come from finding
the weighted average in the tangent space at xt of the points logxt(yi), followed by mapping
back to the manifold by the exponential map.

A proof and conditions for the convergence of the L1 Weiszfeld algorithm on manifolds of
non-negative sectional curvature can be found in [Fletcher et al., 2009; Yang, 2010]. However,
the Lq Weiszfeld algorithm proposed in this thesis solves for the Lq solution 1 ≤ q < 2 of the
problem. In addition, the proof given in this thesis is more complete than the proofs in [Fletcher
et al., 2009] and [Yang, 2010], even for the L1 case. In particular, we improve the bounds
on maximum distance between points on manifold for which the algorithm will converge,
compared to those given in [Fletcher et al., 2009], and we fill in some detail concerning the
convergence point of the algorithm (for example, what happens when the algorithm converges
to some yi.) In [Yang, 2010], a line-search is used at each step, so the algorithm is not a true
Weiszfeld-style algorithm.

2.5 Summary

In summary, the L1 mean or geometric median is a more robust measure of central tendency
than the L2 mean or arithmetic mean. A classic algorithm to find the L1 mean or geometric
mean of a set of points in IRN is the Weiszfeld algorithm. An extension of the Weiszfeld
algorithm shows that a Weiszfeld inspired approach can be used to find the L1 mean of a set of
points on a Riemannian manifold of non-negative curvature. The Weiszfeld algorithm has an
advantage of being simple since it minimizes a weighted L2 cost function. Another advantage
of the Weiszfeld algorithm is that updates are computed analytically This makes the algorithm
even more attractive.

Draft Copy – 22 October 2014



24 Background: L1 Optimization for Points

Draft Copy – 22 October 2014



Chapter 3

Lq Optimization for Points in IRN

In this chapter we propose a generalization of the Weiszfeld algorithm to find the Lq mean, for
1 ≤ q < 2, of a set of points in IRN , we refer to it as the Lq Weiszfeld Algorithm. The Lq

mean of a set of points, as described before, is the point for which the sum of the q-th power
of distances to all the given points is the minimum. The Lq Weiszfeld algorithm finds the Lq

mean by using a gradient descent approach, where updates are computed analytically. This
eliminates the need of using complex strategies, such as line search, to find an update in the
descent direction.

In gradient descent algorithms, an update step in the descent direction ensures that the
cost is non-increasing at every iteration; but only this property is not enough to show that
an algorithm is convergent. Therefore, in addition to proposing the Lq Weiszfeld algorithm,
in this chapter, we identify the conditions under which descent algorithms are guaranteed to
converge. Thus, any algorithm that satisfies these conditions converges is convergent. Our
proof of the Lq Weiszfeld algorithm is also based on these conditions. Moreover, this enables
us to propose several other generalizations of the Weiszfeld algorithm, such as a generalization
to find the Lq mean of a set of points on a Riemannian manifold, and a generalization to find
the Lq-closest-point to a set of affine subspaces in IRN .

In the following section we propose the Lq Weiszfeld algorithm and list some properties
of the Lq cost function for points in IRN . Before actually proving the convergence of the
Lq Weiszfeld algorithm we identify the conditions under which a gradient descent algorithm
converges, in section 3.2. Based on these conditions we give a proof of convergence of the Lq

Weiszfeld algorithm, in section 3.3. Our experimental results on synthetic data, in section 3.5,
confirm the fact that the Lq mean, for 1 ≤ q < 2, is more robust to outliers than the L2 mean.

3.1 Lq Weiszfeld Algorithm

In this section we propose the Lq Weiszfeld algorithm and list some properties of the Lq

cost function. In the end, we state the convergence theorem for the Lq Weiszfeld algorithm;
however, a detailed proof of the theorem is provided in section 3.3. Given a set of points

25
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{y1, y2, . . . , yk}, k > 2, in IRN , the Lq cost function Cq is

Cq(x) =
k

∑
i=1

d(x, yi)
q =

k

∑
i=1
‖x− yi‖q , (3.1)

where 1 ≤ q < 2, d(·, ·) is the Euclidean distance and ‖ · ‖ is the Euclidean norm. For q = 1
the above problem is the same as the one solved by Weiszfeld [Weiszfeld, 1937], as described
in chapter 2.

The primary purpose of this chapter is to prove the convergence of the Lq Weiszfeld al-
gorithm for points in IRN . Although the case L1 has received much attention in previous
work, there are some advantages to considering the Lq case. First this gives a range of choices
between the L1 cost, favoured for its robustness to outliers, and the L2 cost which is more the-
oretically justified statistically, assuming Gaussian noise. In addition, considering the Lq cost
function avoids the difficulty that the L1 cost is not differentiable. For q > 1 the cost function
is differentiable everywhere. A final consideration is that the L1 mean of a set of points may
(with non-zero probability) coincide with one of the points themselves. This requires special
care, since the minimum is then a point where the cost-function is non-differentiable. On the
other hand, the Lq mean of a set of points will not generically coincide with any of the points,
and besides, the cost function is differentiable everywhere.

3.1.1 Algorithm

Starting from an initial estimate x0, the Lq Weiszfeld algorithm generates a sequence of esti-
mates xt found by solving a weighted least-squares problem and the process is repeated until
convergence. The Lq Weiszfeld algorithm differs from the L1 algorithm mainly in the choice
of weights applied at each step of iteration. In this case, the update equation of the Weiszfeld
algorithm is with weights given by wt

i = d(xt, yi)
q−2 = ‖xt − yi‖q−2 . With this update rule

we shall a give proof of convergence of the Lq Weiszfeld algorithm in IRN .

A current estimate xt of the Lq minimum is updated to a new estimate

xt+1 = W(xt) =
∑k

i=1 wt
i yi

∑k
i=1 wt

i

if xt /∈ {yi}

= yj if xt = yj

, (3.2)

where

wt
i = ‖xt − yi‖q−2 .

Starting from a point x0, a sequence of points (xt) is obtained using W as xt+1 = W(xt). In
section 3.3 we will show that the sequence of points (xt) converges to the Lq minimum or it
will stop at some point xt = yi.

Remarks: It is easy to see that W finds the exact minimizer of a weighted L2 cost function
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C w
2 , defined as

C w
2 (x) =

k

∑
i=1

wt
i ‖x− yi‖2 ,

unless xt is equal to some yi, where wt
i = ‖xt − yi‖q−2. However, at this stage, it is not clear

that the Lq cost function is a non-increasing function the under update function W. Since we
are only interested in a decrease in the Lq cost function, in section 3.3.1 we will show that
a decrease in the weighted L2 cost function also results in a decrease in the Lq cost function
(3.1). Therefore, the value of Cq decreases after every iteration of the Lq Weiszfeld algorithm.
For details see section 3.3.1.

3.1.2 L2 Mean for Points in IRN

The L2 version of the problem has a very simple form and can be computed in closed form. The
L2 mean of a set of points in IRN is the same as the arithmetic mean and is computed by taking
the sum of points and dividing it by the total of points. Given a set of points {y1, y2, . . . , yk}
in IRN , the L2 cost function is defined as,

C2(x) =
k

∑
i=1
‖x− yi‖2 ,

where ‖ · ‖ is the Euclidean norm.
The gradient of the above equation is,

∇C2(x) =
k

∑
i=1

(x− yi) .

By equating the gradient equal to zero, we get

x =
1
k

k

∑
i=1

yi .

The L2 mean is not as robust to outliers as the Lq mean, even a single value of high magnitude
can move the L2 mean to an arbitrarily large value.

3.1.3 Properties of the Lq Cost Function for Points in IRN

Here we explore and give proof of some of the properties of the Lq cost function for points
in IRN . Later on, these properties will be used to prove the convergence of the Lq Weiszfeld
algorithm to the Lq mean of a given set of points in IRN . The Gradient of the cost function
(3.1) is

∇Cq = −
k

∑
i=1
‖x− yi‖q−2(yi − x) .
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Just like the above equation of gradient, the rest of the thesis ignores a constant factor of q.
Note that the Lq function is differentiable for q > 1, and for q = 1 it is non-differentiable
when L1 minimum is one of the given points yi.

Proposition 3.1. The cost function Cq is strictly convex, except in the degenerate case when
q = 1 and all points are collinear; in this case Cq is only convex.

The proof of the above proposition is trivial and hence is omitted.
The minimum of Cq may be characterized in terms of a sub-gradient function defined as

follows. If x = yi for some i, then ∇Ĉq(x) is the gradient of the cost function (3.1), omitting
the term involving yi. Otherwise ∇Ĉq(x) = ∇Cq(x). Since Cq(x) is differentiable when
q > 1, it follows that ∇Ĉq(x) = ∇Cq(x) everywhere in this case.

Lemma 3.2. A point x∗ ∈ IRN is a minimum of the cost function (3.1) if and only if it satisfies
one of the following conditions:

1. ∇Cq(x) vanishes at x∗,

2. q = 1, x∗ = yj and ‖∇Ĉq(x∗)‖ ≤ 1.

The proof of the lemma is simple. For q > 1 the cost function is differentiable, thus
the gradient of the cost function vanishes at the minimum. However, for the case q = 1 see
[Weiszfeld, 1937].

3.1.4 Convergence Theorem

We are now able to state a convergence theorem for the Lq Weiszfeld algorithm for points in
IRN . Theorem 3.3 shows that the sequence of points (xt) obtained using (3.2) converges to the
minimum of (3.1) provided none of the intermediate iterates xt equals any of the yi.

Theorem 3.3. Given a set of non-collinear points {y1, . . . , yk} in IRN , starting from a random
point x0 ∈ IRN , the sequence of points (xt) obtained using (3.2) will either converge to the Lq

minimum, or it will stop at some point xt = yi.

Proof of this theorem is deferred until section 3.3.

The Lq Weiszfeld algorithm for points in IRN uses a gradient descent approach to find the
Lq mean. In the case of gradient descent algorithm it is ensured that the cost function is non-
increasing at every iteration. Clearly, this condition is not sufficient to ensure the convergence
of a descent algorithm. Therefore, other conditions are also required to ensure the convergence
of the algorithm. In the following section we identify the conditions under which descent
algorithms are convergent. Later in the chapter we show that the Lq Weiszfeld algorithm for
points in IRN satisfies all these conditions and therefore converges to the Lq mean.
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3.2 Convergence of Descent Algorithms

In this section we identify the conditions under which the convergence of a descent algorithm
is guaranteed. Let W be an update function for which the value of a cost function C decreases
at each iteration, except at fixed points where its value remains constant. Let x0 be a starting
point of a descent algorithm, and xk+1 = Wk(x0) for k = 1, 2, . . . . Of course simply because
the value of the cost function decreases, that does not guarantee convergence of (xk) even to
a local minimum; other conditions are needed to ensure this. The Wolf conditions concerning
sufficient step length [Nocedal and Wright, 1999] are one way to ensure convergence. A sim-
pler but very general condition also guarantees convergence. Here we identify the conditions
under which a descent algorithm converges.

Theorem 3.4 follows from the well known Global Convergence Theorem [Luenberger,
2003, section 6.6] applied to the special case of a single valued, continuous algorithm map.

Theorem 3.4. Let D be a compact topological space, C : D → IR a continuous function
defined on D. Let W : D → D be a continuous function with the property C(W(x)) ≤ C(x)
for every x ∈ D.

Let x0 ∈ D, and xk+1 = Wk(x0) for k = 1, 2, . . . . Then the sequence (xk) converges to
S = {x | C(W(x)) = C(x)}, in the sense that if O is an open set containing S, then there
exists an N such that xk ∈ O for all k > N.

Proof. Choose a starting point x0 ∈ D, and denote xk = Wk(x) for k > 0. This theorem
states that the sequence of iterates xk converges to S, assuming only that the update rule xk 7→
xk+1 = W(xk) is continuous on D and strictly decreasing, except on S.

Since D is compact, there exists a subsequence of xk that is convergent. Let such a
subsequence be xk j ; j = 1, . . . , ∞ and let limj xk j = x, which is a point in D. Then,
limj C(xk j) = C(x), since C is continuous, and limj C(W(xk j)) = C(W(x)), since C ◦W is
continuous.

Now, C(x) is bounded below, for x ∈ D, since D is compact. So, C(xk) is a bounded
non-increasing sequence in IR, and hence has a limit. Any subsequence of the C(xk) must also
have the same limit. In particular, C(xk j) and C(W(xk j)) are both subsequences of C(xk) so

C(W(x)) = lim
j

C(W(xk j)) = lim
k

C(xk)

= lim
j

C(xk j) = C(x) .

By the property of the function W, it follows that x ∈ S. Since this argument holds for any
convergent subsequence of xk, it show that any convergent subsequence converges to a point
in S.

Now consider an open set O containing S. The theorem is proved by showing that at
most a finite number of xk lie outside of O. Suppose the contrary, and hence that there is a
subsequence xk j lying in Ō = D −O. Since Ō is a closed subset of a compact set, D, it is
itself compact. Therefore, the sequence xk j must itself contain a convergent subsequence, and
this subsequence converges to a point in Ō, and hence not in S. This is a contradiction, and
the proof is complete. ut
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The above theorem shows that the sequence (xk) converges to the set S but we are in-
terested in the conditions under which the sequence xk is convergent to a point. We show
that under the conditions of Theorem 3.5 the sequence (xk) is convergent. The condition in
Theorem 3.5 is strictly weaker than the usually stated corollaries to the Global Convergence
Theorem.

Theorem 3.5. If in addition to Theorem 3.4, D is a metric space, S is a finite or countable set
and W(x) = x for all x ∈ S, then the sequence (xk) is convergent to a point in S.

Proof. If xk has an accumulation point y∗, then C(y∗) = limk→∞ C(xk), so all accumulation
points have the same cost. Furthermore C(y∗) = C(W(y∗)), so y∗ ∈ S. By the hypothesis of
the theorem W(y∗) = y∗.

By assumption, D is compact. Let y∗0 be an accumulation point of xk. If xk is not conver-
gent, there exists ε > 0 such that the sequence xk enters and exits an open ball B = B(y∗0 , ε)
infinitely many times. There exists a subsequence xk j such that xk j lies inside this ball, whereas
xk j+1 lies outside. Again taking a subsequence, if necessary, it may be assumed that xk j

converges to a point y∗1 and xk j+1 converges to a point y∗2 . Clearly, d(y∗1 , y∗0) ≤ ε and
d(y∗2 , y∗0) ≥ ε.

From the continuity of W, we have W(xk j)→W(y∗1). However, also, W(xk j) = xk j+1 →
y∗2 so W(y∗1) = y∗2 . However, W(y∗1) = y∗1 , so y∗1 = y∗2 , and d(y∗1 , y∗0) = ε.

The same thing holds for an open ball with any radius ξ < ε; there must exist an accumu-
lation point at any distance ξ < ε from y∗0 , thus xk has an uncountable number of accumulation
points, and S is uncountable. ut

Theorem 3.4 and Theorem 3.5 give simple but widely useful conditions for convergence of
a descent algorithm. Later on, we will use these theorems to prove the convergence of the Lq

Weiszfeld algorithm for points in IRN .

3.2.1 Example of Uncountably many Fixed Points

It is important to note here that if there are uncountably many fixed points of a function then a
descent algorithm may not converge. We demonstrate this claim with the help of an example
of a cost function that has uncountably many fixed points under an update function. We take an
example of a cost function and an update function that satisfy the conditions of Theorem 3.4
and Theorem 3.5 but the set S is uncountable, that is, there are uncountably many fixed points.
Under these conditions, we show that although the cost function is decreasing at every iteration
of the algorithm and achieves a minimum value, but the sequence of iterates obtained using the
update function do not converge. This shows that we need additional conditions to show that a
descent algorithm is convergent, for example, the condition of Theorem 3.4 and Theorem 3.5.

For simplicity we define the update function W in polar coordinates (r, θ). Let C(x) be a
cost function defined as

C(x) = ‖x‖ =
√

x2 + y2 = r , (3.3)

where x = r cos(θ) , and y = r sin(θ) .
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Starting Point Iteration 1 Iteration 2 Iteration 3
r 1 1 + 0 1 + 0 1 + 0 · · ·
θ θ θ + π 0 θ + π 0 θ + π 0 · · ·

Table 3.1: Example of Uncountably many Fixed Points (Starting from a Fixed point): The
above table shows the parameter values under the update function defined in (3.4). Note that
when the starting point is one of the fixed points, that is a point on a unit circle, then the value

of parameters remains the same after repetitive application of the update function W.

Starting Point Iteration 1 Iteration 2 Iteration n
r 2 1 + (1/2) 1 + (1/3) · · · 1 + (1/n)
θ θ θ + π (1/2) θ + π (1/2 + 1/3) · · · θ + π (∑n

i=1 1/i)

Table 3.2: Example of Uncountably many Fixed Points (Starting from a random point outside
a unit circle): The above table shows the parameter values under the update function defined
in (3.4). When starting point from a point outside a unit circle the value of r converges to 1 and
the value of θ does not converge under the update function W. Note that the rate of change
in the value of θ increases with increase in the number of iterations. Thus, under the update
function W the cost function C in (3.3) is decreasing at every iteration, except on fixed points,

but the algorithm does not converge.

Figure 3.1: Example of uncountably many fixed points (Starting from a Fixed point): Above
figure shows a plot of fixed points (blue circle) of the cost function defined in (3.3) and the
update function (3.4). Clearly, if we start from a (red) point on the (blue) circle the update

function will map the red point to itself, since it is a fixed point.
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(a) Starting point (b) After 100 Iterations

(c) After 300 Iterations (d) After 500 Iterations

(e) After 1000 Iterations (f) After 3000 Iterations

Figure 3.2: Example of uncountably many fixed points (Starting from a general point outside
unit circle): In each of the above figures the blue circle represents a set of fixed points of the
cost function defined in (3.3) under the update function (3.4). Here we show that if we start
from a (red) point that does not lie on the blue circle, set of fixed points. Then the sequence
of (red) points obtained by using the update function (3.4) is not convergent, as shown in the

above plots.
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Let [r0 θ0]T be a starting point of the algorithm. An update function W is defined as[
rt+1

θt+1

]
= W

([
rt

θt

])
=

[
1 + f (rt)

θt + π f (rt)

]
, (3.4)

where,

f (r) =
|r− 1|

1 + |r− 1| ,

where rt and θt are estimates at iteration t. Under the update function W the cost function C is
a non-increasing function.

Note that the value of C decreases after every iteration, except when starting point is one
of the fixed points. The set of fixed points of C under the update function W is a unit circle,
that is, [1 θ]T, for all values of θ. Thus, if we start from a point on the circle of radius of 1,
the starting point is also the point of convergence, since it is a fixed point, as shown in fig. 3.1.
A Few iterations of the algorithm are shown in Table 3.1, where the starting point is on unit
circle and under the update function W the point is not changing its position.

However, if we start from any point outside the unit circle the cost function C decreases
under the update function W and the sequence of iterates get closer to the unit circle but the
sequence of points do not converge. In this case the change in angle becomes higher as the
iterates get closer to the unit circle. The value of radius converges to 1 but the value of angle
keeps changing, preventing the sequence of iterates to converge, as shown in fig. 3.2. Several
iterations of the algorithm are shown in Table 3.2 where the starting point is [2 θ]T. It shows
that the value of r converges to 1 but the rate of change of θ becomes higher as the iterates get
closer to the unit circle. Thus, the sequence of points is not convergent.

This shows that even if the value of a cost function decreases at every iteration of an
algorithm and converges to a value, the convergence of the algorithm is not guaranteed. In
Theorem 3.5 we have shown that if there are countably many or finite fixed points the sequence
is convergent.

3.3 Proof of Convergence of the Lq Weiszfeld Algorithm

In this section we give a proof of convergence of the Lq Weiszfeld algorithm, specifically,
a proof of Theorem 3.3. It will be shown later in this section that the Lq cost function is a
non-increasing function under the update function W in (3.2). As mentioned before that this
condition, alone, is not enough to ensure the convergence of the algorithm. Thus, we need
to verify the conditions of Theorem 3.4 and Theorem 3.5 for the Lq cost function Cq and the
update function W defined in (3.1) and (3.2), respectively, to prove the convergence of the Lq

Weiszfeld algorithm to the Lq mean.

Let {y1, y2, . . . , yk} be a set of non-collinear points in IRN and x0 be an an initial estimate
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of the Lq minimum. At iteration t, a current estimate of the Lq minimum is updated as

xt+1 = W(xt) =
∑k

i=1 wt
i yi

∑k
i=1 wt

i

if xt /∈ {yi}

= yj if xt = yj ,

where wt
i = ‖xt− yi‖q−2. Theorem 3.3 shows that the sequence of points (xt) obtained using

the above equation, as defined in (3.2), converges to the minimum of Cq (3.1) provided none
of the intermediate iterates xt equals any of the yi.

Now we list some basic steps based on Theorem 3.4 and Theorem 3.5 to prove the conver-
gence of the sequence (xt) obtained in Theorem 3.3.

Outline 3.1. Given an update function W and a strictly convex function Cq, to prove that the
sequence (xt) obtained using xt+1 = W(xt) is convergent to the minimum of Cq we proceed
as follows:

1. The update function W is extendible by limits to a continuous, defined on a compact
domain D and maps D to itself.

2. The value of Cq is non-increasing at every iteration.

3. The set S of Theorem 3.4 is a finite set containing the Lq minimum point and {yi}.

4. Since there is a finite number of accumulation points, the sequence (xt) is in fact con-
vergent, see Theorem 3.5.

5. If (xt) converges to one of the given points, yj, then this is the minimum, except when
xt ∈ {yi} for any of the intermediate iterates.

6. Therefore, unless xt gets stuck at yi, it converges to the Lq minimum.

Proof of Theorem 3.3: The above discussion simplifies the proof of Theorem 3.3 and we only
need to verify that the cost function Cq and the update function W satisfy all the conditions of
the steps of Outline 3.1. Below we verify each step of Outline 3.1. The proof of Theorem 3.3
is complete once all the steps are verified.

1. The compact domain D is defined as D = {x ∈ IRN | Cq(x) ≤ Cq(x0)} , where x0 is
a random starting point. It is easy to see that the update function W (3.2) is continuous
at x 6= yi, and is extendible to a continuous function by taking the limit at each yi. It
is shown in section 3.3.1 that W results in a non-increasing cost Cq; the value of Cq(xt)
will never be greater than Cq(x0). Thus, from the definition of D the update function W
maps a point in D to itself.

2. The cost function Cq is a non-increasing function under the update function W, that is
Cq(W(x)) ≤ Cq(x) with equality only when W(x) = x, see lemma 3.7.

3. Under the update function W the value of Cq remains constant in successive iterations
either when x = yi where W(yj) = yj, or when x is a minimum of Cq. Therefore the
set S in Theorem 3.4 is a union of stationary points of Cq and {yi}.
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4. The cost function Cq being strictly convex has a unique stationary point x∗. The set S is
a finite set because its a union of {yi} and x∗. Thus, from Theorem 3.5 every sequence
(xt) is convergent to S = {x∗} ∪ {yi}.

5. When xt converges to a point other than {yi} then from Theorem 3.5 the sequence of
points xt converges to x∗, that is the Lq minimum. However, if xt converges to yj such
that xt /∈ {yi} for i 6= j, then yj is also the stationary point of Cq, see lemma 3.8.

Thus, the proof relies on lemma 3.7 and lemma 3.8 which are proven in the subsequent sections.
This proves our claim that the sequence of points (xt) converges to the Lq minimum, except
when some xt ∈ {yi} for any of the intermediate iterates. 2

In the rest of this section we show that under the update function W in (3.2) the value of
Cq decreases after every iteration that if the sequence of points (xt) is convergent to yj then
this point satisfies the conditions of lemma 3.2 and is therefore the Lq minimum.

3.3.1 Decreasing Lq Cost for Points in IRN

Here we show that the value of Cq decreases at every iteration, except when W(x) = x. Let
C w

2 be a weighted L2 function, defined as

C w
2 (x) =

k

∑
i=1

wt
i‖x− yi‖2 ,

where wt
i = ‖xt − yi‖q−2, xt is an estimate of the Lq minimum at iteration t. Note that the

update function (3.2) finds the exact minimizer of C w
2 , unless xt is equal to some yi.

In preparation for proving lemma 3.7, the following general result establishes the relation
between an Lq cost for 1 ≤ q < 2 and a weighted L2 cost.

Lemma 3.6. If ai and bi are positive real numbers, 0 < q < n and ∑k
i=1 aq−n

i bn
i ≤ ∑k

i=1 aq
i

then ∑k
i=1 bq

i ≤ ∑k
i=1 aq

i with equality only when ai = bi for all i.

Proof. The proof of above lemma depends on the following simple but critical observation,
which was implicitly stated (albeit in less generality) in [Weiszfeld, 1937]. Consider the fol-
lowing self-evident statement.

• Let g be a convex function and 0 < q < n. If g(n) ≤ g(0) then g(q) ≤ g(0) with strict
inequality if g is strictly convex.

This statement will now be applied to the function

g(n) =
k

∑
i=1

aq−n
i bn

i ,

to prove the above lemma. To show this, one computes the second derivative of g with respect
to n. The result is

g′′(n) =
k

∑
i=1

aq−n
i bn

i (log ai − log bi)
2 .
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Since all the ai and bi are positive, this second derivative is positive unless log ai = log bi for
all i, which proves the lemma. ut

Note that the above lemma is true for 0 < n < ∞ and q < n and is not limited to n = 2
and 1 ≤ q < 2. We imposed a restriction to n = 2 for the problems in this thesis to take
advantage of the simple solutions of the least squares problems, but this result holds for a
general value n.

Applying this lemma to (3.2) shows that W results in a decreased cost.

Lemma 3.7. For the update function W in (3.2), Cq(W(x)) ≤ Cq(x) , where equality holds
only when W(x) = x.

Proof. To be able to apply lemma 3.6 to a Lq function Cq, and a weighted L2 function C w
2 , we

proceed as follows. Let ai = d(x, yi), bi = d(W(x), yi), and wi = d(x, yi)
q−2 in lemma 3.6.

Since W(x) finds the global minimum of the weighted L2 cost function C w
2 , the following

relation holds:

k

∑
i=1

d(W(x), yi)
2

d(x, yi)2−q = C w
2 (W(x)) ≤ C w

2 (x) =
k

∑
i=1

d(x, yi)
q .

Then from lemma 3.6 it follows that

Cq(W(x)) =
k

∑
i=1

d(W(x), yi)
q ≤

k

∑
i=1

d(x, yi)
q = Cq(x) ,

and equality holds only when W(x) = x. ut

3.3.2 Lq Minimum on Given Points:

Now, we show that when xt converges to one of the given points yj without getting stuck at
yi, then it satisfies the conditions to be the Lq minimum mentioned in lemma 3.2. Note that
when any of the intermediate iterates is equal to one of the given points yi then the sequence xt

gets stuck at that point. Therefore, when minimum point is one of the given points and none of
the intermediate iterates lands on any of the given points then we show that the accumulation
point of the sequence is the Lq minimum and satisfies the minimum point condition stated in
lemma 3.2. When a minimum point is not one of the given points yj then the Lq function is
differentiable at the minimum point, even for q = 1. However, when the Lq minimum is one
of the points yj then the following lemma shows that for 1 < q < 2 the gradient of the cost
function vanishes at this point, while for q = 1 the gradient of the Lq function omitting the
entry corresponding to xj has a norm no greater than one.

Lemma 3.8. For 1 ≤ q < 2, if the limit of the sequence (xt) is one of the points yj, then yj is
the minimum point of Cq, except when any of the intermediate iterates xt is equal to one of the
yi and the iteration gets stuck.

Proof. Suppose that the sequence xt converges to one of the points yi, which we take to be
y1 for simplicity. Our goal is to show that for q > 1 the gradient ∇Cq = ∑k

i=1 wt
i (x− yi)
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vanishes at y1 and for q = 1 the magnitude of gradient excluding y1 is no greater than 1, see
lemma 3.2.

The update function is defined as

xt+1 =
∑k

i=1 wt
i yi

∑k
i=1 wt

i

,

where wt
i = ‖yi − xt‖q−2 and xt is an estimate of Lq minimum at iteration t.

By a small rearrangement one sees that

(xt+1 − y1)wt
1 =

k

∑
i=2

wt
i yi − xt+1

k

∑
i=2

wt
i .

In the limit as t→ ∞ this yields

lim
t→∞

(xt+1 − y1)wt
1 =

k

∑
i=2

yi

‖y1 − yi‖2−q −
k

∑
i=2

y1

‖y1 − yi‖2−q

=
k

∑
i=2

yi − y1

‖y1 − yi‖2−q . (3.5)

Note that this is the gradient∇Ĉq(y1) where Ĉq is the Lq cost function without the contribution
of the term for i = 1. If q > 1, then Ĉq(y1) = Cq(y1), since the missing term in Cq(x) is
‖x− y1‖q which has zero gradient at x = y1.

Now, still under the assumption that xt → y1, from the left side of this expression one
obtains

‖∇Ĉq(y1)‖ =
∥∥∥∥ lim

t→∞
(xt+1 − y1)wt

1

∥∥∥∥
= lim

t→∞
‖xt+1 − y1‖ ‖xt − y1‖q−2

= lim
t→∞

‖xt+1 − y1‖
‖xt − y1‖

‖xt − y1‖q−1 .

(3.6)

Now, the cases q = 1 and q > 1 must be dealt with differently because when q > 1 the cost
function Cq is differentiable at y1, whereas when q = 1 it is not. We use a simple observation
about convergent sequences, stated here without proof.

Lemma 3.9. Let (xt) be a sequence in a metric space converging to y. Then

lim
t→∞

d(xt+1, y)/d(xt, y) ≤ 1 ,

if the limit exists. If gt is a sequence of real numbers such that gt → 0, then

lim
t→∞

gt d(xt+1, y)/d(xt, y) = 0 ,

if the limit exists.
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Of course, the given limits may not exist in either case. In applying this lemma to the right
hand side of (3.6), however, the limit is known to exist and equal ‖∇Ĉq(y1)‖.

Consider the case q > 1. Then in (3.6) the term ‖xt − y1‖q−1 converges to zero, since
xt → y1. It follows from lemma 3.9 and (3.6) that

‖∇Cq(y1)‖ = ‖∇Ĉq(y1)‖ = 0

so y1 is a stationary point (hence global minimum) of Cq.
In the case q = 1, lemma 3.9 and (3.6) yield

‖∇Ĉq(y1)‖ = lim
t→∞

‖xt+1 − y1‖
‖xt − y1‖

≤ 1

which is the condition given in lemma 3.2 for y1 to be a minimum of the cost function. ut

This completes the proof of Theorem 3.3 that the Lq Weiszfeld algorithm either converges
to the Lq mean or stops at a point yi.

3.4 Discussion

Generally a randomly selected starting point will result in convergence of the Lq Weiszfeld
algorithm to the Lq minimum without getting stuck at yi. However, if such a condition occurs
where xt = yj then the Lq Weiszfeld algorithm, even the Weiszfeld algorithm, gets stuck at
that point. A simple strategy to escape this situation is to move the current solution xt in the
descent direction and continue with the algorithm. Since the ambient space for these problems
is high, this condition is not very likely to occur. However, this situation can be avoided by a
careful selection of a starting point x0, as explained below in Algorithm 3.1.

Algorithm 3.1. Given a set of points, {y1, y2, . . . , yk} ∈ IRN orM, k > 1. Let d(yi, yj), be
the distance between two points, yi and yj.

1. Among the yi select the one with minimum cost:

x∗ = argmin
j

Cq(yj) ,

where Cq(x) = ∑k
i=1 d(x, yi)

q.

2. Compute the gradient of Cq and check x∗ = yj for the minimality condition according to
lemma 3.2. If it satisfies the condition then x∗ is the required minimum and the algorithm
is complete.

3. Otherwise, displace x∗ in the downhill gradient direction to obtain x0. Backtrack if
necessary to ensure Cq(x0) < Cq(x∗).

4. Repeat, xt+1 = W(xt) until convergence, where W is defined in (3.2).
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The initial point x0 so found has cost less than any of the points yi, and iterations of the
algorithm from x0, can not again approach any of the yj. Thus Algorithm 3.1 ensures that the
non-differentiability conditions never occur by a careful selection of a starting point for the
algorithm. Hence the Lq Weiszfeld algorithm is guaranteed to converge to the minimum of
Cq(x).

Theorem 3.10. The Algorithm 3.1 converges to the desired Lq minimum.

The proof of above theorem follows trivially from the proof of Theorem 3.3.

3.5 Experiments

In order to show the applicability of the proposed algorithm we perform averaging over a
synthetic data of a set of points in IR3. We try to estimate a set of 50 points, where each point
is averaged from its 100 noisy samples by using the L2 averaging and Lq averaging methods.
In all of our experiments we assume that the ground truth is known and errors are computed
using the ground truth values. These experiments are designed to demonstrate the robustness
of the Lq averaging method against outliers. These experiments confirm the fact that the Lq

averaging method is more robust to outliers than the L2 averaging method. In our experiments
we show the following results:

1. Convergence behavior: This experiment shows the convergence behavior of the L1 tech-
nique. Results have shown that the L1 averaging method converges close to the actual
solution with in the first few iterations of the algorithm. Therefore, even a few iterations
of the algorithm are enough to obtain a more robust solution compared to the L2 mean.

2. Robustness against different number of Outliers: This experiment is designed to compare
the robustness of the Lq averaging methods for different values of q ranging from 1 to 2.
In order to show the robustness against outliers we add different proportion of outliers
in the data. Our results have shown that the output of the L1 technique does not change
much with change in the amount of outliers and is therefore more robust to outliers than
the rest of the Lq methods, for 1 < q ≤ 2.

3. Relative Position of Points in IR3: In this experiment we show the location of the L1

mean, L2 mean and ground truth with respect to the given points, in IR3. This experiment
is designed to show the actual spread of the data points and location of the results of the
averaging methods in 3D space.

In all of the above mentioned scenarios our experimental results confirm that the Lq aver-
aging method gives superior results than the L2 averaging method in the presence of outliers.
However, when there are no outliers in data, a condition that rarely occurs, the results of both
the techniques are roughly the same.

Data Points: In our experiments we take a random 3D vector x̂ and generate several samples
by adding noise to it. In all cases a Gaussian noise of zero mean and a standard deviation of
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‖x̂‖ is added to the point, where ‖ · ‖ is the L2 norm. Thus, a set of random points is generated
by using the following equation

y = x̂ + N(0, ‖x̂‖) , (3.7)

where N(µ, σ) is a normal distribution with mean µ and standard deviation σ. We perform
averaging for a set of 50 points, where each point is averaged from its 100 noisy samples. The
percentage of outliers vary in different experiments.

Error Measure: We report an RMS error with with respect to the known ground truth. Let xi
be a known ground truth values and yi be estimated values, then the RMS error is computed
as,

RMS Error =
√

∑k
i=1 ‖xi − yi‖/k , (3.8)

where ‖ · ‖ is the L2 norm and k is the total number of points.

Starting Point and Number of Iterations: A maximum of 30 iterations is allowed for the Lq

averaging method because even after first 10 to 15 iterations of the Lq algorithm, the change in
error is very less and algorithm becomes stable. The proposed Lq averaging algorithm being an
iterative optimization technique requires a starting point. In our experiments we use a random
point as a starting point for the Lq averaging method. However, a slightly better option is to
use the L2 mean as a starting point, that can be computed in closed form.

In the rest of the section we will discuss our experimental results.

3.5.1 Convergence Behavior

Here we show the convergence behavior of the L1 averaging algorithm. We perform averag-
ing for a set of 50 points, where each point is averaged from its 100 noisy samples. In order
to generate noisy samples for each point, we add a Gaussian noise of zero mean and standard
deviation of the magnitude of the point according to the criteria defined before in (3.7). In addi-
tion to noise in data we modify 30% of the data points to represent outliers. In this experiment
we take a random point as a starting point of the L1 averaging algorithm.

Fig. 3.3 shows the results of the L2 method and several iterations of the L1 averaging
algorithm in the presence of outliers. In fig. 3.3 the x-axis represents iterations and y-axis
represents the RMS error, where error is computed using (3.8). It is evident from the plots that
the L1 mean is closer to the known ground truth value than the L2 mean.

We allow the L1 algorithm to execute for 30 iterations but the change in error is very less
after 15 iterations, as shown in fig. 3.3. Note that even after the few first iterations of the L1

algorithm, the value of the estimated L1 mean is significantly closer to the ground truth than
the L2 mean. Thus, if efficiency is of primary concern then even a few iterations of the L1

algorithm are better than the L2 averaging algorithm to get robust results.
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Figure 3.3: Convergence Behavior: In the above figure the result of the L2 averaging method
is represented by a (red) point and the results of the L1 averaging method is represented by the
blue line. Errors are computed with respect to the known ground truth and are plotted against
iterations. We perform averaging for a set of 50 points, where each point is averaged from
its 100 noisy samples. In order to generate noisy samples for each point, we add a Gaussian
noise of zero mean and standard deviation of the magnitude of the point according to the
criteria defined in (3.7). We also modify 30% of the samples to represent outliers. The above
plots confirm the fact that in the presence of outliers the L1 method gives superior results than

the L2 method. Note that the L1 algorithm stabilizes in 10 to 15 iterations.

3.5.2 Robustness Against Different Number of Outliers

In this experiment we compare the results of the Lq averaging algorithm for several values of q
ranging from 1 to 2. We add different number of outliers to the data to observe the robustness of
the Lq averaging algorithms against outliers. Same as before, we perform averaging for a set of
50 points, where each point is averaged from its 100 noisy samples. In order to generate noisy
samples for each point, we add a Gaussian noise of zero mean and standard deviation of the
magnitude of the point according to the criteria defined before in (3.7). However, the number
of outliers in the data is variable and its value ranges from 0% to 40%, with an increment of
10%. Finally, an RMS error between the estimated mean value and the known ground truth
value is computed using (3.8).

It is obvious from fig. 3.4 that in the presence of outliers the estimated L1 mean is closer
to the ground truth than the rest. Furthermore, the results of the L1 averaging does not vary
much with a change in the percentage of outliers in data. Thus, the L1 averaging method is
more robust to outliers than the other Lq averaging methods, for 1 < q ≤ 2. The only point
where the results of the L2 averaging method is closer to the ground truth than the rest of the
methods is when there are no outliers in data, as shown by the left-most set of bars in fig. 3.4.
Thus, in the absence of outliers the L2 algorithm is recommended because it finds the solution
in closed form. But in practice, having outlier free data is not likely, therefore the proposed L1

averaging algorithm is very practical.
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Figure 3.4: Robustness against different number of outliers: In the above figure the results of
the Lq averaging algorithms for several values of q are compared, specifically, we consider L1,
L1.25, L1.5, L1.75 and L2 averaging methods. We perform averaging for a set of 50 points, where
each point is averaged from its 100 noisy samples. In order to generate noisy samples for each
point, we add a Gaussian noise of zero mean and standard deviation of the magnitude of the
point according to the criteria defined before in (3.7). The number of outliers is varied and
is indicated by the x-axis of the above figure. Errors are computed with respect to the known
ground truth values. The above plot shows that in the presence of outliers the L1 mean is closer
to the ground truth than the rest of the Lq averaging methods, for 1 ≤ q < 2. However, when
there are no outliers in data then the results of all of the algorithms are roughly the same. Thus,

in the presence of outliers the L1 averaging method is recommended.
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Figure 3.5: Relative Position of Points in IR3: the above figure shows a plot of the L1 mean
(green point) and L2 mean (blue point) relative to the ground truth (black point) and sample
points (red points). In this case, only a single point is averaged from its 20 noisy samples.
In order to generate the sample points, we take a random point as the ground truth and add
noise to it according to the criteria defined before in (3.7), that is a Gaussian noise of zero
mean and standard deviation of the magnitude of the point. In addition to the noise in data we
modify 30% of the data points to represent outliers. In the above figure red points represent
given points, and the ground truth is represented by a black point. The above figure confirms
the fact that in the presence of outliers the L1 mean (represented by a green point) is closer to

the ground truth than the L2 mean (represented by a blue point).

3.5.3 Relative Position of Points in IR3

This experiment is designed to show the location of the L1 mean and L2 mean relative to the
ground truth and sample points in 3D space. In this case, only a single point is averaged
from its 20 noisy samples. In order to generate the sample points, we take a random point as
the ground truth and add noise to it according to the criteria defined before in (3.7), that is a
Gaussian noise of zero mean and standard deviation of the magnitude of the point. In addition
to the noise in data we modify 30% of the data points to represent outliers. In this case we only
perform averaging over a set of 20 points. It can easily be seen in fig. 3.5 that the L1 mean
(green point) is closer to the ground truth (black point) than the L2 mean (blue point).

3.6 Summary

In summary, in this chapter we proposed a Weiszfeld-style algorithm to find the Lq mean of a
set of points in IRN , for 1 ≤ q < 2. We referred to it as the Lq Weiszfeld algorithm. We gave a
proof for the convergence of the Lq Weiszfeld algorithm to the Lq mean and showed that the Lq

mean can be found by iteratively minimizing a weighted L2 function. Ease of implementation
makes the proposed algorithm attractive wherever Lq optimization is desired. Furthermore, our
experimental results showed that the Lq optimization method, for 1 < q ≤ 2, gives superior
results to the L2 method, in terms of robustness to outliers.

In addition to the proof of convergence of the Lq Weiszfeld algorithm, we identified the
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conditions under which a descent algorithm converges. Our proof of the Lq Weiszfeld algo-
rithm is based on these condition. Furthermore, in the later chapters these conditions will also
be used to prove the convergence of other extensions of the Lq Weiszfeld algorithm, that is,
the Lq Weiszfeld algorithm for points on a positively curved Riemannian manifold, and a Lq

Weiszfeld inspired method to find the Lq-closest point to affine subspaces.
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Chapter 4

Lq Optimization for Points on a
Riemannian Manifold

In this chapter we propose an algorithm, based on the Lq Weiszfeld algorithm, to find the Lq

mean, for 1 ≤ q < 2, of a set of points on a Riemannian manifold of non-negative sectional
curvature. In addition to the proof of convergence of the proposed algorithm, we show that
the bounds on the maximum distance between points on manifold can further be relaxed than
the bounds in the existing techniques to find the L1 mean [Fletcher et al., 2009]. Just like
the Lq Weiszfeld algorithm, the proposed generalization also inherits all of the advantages of
the Weiszfeld algorithm, such as updates are computed analytically, guaranteed convergence
to the Lq mean, etc. The proof of convergence of the proposed algorithm is similar to the
proof of the Lq Weiszfeld algorithm in chapter 3. We apply the proposed algorithm to the
problem of rotation avearging and averaging of Symmetric Positive-Definite (SPD) matrices.
Our experimental results, on both real and synthetic data, confirm the fact that the Lq mean,
for 1 ≤ q < 2, is more robust to outliers than the L2 mean.

4.1 Introduction / Literature Review

This chapter describes a very simple iterative and provably convergent algorithm for Lq op-
timization for points on a Riemannian manifold of non-negative curvature, and applies it to
different problems. In addition to the theoretical proof of convergence of the Lq Weiszfeld al-
gorithm we apply the proposed algorithm to several problems. We consider in detail two major
problems, that is, Lq rotation averaging and Lq averaging for SPD matrices. The problem of
Lq rotation averaging takes two forms: single rotation averaging in which several estimates
of a single rotation are averaged to give the best estimate; and multiple rotation averaging, in
which relative rotations Rij are given, and absolute rotations Ri are computed to satisfy the com-
patibility constraint RijRi = Rj. We apply the Lq Weiszfeld algorithm to both single-rotation
averaging (under which the algorithm provably finds the global Lq optimum) and multiple rota-
tion averaging (for which no such proof exists). We also consider the problem of averaging of
SPD matrices under different metrics, for example, the Log-Euclidean metric and the Affine-
Invariant metrics. The space of SPD matrices is a flat manifold when embedded with the
Log-Euclidean metric and has a negative sectional curvature under the Affine-Invariant metric.
Therefore, the convergence of the proposed algorithm to the Lq mean is only guaranteed when

45
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embedded with the Log-Euclidean metric. However, our experimental results show that the
algorithm converges nicely even in the case of the Affine-Invariant metric.

Rotation Averaging: The problem of rotation averaging has significant applications to struc-
ture and motion [Martinec and Pajdla, 2007; Sim and Hartley, 2006; Hartley and Schaffalitzky,
2004; Kahl, 2005; Rother and Carlsson, 2001; Kaucic et al., 2001] and to non-overlapping
camera calibration [Dai et al., 2009]. It has been studied quite extensively in the past, both in
computer vision and in other fields. The problem has been studied in the context of distributed
averaging algorithms Tron et al. [2008, 2012, 2011, 2013]. In a network of cameras the dis-
tributed averaging algorithms can be used to estimate the pose of an object seen from different
cameras in the network Tron and Vidal [2011]. In the area of information theory the prob-
lem of rotations averaging is also known as the synchronization problem [Wang and Singer,
2012]. Significant work in this area includes the work of Govindu [Govindu, 2004, 2001] and
Pajdla [Martinec and Pajdla, 2007]. A slightly different Maximum Likelihood (ML) approach
to estimate a rotation from its several noisy observations has been proposed in Boumal et al.
[2013].

Significant contributions to the single rotation averaging problem have been made by
[Moakher, 2002; Manton, 2004; Sarlette and Sepulchre, 2009] and others. Most significant
from our point of view is the work reported in [Fletcher et al., 2009; Yang, 2010; Afsari, 2011;
Arnaudon et al., 2012] which considers a version of the Weiszfeld algorithm on classes of Rie-
mannian manifolds, proving convergence theorems in a broad context, which relate directly to
our algorithm [Hartley et al., 2011]. However, the problem of multiple rotation averaging has
been studied outside the vision field in the context of sensor network localization [Cucuringu
et al., 2012a; Tron and Vidal, 2009] and molecule problem in structural biology [Cucuringu
et al., 2012b].
Averaging of SPD matrices: Averaging of positive definite matrices Lee et al. [2011]; Bini
et al. [2010]; Ando et al. [2004]; Bhatia and Holbrook [2006] and positive semi-definite matri-
ces Bonnabel et al. [2013]; Bonnabel and Sepulchre [2009]; Petz and Temesi [2005] has been
an active area of research. However, in this case we are interested in averaging of Symmetric
Positive-Definite (SPD) matrices Fletcher and Joshi [2007]; Pennec et al. [2006]; bar; Moakher
[2006]; Arsigny et al. [2007]; Collard et al. [2012]; Cetingul et al. [2012] In the area of com-
puter vision and medical imaging SPD matrices have many applications. They have been used
rigorously in medical imaging to model the anatomical variability of the brain [Fillard et al.,
2007]. They can also be used to encode principal diffusion directions in Diffusion Tensor
Imaging (DTI) [Fletcher and Joshi, 2007; Pennec et al., 2006]. Furthermore, SPD matrices
are widely used in computer vision for motion analysis and texture segmentation [Brox et al.,
2003]; and to model the appearance of objects for tracking [Porikli et al., 2006; Tyagi et al.,
2008].

Clearly, the application of SPD matrices is not only limited to computer vision and medical
imaging. Outside the domain of computer vision, in physics SPD matrices can be used as
stress-strain tensors [Moakher, 2006; Salençon, 2001] and they can also be used to solve partial
differential equations (PDEs) [Borouchaki et al., 1997].

The space of SPD matrices is not a vector space; instead, the set of SPD matrices lies on
a Riemannian manifold that constitutes a convex half-cone in the vector space of matrices.
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The structure of the Riemannian manifold of SPD matrices depends on the metric induced.
Some of the popular metrics that we discuss in this chapter are: the Euclidean metric, the Log-
Euclidean metric [Arsigny et al., 2007]. and the affine invariant metric [Pennec et al., 2006;
Fletcher and Joshi, 2004; Lenglet et al., 2004; Moakher, 2005]. Several other metrics and com-
putational frameworks have also been proposed in Collard et al. [2012]; Cetingul et al. [2012]
that process shape and orientation independently to find a solution. The problem of finding the
L2 mean of a given set of SPD matrices has been a popular area research since the last decade
and even before that. Recently, some methods have been proposed to find the L2 mean of a set
of SPD matrices [Fiori, 2009; Bini and Iannazzo, 2011; Tyagi and Davis, 2008]. In this chapter
we show that the proposed algorithm can be used to find the Lq solution of the problem, for
1 ≤ q < 2.

In the next section we state the algorithm along with the properties of the Lq cost function
and convergence theorem. We then show that the proposed algorithm can be applied to the
Lq averaging problem for rotations and SPD matrices; and present our experimental results
for both the problems. Finally, we dedicate a section, at the end of the chapter, for proofs of
theorems and lemmas stated in the chapter.

4.2 Lq Weiszfeld Algorithm for Points on a Riemannian Man-
ifold

In this section we propose the Lq Weiszfeld algorithm for points on a Riemannian manifold.
Furthermore, we explore and give proofs of properties of the Lq cost function. In the end, we
state the convergence theorem. Detailed proofs of the theorems of this section, including the
proof of the convergence theorem, are presented in section 4.6. Given a set of points Y =
{y1, y2, . . . , yk}, k > 2, on a Riemannian manifoldM of non-negative section curvature, the
Lq cost function Cq is

Cq(x) =
k

∑
i=1

d(x, yi)
q =

k

∑
i=1
‖ logx(yi)‖q , (4.1)

where d(·, ·) is the geodesic distance between two points on the manifoldM and logx(y) is a
Riemannian logarithm map. The gradient of the cost function Cq is

∇Cq(x) = −
k

∑
i=1

d(x, yi)
q−2 logx(yi) .

Just like the above equation of gradient, the rest of the thesis ignores a constant factor of q. In
the following section we will state the Lq Weiszfeld algorithm.

4.2.1 Algorithm

The Lq Weiszfeld algorithm differs from the L1 algorithm [Fletcher et al., 2009] mainly in
the choice of weights applied at each step of iteration. In this case, the update equation of
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the Weiszfeld algorithm is with weights given by wt
i = d(xt, yi)

q−2 = ‖ logxt(yi)‖q−2 .
Starting from an initial estimate x0, the algorithm generates a sequence of estimates xt found
by solving a weighted least-squares problem in the current tangent space of a Riemannian
manifold. An updated solution is then projected back on the manifold and the process is
repeated until convergence.

A current estimate xt of the Lq minimum is updated to a new estimate

W(xt) = expxt

(
∑k

i=1 wt
i logxt(yi)

∑k
i=1 wt

i

)
if xt /∈ Y

= yj if xt = yj

, (4.2)

where

wt
i = d(xt, yi)

q−2 .

Starting from a point x0 ∈ M, a sequence of points (xt) is obtained using W as xt+1 =
W(xt). In section 4.6.1 we will show that under certain conditions, the sequence of points (xt)
converges to the Lq minimum or it will stop at some point xt = yi. The conditions required
for convergence are that the manifold has non-negative sectional curvature, and that the points
yi and the initial estimate x0 lie in a sufficiently restricted region in the manifold.

4.2.2 Convex Sets

The theory of Lq distances in a Riemannian manifold is connected with the concept of a convex
set. We discuss this concept before proceeding. It will be used later in section 4.6.1 to prove
the convergence of the Lq Weiszfeld algorithm.

A geodesic is a generalization of the notion of straight line to Riemannian manifolds. A
geodesic segment joining points x and y inM is an arc length parametrized continuous curve
γ : [a, b] →M such that γ(a) = x and γ(b) = y. A geodesic segment is called minimizing
if it is the minimum length curve joining its end points. By the Hopf-Rinow theorem [Myers,
1945], any two points x and y in a complete Riemannian manifold are joined by a minimizing
geodesic segment (though this may not be unique). A convex (or strongly convex) set in a
manifold M is a set that contains a unique geodesic joining two points in the set, and that
geodesic is the minimizing geodesic.

A function f : C → IR defined on a convex set C in M is convex if its restriction to a
geodesic in C is a convex function of arc-length. Let B(x, r) denote an open ball of radius r
centered at x ∈ M and B̄(x, r) be the closure of B(x, r). A ball satisfying the property of a
convex set is a convex ball.

The injectivity radius at a point x of a Riemannian manifold is the supremum of the radii
r for which the inverse exponential map at x is a diffeomorphism on B(x, r). The injectivity
radius rinj of a Riemannian manifold,M, is the infimum of the injectivity radii at all points.
Open balls of radius rinj or less in the manifold are therefore diffeomorphic to a Euclidean ball.

Another important quantity is the convexity radius of the manifold, which is the largest
value rconv such that all open balls B(o, r) of radius r < rconv are convex, and furthermore,
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radius r(x) = d(x, o) is a convex function on this ball. It is shown in [Petersen, 2006], page
177 that the convexity radius of a manifoldM is bounded as follows:

rconv ≥
1
2

min
(

rinj,
π√
∆

)
,

where ∆ is the maximal sectional curvature of the manifoldM.
In [Fletcher et al., 2009], the convergence of the L1 Weiszfeld algorithm was shown for

manifolds of non-negative sectional curvature, provided that all the points lie inside a ball
of radius no greater than rconv/2. However, this is not a tight bound, and in the case of
rotation averaging, it is possible to prove convergence within a ball of twice this size. The
convexity radius for SO(3) is equal to π/2, and hence the result of [Fletcher et al., 2009]
ensures convergence as long as the points yi lie inside a ball of radius π/4. It will be shown
here that convergence to the Lq minimum is assured, as long as the points are within a ball
of radius π/2, that is within a convex ball in SO(3). To obtain these improved convergence
results in the general case, a different concept of convexity is needed.

4.2.3 Weakly Convex Sets

A weakly convex set in a manifoldM is a set W with the following properties.

1. For two points x and y in W, there is a unique geodesic in W from x to y.

2. This geodesic is the shortest length path in W from x to y.

If this segment is the minimizing geodesic in M joining x and y, then the set is strongly
convex, as previously defined. 1

In a weakly convex set W, we may define a distance dW(x, y) equal to the length of the
unique geodesic that joins x to y in W. In addition, the logarithm map on W is defined in terms
of the unique geodesic between two points, in W.

Lemma 4.1. For an open weakly convex set W in a Riemannian manifoldM,

1. The distance function dW(x, y) satisfies the triangle inequality, and hence W is a metric
space under this metric.

2. W does not contain any pair of conjugate points.

3. For any point x ∈ W, the logarithm map logx maps W diffeomorphically into the tan-
gent space.

The triangle inequality follows directly from the fact that distance is equal to the shortest
path length in W.

1Terminology for convexity properties varies in the literature, e.g. [Chavel, 2006; Cheeger and Ebin, 1975;
Klingenberg, 1982; Petersen, 2006]. Our definition of weakly convex is closest to the definition of weakly convex in
[Chavel, 2006]. However, we add an extra condition of uniqueness of the connecting geodesic into our definition of
weak convexity to ensure the absence of conjugate points, and injectivity of the exponential map, hence uniqueness
of the logarithm map defined on W.
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If there exist conjugate points y and y′ in W, then the geodesic from y to y′ can be extended
to a geodesic from y to y′′. However, geodesics are not minimizing beyond conjugate points
[Lee, 1997], so the geodesic from y to y′′ is not minimizing in the manifold W, contrary to the
definition of a weakly convex set.

The third statement follows from injectivity of the exponential map into W and a standard
result about the exponential map on regions without conjugate points [Lee, 1997].

We use Toponogov’s theorem to compare distances in W and in its tangent space. Let κ

be the sectional curvature of a Riemannian manifold. The following theorem effectively states
that the Toponogov’s theorem holds in an open weakly convex set with κ ≥ 0.

Theorem 4.2. Let W be an open weakly convex set inM, a manifold of non-negative sectional
curvature. Let q, p1 and p2 be three points in W. Then

dW(p1, p2) ≤ d(logq(p1), logq(p2)) = ‖ logq(p1)− logq(p2)‖ .

A proof of the above theorem is provided in section 4.6.3. The proof is given, because
the usual conditions required by Toponogov’s theorem to be true are not satisfied in a weakly
convex set, so a proof is required.

Analogous to the definition of convexity radius, we define the weak convexity radius rwcon

to be the largest value such that all open balls B(o, r) with r < rwcon are weakly convex, and
r(x) is convex. It is easy to see that 2rconv ≥ rwcon ≥ rconv. Indeed, by definition, a ball of
radius ρ < rwcon/2 is weakly convex. Therefore, two points x and y in B(o, ρ) are connected
by a unique geodesic segment γ in B(o, ρ). However, this must be a minimizing segment;
there cannot be another such segment lying in B(o, 2ρ), since this is weakly-convex, and any
other geodesic from x to y that exits the ball B(o, 2ρ) must be longer than γ. Thus, B(o, ρ) is
convex.

As an example, consider the manifold SO(3). It is shown in [Hartley et al., 2013] that
the convexity radius of SO(3) is π/2, whereas the weak-convexity radius is π, which is the
maximum distance between points in SO(3). Note that part of this claim is that d(x, o) is
convex on any ball of radius less than π (and in fact on the open ball B(o, π) itself); see
[Hartley et al., 2013]. The closed ball B̄(o, π) is equal to the whole of SO(3), but any smaller
ball is weakly convex.

An essential property of open weakly convex sets is the continuity of the logarithm map.
The following theorem says that if the logarithm map is defined in terms of the geodesic that
lies inside W, then it is continuous as a function of two variables on this region.

Theorem 4.3. If W is an open weakly convex set in a complete Riemannian manifold M,
and x, y are two points in W, define logx(y) to be the vector v in TxM ⊂ TM such that
expx(v) = y, and expx(tv) ∈ W for all t ∈ [0, 1]. Then logx(y) as a map from W ×W to
TM is continuous in both variables.

Our search fails to find this theorem in the literature, so we give a proof of this theorem in
section 4.6.2.
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4.2.4 Convexity and minima of the Lq Cost

The Lq cost function (4.1) will in general have more than one local minimum on an arbitrary
manifold. For example, it was shown in [Hartley et al., 2013] that for n points on the manifold
SO(3), there may be up to O(n3) local minima. The situation becomes much simpler in the
case when (4.1) is a convex function on some convex region.

It is shown in [Afsari, 2011] (proof of Theorem 2.1) that if all points yi lie in a ball B̄(o, ρ)
of radius ρ < rconv, then the global minimum of Cq lies in B̄(o, ρ). Furthermore, if x is a
point not in B̄(o, ρ) then there exists a point x′ ∈ B(o, ρ) such that Cq(x′) < Cq(x). In fact,
a specific construction is given for x′, as follows. Suppose that x = expo(rv) where ‖v‖ is a
unit vector, and r = d(x, o) > ρ, then

x′ =
{

expo((2ρ− r)v) if r < 2ρ

o if r ≥ 2ρ
. (4.3)

Thus, for r < 2ρ, point x′ is the reflection of x about the boundary of the ball B(o, ρ), along
the radial geodesic. Since rwcon/2 ≤ rconv, the cost function Cq has appealing properties on a
ball of radius ρ < rwcon/2, as follows.

Theorem 4.4. If all points yi, i = 1, . . . , n lie in a ball B̄ = B̄(o, ρ) with ρ < rwcon/2, then

1. Cq(x) is convex on B̄ and strictly convex unless q = 1 and all points yi lie on a single
geodesic;

2. the global minimum of Cq(x) lies in B̄;

3. the set S0 = {x ∈ M | Cq(x) ≤ Cq(o)} is contained in B̄(o, 2ρ), which is a weakly-
convex ball.

Proof. If x and yi are both in B̄, then d(x, yi) ≤ 2ρ < rwcon. Hence, d(x, yi) is convex as a
function of x on B̄, so d(x, yi) has positive-semidefinite Hessian at x. By a simple calculation
it follows that d(x, yi)

q has positive-definite Hessian for q > 1, and is hence convex. Summing
over all i shows that Cq(x) is convex.

For q = 1 the distance d(x, yi) is strictly convex at x except in the direction pointing
towards yi. Unless the directions to all the points yi coincide, the sum of the distance functions
will be strictly convex.

The second statement was proved in [Afsari, 2011].
The third statement follows from the triangle inequality, since if Cq(x) ≤ Cq(o), then

d(x, yi) ≤ d(o, yi) for some i, and d(x, o) ≤ d(x, yi) + d(o, yi) ≤ 2ρ. ut

The minima of the cost function Cq may be classified as follows.

Lemma 4.5. Let D be a subset of M on which Cq (4.1) is convex. A point x∗ ∈ D is the
minimum of Cq in D if and only if it satisfies one of the following conditions:

1. ∇Cq(x) vanishes at x∗, or

2. q = 1, x∗ = yj and the gradient∇Ĉq(x∗) (omitting point yj) has norm no greater than
1.
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For the case q > 1 the cost function is differentiable and convex. Its minimum occurs
when the gradient vanishes. In the case q = 1, the further possibility exists that the minimum
occurs, under the stated condition, at some yj where the cost function is non-differentiable.
This is the condition given by Weiszfeld for the Euclidean case, and it carries over easily to the
case of a Riemannian manifold.

4.2.5 Convergence Theorem

We are now able to state a convergence theorem for the Lq Weiszfeld algorithm on a Rieman-
nian manifold.

Theorem 4.6. Consider a set of points Y = {y1, y2, . . . , yk}, k > 2, on a complete Rieman-
nian manifoldM with non-negative sectional curvature, such that not all of the given points
lie on a single geodesic. Let all points yi, lie in a ball B(o, ρ) of radius ρ < rwcon/2 centered
at o and define D = {x ∈ M | Cq(x) ≤ Cq(o)}.

Let (xt) be a sequence of points starting from x0 in D, and defined by xt+1 = W(xt)
where W is defined in (4.2). Then, the sequence (xt) converges to the global minimum of Cq

unless xt = yi for some iteration t and point yi (in which case, the sequence remains stuck at
yi).

Proof of this theorem will be deferred until section 4.6.1.

Remark: This algorithm applies for the Lq Weiszfeld algorithm in IRN where the distance
function in (4.1) is simply the Euclidean distance. Note that the Euclidean space is a Rieman-
nian manifold of zero curvature and an injectivity radius of infinity.

4.3 Application I: Lq Optimization on SO(3)

Here we address the problem of Lq rotation averaging, 1 ≤ q < 2, using the proposed Lq

optimization method on a Riemannian manifold of non-negative sectional curvature.
Rotation averaging problems can be categorized as either single rotation averaging or mul-

tiple rotation averaging; see fig. 4.1. In single rotation averaging, several estimates of a rotation
are found and then the Lq Weiszfeld algorithm is applied to find their Lq mean. In multiple
rotation averaging, one is given a set of noisy relative rotations Rij between frames (cameras)
indexed by i and j. The task is to find absolute rotations Ri, Rj that are consistent with the
relative rotations: Rij = RjR

−1
i . In applications, the relative rotations Rij may be computed

using single rotation averaging as well.
Mathematically, the single rotation averaging problem is as follows. Given rotations Ri ∈

SO(3), the Lq mean, 1 ≤ q ≤ 2, is equal to

S∗ = argmin
S∈SO(3)

k

∑
i=1

d(Ri, S)q .

The L1 and L2 means are the two most useful or common cases. Although L2 averaging has
been considered extensively, the Lq averaging problem in general has been relatively unex-
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(a) Single Rotation Averaging (b) Multiple Rotation Averaging

Figure 4.1: Rotation Averaging: (a) represents two cameras with Rij as a relative rotation
between them. We obtain several estimates of the rotation between these two cameras and
then perform averaging on them to get a better estimate. (b), we apply the rotation averaging
algorithm to estimate absolute rotations, Ri, from previously computed relative rotations Rij.

plored. A gradient-descent algorithm for L1 averaging using line-search in the tangent space
was given in [Dai et al., 2009]. However, line-search is costly and cumbersome to imple-
ment. In addition, no proof of convergence was given in that paper. Here, we present a simple
geodesic Lq averaging algorithm for SO(3), based on the proposed Lq Weiszfeld optimization
method on a Riemannian manifold.

Metrics: We consider two metrics commonly used for distance measurement in the rotation
group SO(3). These are

1. The geodesic or angle metric θ = d∠(R, S), which is the angle of the rotation RS−1.

2. The chordal metric

dchord(R, S) = ‖R− S‖F = 2
√

2 sin(θ/2)

where ‖ · ‖F represents the Frobenius norm.

These metrics are bi-invariant, in that they satisfy the condition d(R, S) = d(TR, TS) =
d(RT, ST) for any rotation T. For small values of θ = d∠(R, S) the metrics are the same, to first
order, except for a scale factor.

Logarithm and Exponential Maps: The tangent space of SO(3) may be indentified with the
set of skew-symmetric matrices, denoted by so(3). The Riemannian logarithm and exponential
maps may be written in terms of the matrix exponential and logarithm as follows.

Denote by [v]× the skew-symmetric matrix corresponding to v. The Riemannian expo-
nential and logarithm are then defined as

expS([v]×) = S exp([v]×)

logS(R) = log(S−1R)

where log and exp (without subscripts) represent matrix exponential and logarithm. The ma-
trix exponential of a skew-symmetric matrix may be computed using the Rodrigues formula
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[Hartley and Zisserman, 2004]. The distance d(S, R) is computed by

d(S, R) = (1/
√

2)‖ logS(R)‖F

where ‖ · ‖F represents the Frobenius norm, and the scale factor 1/
√

2 is present so that d(S, R)
is equal to the angular distance from S to R. If logS(R) = [v]×, then d(S, R) = ‖v‖, in terms
of the Euclidean norm in IR3.

For a more complete discussion of metrics on rotation space and rotation averaging, see
[Hartley et al., 2013].

4.3.1 L2 Averaging

The rotation averaging problem on SO(3) under the L2 norm may be solved in closed form
for the chordal metric. However, there is no closed-form algorithm for L2 rotation averaging
under the geodesic metric, but convergent algorithms have been proposed [Afsari et al., 2013;
Dai et al., 2009]. We give a brief description of the L2 averaging algorithms using the geodesic
metric and the chordal metric.

L2 Geodesic Mean: The L2 geodesic mean of a set of rotations Ri can only be computed
iteratively. The mean is unique provided the given rotations R1, . . . , Rk do not lie too far apart.
A constant step size gradient descent algorithm to find the L2 mean has been proposed in Afsari
et al. [2013]. When δ ≤ π/2 and all the rotations lie in a ball of radius δ, then a constant step
size algorithm with a step size of λ ∈ (0, 1] is shown to converge to the L2 minimum. For a
given set of rotations {Ri} and a starting point S0 in a ball of radius δ, we proceed as,

St+1 = expSt

(
λ ∑k

i=1 logSt(Ri)
)

.

The above procedure is guaranteed to converge to the L2 mean. For a Newton-type algorithm
to compute this mean see Krakowski et al. [2007].

L2 Chordal Mean: Computation of the L2 chordal mean does not require knowledge of a
bounding ball for the rotations Ri, and so it is useful as a way to find an initial estimate for an
iterative Weiszfeld algorithm.

Let Rsum = ∑k
i=1 Ri, the sum of 3× 3 rotation matrices. The L2 chordal mean S is obtained

using the Singular Value Decomposition. Let Rsum = U D V> where the diagonal elements of
D are arranged in descending order. If det(UV>) ≥ 0, then set S = UV>. Otherwise set
S = U diag(1, 1,−1)V>.

For justification of this algorithm, see [Hartley et al., 2013].

4.3.2 Lq Geodesic Mean in SO(3)

We now consider the problem of computing the Lq geodesic mean in the group of rotations.
The Lq Weiszfeld algorithm will be used to compute the minimum of the cost function

Cq(S) =
k

∑
i=1

d(Ri, S)q . (4.4)
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To minimize (4.4) we transition back and forth between the rotation manifold, and its tan-
gent space centred at the current estimate via the exponential and logarithm maps as described
earlier.

In terms of the matrix exponential and logarithms the update step (4.2)of Lq optimization,
may then be written as

St+1 = St exp

(
∑k

i=1 wt
i log((St)−1Ri)

∑k
i=1 wt

i

)
if St /∈ {Ri}

= Rj if St = Rj

, (4.5)

where wt
i = d(St, Ri)

q−2.
For computational efficiency, it is simpler to work with the quaternion representations ri of

the rotations Ri, since mapping between quaternions and angle-axis representation is simpler
than computing the exponential and logarithm maps. In addition quaternion multiplication is
faster than matrix multiplication. Let Q be the unit quaternions, v̂ be a unit vector and θ a
scalar representing an angle. The mapping q : IR3 → Q given by

q : θv̂ 7→ (cos(θ/2), sin(θ/2)v̂) ,

maps between the angle-axis and quaternion representation of the rotation through angle θ

about the axis v. Then the update step above may be expressed as

θiv̂i = q−1(s̄t · ri) ,

δ =
∑k

i=1 θiv̂i/θ
2−q
i

∑k
i=1 1/θ

2−q
i

,

st+1 = st · q(δ) ,

(4.6)

where s̄t represents the conjugate (inverse) of the quaternion st. A further alternative is to use
the Campbell-Baker-Hausdorff formula [Govindu, 2004] to work entirely in angle-axis space,
but this is essentially equivalent to the use of quaternions.

According to Theorem 4.6 this sequence of iterates will converge to the Lq mean of the
rotations Ri, provided all the rotations and the initial extimate S0 lie within a ball of radius
π/2.

4.3.3 Lq Multiple Rotation Averaging

We now consider the problem of rotation averaging of a set of relative rotations. More specifi-
cally, let Ri; i = 1, . . . , k be a set of rotations denoting the orientation of different coordinate
frames in IR3. The rotations are assumed unknown, but a set of relative rotations Rij are given,
for pairs (i, j) ∈ N , whereN is a subset of all index pairs. If (i, j) ∈ N , then also (j, i) ∈ N ,
and Rji = R−1

ij . These relative rotation matrices Rij are provided by some measurement process
and are assumed to be corrupted by some degree of noise. The required task is to find the
absolute rotations Ri, Rj such that Rij = RjR

−1
i for all pairs (i, j) ∈ N . Of course, since this
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Figure 4.2: Multiple Rotation Averaging: Nodes of the above graph represent absolute rota-
tions Ri and edges of the graph represent relative rotation Rij. After fixing a root node Ri0 we
construct a spanning tree of the graph (represented by solid arrows). For each node Rj, we
apply a single iteration of the Lq rotation averaging algorithm on its neighboring nodes N (j)

to get an averaged estimate of Rj. This process is repeated for every node of the graph.

condition can not be fulfilled exactly, given noisy measurements Rij, so the task is to minimize
the cost

Cq(R1, . . . , RM) = ∑
(i,j)∈N

d(RijRi, Rj)
q ,

where 1 ≤ q < 2. We consider the geodesic distance function d(·, ·) = d∠(·, ·). We may
eliminate the obvious gauge freedom (ambiguity of solution) by setting any one of the rotations
Ri to the identity. Generally, minimizing this cost is a difficult problem because of the existence
of local minima, but in practice it may be solved in many circumstances with more-or-less
acceptable results. Here, we will consider the Lq averaging problem, and demonstrate an
algorithm that gives excellent results on large data sets.

Our approach is by successive Lq averaging to estimate each Ri in turn, given its neigh-
bours. At any given point during the computation, a rotation Ri will have an estimated value,
and so will its neighbors Rj, for (i, j) ∈ N . Therefore, we may compute estimates R(j)

i = RjiRj,
where the superscript (j) indicates that this is the estimate of Ri derived from its neighbour Rj.
We then use our Lq averaging method on SO(3) to compute a new estimate for Ri by averaging

the estimates R(j)
i , fig. 4.2. In one pass of the algorithm, each Ri is re-estimated in turn, in some

order. Multiple passes of the algorithm are required for convergence.
Since the Lq averaging algorithm on SO(3) is itself an iterative algorithm, we have the

choice of running the Lq averaging algorithm to convergence, each time we re-estimate Ri,
or else running it for a limited number of iterations leaving the convergence incomplete, and
passing on to the next rotation. To avoid nested iteration, we choose to run a single iteration of
the Lq averaging algorithm at each step. The complete algorithm is as follows.

Algorithm 4.1. Given a set of relative rotations Rij we proceed as:

1. Initialization: Set some node Ri0 , with the maximum number of neighbours, to the
identity rotation, and construct a spanning tree in the neighbourhood graph rooted at
Ri0 . Estimate the rotations Rj at each other node in the tree by propagating away from
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the root using the relation Rj = RijRi.

2. Sweep: For each i in turn, re-estimate the rotation Ri using one iteration of the Lq

averaging algorithm. (As each new Ri is computed, it is used in the computations of the
other Ri during the same sweep.)

3. Iterate: Repeat this last step a fixed number of times, or until convergence.

As shown in Tron and Vidal [2009], there can be several choices for the initialization of
rotations, such as fixing a node as a base node or using a slightly different distance functions
on SO(3). In this case, we only consider the first method where a base node is set to identity
and rest of the rotations are computed relative to the base node. The whole computation is
most conveniently carried out using quaternions.

Unlike the single rotation averaging problem considered in section 4.3.2 we can not guar-
antee convergence of this algorithm to a global minimum, but results will demonstrate good
performance.

4.4 Application II: Lq Averaging on SPD manifold

We apply the Lq Weiszfeld algorithm for points on a Riemannian manifold to find the Lq mean
of a set of SPD matrices. The space of n× n SPD matrices is represented by Sym+

n . Given
a set of SPD matrices {Y1, Y2, . . . , Yk}, where Yi ∈ Sym+

n , we seek a point X ∈ Sym+
n for

which the Lq cost function has a minimum value. The Lq cost function is defined as,

Cq(X) =
k

∑
i=1

d(X, Yi)
q , (4.7)

where 1 ≤ q < 2 and d(·, ·) is a distance function. Since the space of SPD matrices can be
endowed with a Riemannian structure, the distance function is a geodesic distance.

4.4.1 Metrics

The space of SPD matrices is not a vector space; instead, it constitutes a manifold. This
manifold can be endowed with different Riemannian metrics. Here we will summarize some
of the popular metrics such as the Euclidean metric, the affine invariant metric [Pennec et al.,
2006; Fletcher and Joshi, 2004; Lenglet et al., 2004; Moakher, 2005] and the Log-Euclidean
metric [Arsigny et al., 2007]. We focus more on the Log-Euclidean metric because it is easy
to compute than the affine invariant metric and the Riemannian manifold has a zero sectional
curvature when endowed with the Log-Euclidean metric.

We are also interested in the matrix logarithm and matrix exponential of an SPD matrix.
Note that these maps are different from the logarithm and exponential maps defined on a Rie-
mannian manifold, where these maps are used to transfer points between manifold and its
tangent space. We represent the matrix logarithm by log and matrix exponential by exp, with-
out any subscript. These maps will be used to write the induced metrics explicitly in the form
of log and exp. Since an SPD matrix can be represented by a positive diagonal matrix in some
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orthonormal basis, the respective matrix logarithm and matrix exponential forms are simplified
and thus are computed as

log(X) = log(R diag(λ1, λ2, . . . , λn) R
T)

= R diag(log(λ1), log(λ2), . . . , log(λn)) R
T , (4.8)

and

exp(X) = exp(R diag(λ1, λ2, . . . , λn) R
T)

= R diag(exp(λ1), exp(λ2), . . . , exp(λn)) R
T . (4.9)

We now discuss some of the commonly used metrics for computations on SPD manifold.

1. Euclidean Metric: This metric is defined by endowing the space of SPD matrices with
a Euclidean structure. This leads us to a simple and straightforward metric. The distance
function is simply,

d(X, Y) = ‖X− Y‖ ,

where ‖ · ‖ is the Frobenius norm. Averaging under the Euclidean metric is not adequate
in many situations because matrices with non-positive eigenvalues are at a finite distance
from other SPD matrices and the Euclidean averaging often suffers from the swelling
effect, which means that the determinant of the Euclidean mean can be strictly larger
than the original determinants, for details see [Arsigny et al., 2007]. The swelling issue
can be resolved either by using other Riemannian metrics or by using the framework
proposed in Cetingul et al. [2012]. Because of simplicity, we only explore the first
strategy where averaging is performed by using different metrics.

2. Affine Invariant Metric: Unlike the Euclidean metric where the space of SPD matrices
is endowed with the Euclidean structure, in the case of affine invariant metric a curvature
is induced on the space. An advantage of inducing this structure is that the drawbacks
of the Euclidean metric are removed; null eigenvalues are at an infinite distance and the
swelling effect has disappeared. But these advantages come at a cost of high computa-
tional time that eventually leads to slow and hard to implement algorithms.

In this case the distance function is defined as

d(Y1, Y2) = ‖ log(Y−1/2
1 Y2 Y

−1/2
1 )‖ , (4.10)

where ‖ · ‖ is the Frobenius norm. In this case the logarithm and exponential maps are
defined as

logX(Y) = X1/2 log( X−1/2 Y X−1/2 ) X1/2 ,

and

expX(Y) = X1/2 exp( X−1/2 Y X−1/2 ) X1/2 ,
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respectively. For details see [Pennec et al., 2006].

3. Log-Euclidean Metric: We focus more on the Log-Euclidean metric [Arsigny et al.,
2007] because it is very simple to compute and overcomes the drawbacks of both the
Euclidean and affine invariant metrics. The metric is called Log-Euclidean because it is
a Euclidean metric in matrix logarithm space. It not only overcomes the drawbacks of
the Euclidean metric but is also very efficient to compute when compared with the affine
invariant metric.

In this case the logarithm and exponential maps are defined as

logX(Y) = log(Y)− log(X) ,

and

expX(Y) = X exp(Y) ,

respectively. For details see [Pennec et al., 2006]. The Log-Euclidean distance function
is then,

d(X, Y) = ‖ log(Y)− log(X)‖ ,

where ‖ · ‖ is the norm associated with the metric, that is the Frobenius norm.

4.4.2 L2 Averaging for SPD Matrices

In this section we discuss several methods for computing the L2 mean of a set of SPD matrices.
Let {Y1, Y2, . . . , Yk} be a given set of SPD matrices, where Yi ∈ Sym+

n . The L2 mean of these
matrices is a point for which the following function is minimum,

C2(X) =
k

∑
i=1

d(X, Yi)
2 , (4.11)

where d(·, ·) is a distance function that depends on the induced metric.

4.4.2.1 Euclidean Metric

Given a set of SPD matrices {Y1, Y2, . . . , Yk}, the Euclidean mean is simply the arithmetic
mean and is computed explicitly by

X̃ =
1
k

k

∑
i=1

Yi .

The L2 mean under the Euclidean metric is very simple to compute but it suffers from several
drawbacks, such as swelling effect, null eigenvalues at finite distance, etc, that limit the usabil-
ity of the Euclidean mean for many applications. For details see [Arsigny et al., 2007; Pennec
et al., 2006].
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4.4.2.2 Affine Invariant Metric

The L2 mean of a set of SPD matrices {Y1, Y2, . . . , Yk} under the affine invariant metric is
computed iteratively using

Xt+1 = (Xt)−
1
2 exp

(
1
k

k

∑
i=1

log((Xt)−
1
2Yi(X

t)−
1
2 )

)
(Xt)−

1
2 ,

where Xt is an estimate of the L2 mean at iteration t; and exp and log are matrix exponential
and logarithm as defined in (4.9) and (4.8), respectively. Although this metric does not suffer
from the drawbacks of the Euclidean metric, it is computationally expensive and sometimes
hard to implement. But still it makes more sense than the Euclidean metric because it respects
the Riemannian structure on the manifold of SPD matrices, that is clearly a natural way of
modeling the problem.

4.4.2.3 Log-Euclidean Metric

The Log-Euclidean metric [Arsigny et al., 2007] endows the space of SPD matrices with a
Riemannian structure but unlike the affine invariant metric, the Log-Euclidean metric has a
simple form and is easy to compute. Given a set of SPD matrices {Y1, Y2, . . . , Yk} the L2

mean using the Log-Euclidean metric is computed in closed-form as,

X̃ = exp

(
1
k

k

∑
i=1

log(Yi)

)
,

where exp and log are matrix exponential and logarithm, respectively. It is shown in [Arsigny
et al., 2007] that the Log-Euclidean mean is similarity-invariant.

4.4.3 Lq Averaging for SPD Matrices

In this section we show that the Lq Weiszfeld algorithm [Aftab et al.] can be applied to the
space of SPD matrices to find the Lq mean of a set of SPD matrices, for 1 ≤ q < 2. We
endow the space of SPD matrices with the Log-Euclidean metric because of its simplicity, low
computational cost, and its zero Riemannian curvature [Arsigny et al., 2007]. The space of
SPD matrices has a zero sectional curvature when endowed with the Log-Euclidean metric
and has a non-positive sectional curvature under the Affine-Invariant metric. Since, the proof
of Theorem 4.6 is true for Riemannian manifolds of non-negative sectional curvature, the Lq

Weiszfeld algorithm is provable convergence under the Log-Euclidean metric. However, no
such proof exists for the Affine-Invariant metric. But our experimental results show that the
algorithm converges nicely for both the metrics.

Given a set of SPD matrices {Y1, Y2, . . . , Yk}, such that not all of the given SPD matrices
lie on a single geodesic the Lq cost function is defined as,

Cq(X) =
k

∑
i=1

d(X, Yi)
q =

k

∑
i=1
‖ logX(Yi)‖q ,
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where ‖ · ‖ is the Frobenius norm.
According to Theorem 4.6, a current solution of the Lq mean is updated in the descent

direction of Cq as,

Xt+1 = W(Xt) = expXt

(
∑k

i=1 wt
i logXt(Yi)

∑k
i=1 wt

i

)
if Xt /∈ {Yi}

= Yj if Xt = Yj

, (4.12)

where wt
i = ‖ logXt(Yi)‖q−2.

It is shown in [Arsigny et al., 2007, Corollary 3.10] that under the Log-Euclidean metric
the space of SPD matrices is a flat Riemannian manifold, that is its sectional curvature is
zero everywhere. Thus, all the discussion of section 4.2 regarding injectivity radius, convexity
radius, etc, becomes irrelevant. As a result, from Theorem 4.6, the sequence of points obtained
using the update function W (4.12) converges to the minimum of Cq, except when Xt = Yi for
some value of t..

In the case of the Log-Euclidean metric, the update function W in (4.12) can explicitly be
written as,

Xt+1 = W(Xt) = exp

(
∑k

i=1 wt
i log(Yi)

∑k
i=1 wt

i

)
if Xt /∈ {Yi}

= Yj if Xt = Yj

, (4.13)

where wt
i = ‖ log(Yi)− log(Xt)‖q−2. Note that the log and exp maps in the above equation

are matrix logarithm and exponential maps. Furthermore, it is not necessary to compute the
matrix logarithm and exponential of the points at every iteration of the algorithm. Rather, an
equivalent strategy is to compute the matrix logarithm only once, perform the iterations of
the algorithm in the logarithm space until convergence, and then map the final solution back
to the exponential space by using the matrix exponential map. This further simplifies the Lq

Weiszfeld algorithm under the Log-Euclidean metric and makes the technique computationally
efficient than the Affine-Invariant metric.

4.4.3.1 Discussion Related to the Affine-Invariant Metric

As stated in Theorem 4.6 that the sequence of points (xt) converges to the Lq mean if all the
points {yi} lie on a Riemannian manifold of non-negative sectional curvature. The Rieman-
nian structure endowed on the space of SPD matrices has a non-positive sectional curvature
under the Affine-Invariant metric. For details see [Pennec et al., 2006]. Therefore, the con-
vergence of the sequence of points obtained using (4.12) is not guaranteed under the Affine-
Invariant metric.

Regardless of the fact that the sequence of points is not convergent, we apply the Lq

Weiszfeld algorithm to the problem of finding the Lq mean of a set of SPD matrices, under
the Affine-Invariant metric. Our experimental results show that the sequence of points ob-
tained using (4.12) converges very nicely to the Lq mean. Thus, in practice the Lq Weiszfeld
algorithm can be applied to the problem but unfortunately its convergence to the Lq minimum
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(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 4.3: Data Set: (a), (b) and (c) shows multiple images of the Notre Dame cathedral.

is not guaranteed.

4.5 Experimental Results

4.5.1 Rotation Averaging

We demonstrate the utility and accuracy of the Lq rotation averaging methods, for q = 1,
by applying them to a large-scale reconstruction problem, based on the Notre Dame data set
[Snavely et al., 2006] see fig. 4.3. This set has been reconstructed and bundle-adjusted, result-
ing in estimates of all the camera matrices, which we take to represent ground truth. The set
consists of 595 images of 277, 887 points. There exist 42, 621 pairs of images with more than
30 corresponding point pairs, and these were the pairs of images that we used in our tests.

4.5.1.1 Single Rotation Averaging

To test the algorithm for estimating a single rotation from several estimates, we carried out the
following procedure.

1. Subsets of five point pairs were chosen and a fast five-point algorithm [Nistér, 2004] was
used to estimate the essential matrix from the pair of images, and from this the relative
rotation and translation were computed. Only those solutions were retained that satisfied
the cheirality constraint that all 5 points lie in front of both estimated cameras. This can
be done extremely quickly – in our implementation about 35µs per 5-point sample.

2. The solutions were tested against 3 further points and only solutions which fitted well
against these points were retained.

3. From several subsets of 5 points we obtained several estimates of the relative rotation (a
subset can lead to more than one rotation estimate).
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Figure 4.4: The graph shows the result of L2 (top curve) and L1 (bottom curve) rotation aver-
aging, used in computing the relative orientation of two cameras from repeatedly applying the
5-point algorithm to estimate relative rotation. The plots show the error with respect to ground
truth as a function of the number of samples taken. As can be seen, the L1 algorithm converges

in this case to close to ground truth with about 10 samples.

4. The rotation estimates were then averaged to find their L1 mean. A closed form L2

rotation averaging was used to find an initial estimate, followed by application of some
steps of the Weiszfeld algorithm.

This method was compared with straight L2 rotation averaging; the L1 averaging technique
gave significantly better results. In addition, the results were compared with those obtained
by using non-minimal methods based on the 8-point algorithm, followed by algebraic error or
Sampson error minimization, and calibrated bundle adjustment [Hartley and Zisserman, 2004].

It is possible that this averaging technique can be used as an alternative to RANSAC in the
case of noisy point correspondences, but we emphasize that this was not the purpose of this
experiment. Rather, the point was to demonstrate the advantage of L1 rotation averaging, and
investigate it as a means for computing two-view relative pose.

Results: We carried out experiments in which the relative rotation of two cameras was
computed using the 5-point algorithm, followed by averaging the rotation results from many
rotation samples computed in this way. In all cases, the L1 averaging algorithm worked signif-
icantly better. In fig. 4.4 is shown a typical result of this estimation procedure, comparing L1

with L2 averaging algorithms, for increasing numbers of rotations.

4.5.1.2 Multiple Rotation Averaging

The results of pairwise rotation estimates obtained in the previous section were then used as
input to the multiple rotation averaging algorithm described in section 4.3.3.

In carrying out this test, the two-view relative rotation estimates were obtained using sev-
eral techniques. Generally speaking, more elaborate methods of computing relative rotation
led to better results, but the fast methods were shown to give surprisingly good results very
fast. The following methods were used for finding pairwise relative rotations Rij.

1. E-5pt(m, n): Rotations were obtained from essential matrices computed from m min-
imal 5-point sets, then averaged using the L2-chordal algorithm, followed by n steps of
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Method per-pair total L1 L2
time(msec) time(sec)

E-bundled 281 11932 0.82 0.93
E-algebraic 4.07 173 1.21 1.84
E-Sampson 19 839 1.05 1.85

E-5pt(30,20) 7 296 0.98 1.32
E-5pt(20,10) 4 168 0.93 1.46
L1-averaging – 36
L2-averaging – 10

Table 4.1: Timing (on a 2.6 GHz laptop) for the computation of the 42, 621 essential matrices
using various methods, and also the time taken for L1 and L2 averaging over all nodes. This last
operation is carried out once only. Columns 2 and 3 show the time per iteration, and total time.
The last two columns give the median (over 595 views) rotation error in degrees for L1 and L2
averaging. As may be seen, the full bundle adjustment takes a lot more time, though it does
lead to slightly better results. We do not count time taken for finding the pairs of overlapping
images with sufficiently many matches. Observe that E-5pt(30,20) did better than E-5pt(20,10)

for L1 averaging, but this was by chance.

L1 averaging using the Weiszfeld algorithm.

2. E-algebraic: The algebraic cost ∑i(x′i
>Exi)

2 was minimized iteratively over the space
of all valid essential matrices. This is an adaptation of the method of [Hartley, 1998] to
essential matrices, and is very efficient and fast.

3. E-Sampson: The Sampson error

∑
i

(x′i
>Exi)

2

(Ex)2
1 + (Ex)2

2 + (E>x′)2
1 + (E>x′)2

2

was minimized over the space of essential matrices.

4. E-bundled: Full 2-view bundle adjustment was carried out, initialized by the results of
E-algebraic. This method was expected to give the best results (and it did), but requires
substantially more computational effort (cf. Tab 4.1).

Given the diversity of image-pair configurations, possible small overlap and general insta-
bility, no one method gave perfectly accurate relative rotation estimates for all 42, 621 image
pairs. However, in all cases the resulting rotation errors for the 595 cameras were quite accu-
rate. For the E-bundled method, the median camera orientation error was 0.82 degrees.

Detailed results: The results of rotation averaging on the Notre Dame data set [Snavely
et al., 2008] are given in fig. 4.5 and fig. 4.6. Pairs of images from this set were chosen if they
shared more that 30 points in common (42,621 such pairs). From these pairs, the essential
matrix was computed using various different methods as described before. It is evident from
fig. 4.5 and fig. 4.6 that the results of the L1 algorithm by using E-bundled method are superior
in term of accuracy than the rest of the methods. However, considering the higher computation
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L1 L2

E-bundle E-algebraic E-Sampson E-5pt(30,20) E-bundle E-algebraic E-Sampson E-5pt(30,20)

Figure 4.5: Whisker plots of the absolute orientation accuracy of the 595 images of the Notre
Dame data set. The top and bottom of the boxes represent the 25% and 75% marks. The left
graph shows the result of L1 averaging and the right graph the L2 averaging results. In each
graph are shown the results arising from different methods of computing the essential matrices,

and hence the rotations.

cost of the E-bundle than the rest of the techniques this method is not recommended when effi-
ciency is of primary concern. On the other hand, the results of the L1 averaging method using
E-5pt(30, 20) method are slightly higher than the E-bundled method but the E-5pt method is
much more efficient than the rest of the techniques. Thus, L1 averaging together with the E-5pt
method is recommended because of its efficiency and accuracy.

4.5.2 SPD Averaging

Now, we discuss experimental results of the Lq averaging methods for SPD matrices. In our
experiments we consider both the Log-Euclidean and Affine-Invariant metrics. We perform av-
eraging over a synthetic data of a set of 3× 3 SPD matrices. Our objective is to estimate a SPD
matrix from a set of its noisy samples. To achieve this purpose we perform Lq averaging and
L2 averaging under both the Log-Euclidean metric and the Affine-Invariant metrics. Although,
there is no proof of convergence of the Lq averaging algorithm under the Affine-Invariant
metric but our experiments show promising results, comparable to the results under the Log-
Euclidean metric. Furthermore, the Lq algorithm under the Affine-Invariant metric converges
nicely without showing any abnormalities. We primarily focus on the Log-Euclidean metric,
for which the proposed algorithm is provably convergent. In all of our experiments we assume
that the ground truth is known and all the errors are computed using the ground truth value.

In our experiments we show following results:

1. Convergence behavior: The primary purpose of this experiment is to show the conver-
gence behavior of the averaging algorithms. Results have shown that the Lq averaging
algorithm, for q = 1, converges nicely under both the the Log-Euclidean metric and the
Affine-Invariant metric.

2. Robustness against different number of outliers: In this experiment we show the robust-
ness of the Lq averaging algorithm under the Log-Euclidean metric for different values
of q. In order to achieve this purpose we add different number of outliers in the dataset
and then compare the results of the Lq averaging algorithms, for q ranging from 1 to 2
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E-bundled E-algebraic

L1 averaging L2 averaging L1 averaging L2 averaging

E-Sampson E-5pt(30,20)

L1 averaging L2 averaging L1 averaging L2 averaging

Figure 4.6: Side-by-side comparison of the results of L1 and L2 averaging for each of the four
methods of computing relative rotations.
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with a step size of 0.25. Results have shown that the L1 is more robust to outliers than
the Lq averaging algorithms, for 1 < q ≤ 2.

Our experimental results in all of the above scenarios confirm that the Lq averaging meth-
ods give superior results than the L2 averaging methods in the presence of outliers.

Dataset and Noise: We take a set of 30 SPD matrices and try to estimate each matrix from
its 20 noisy samples by performing averaging over these samples. For each matrix, we take a
random 3× 3 SPD matrix as the ground truth value, and generate its noisy samples by adding
noise to its eigenvalues. In all of the cases, a Gaussian noise of zero mean and covariance of
0.25 times the eigenvalues is added to the eigenvalues of the ground truth matrix, that is, the
i-th eigenvalue λi is modified by adding N (0, σ = 0.25λi) to it, where N (·, ·) is a Gaussian
distribution function. However, the percentage of outlier in the dataset vary in different exper-
iments; outlier points are constructed by adding a noise of high magnitude to the eigenvalues
of the original matrix.

Error Measure: In all of our experiments we assume that the ground truth is known. We take
the original matrix as the ground truth and the results of averaging algorithms are compared
with the ground truth value. Let Xi be the known ground truth values and Yi be estimated
means, the RMS error is then computed as,

RMS Error =
√

∑k
i=1 ‖Xi − Yi‖/k , (4.14)

where ‖ · ‖ is the Frobenius norm and k is the total number of matrices for which averaging is
performed.

Iterations and Starting Point: In case of the Lq averaging algorithms we terminate the al-
gorithms after 30 iterations. Note that after first 10− 15 iterations of the Lq algorithms the
change in error is very less and algorithms become stable. The proposed Lq averaging al-
gorithms being iterative optimization techniques require a starting point. Instead of taking a
random starting point we take the L2 mean as a starting point. That is the reason why, in our
results in fig. 4.7, the plots of the Lq averaging methods start from the L2 mean.

4.5.2.1 Convergence Behavior

This experiment shows the convergence behavior of the Lq averaging algorithms, specifically
L1 averaging algorithm and L2 averaging algorithm under the Log-Euclidean metric and the
Affine-Invariant metric. In addition to noise, we modify 30% of the data points to represent
outliers. We take the L2 averaging result as a starting point for the L1 averaging algorithms.
Fig. 4.7 shows the results of the L2 and L1 averaging algorithms. The x-axis and y-axis show
iterations and RMS error, respectively, where error is computed using (4.14). It is evident from
the plots that the estimates of the L1 averaging algorithms are closer to the ground truth than
the estimates of the L2 averaging algorithms.

We allow the L1 algorithms to execute for 30 iterations but the change in error after 15
iterations is very less, fig. 4.7. Note that even after the few first iterations of the L1 algorithms,
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Figure 4.7: Convergence Behavior: The above figure shows results of the L2 averaging and L1
averaging algorithms under the Log-Euclidean and Affine-Invariant metrics. The L2 averaging
methods have similar results for both the metrics and is therefore represented by a single (red)
point in the above figure. However, the results of L1 averaging algorithms are represented by
blue and pink lines. In addition to noise, we modify 30% of the data to represent outliers.
The above plots confirm the fact that in the presence of outliers the L1 method gives superior
results than the L2 method. Furthermore, it shows that the results of the Lq averaging method
under the Affine-Invariant metric are comparable to the results under the Log-Euclidean met-
ric. However, the Lq averaging algorithm under the Log-Euclidean metric is preferred because

of its provable convergence and simple form.

the estimated SPD matrices are significantly closer to the ground truth than the L2 means.
Thus, the L1 algorithms even for a few iterations are better than the L2 averaging algorithms.
Although, there is no proof of convergence of the L1 averaging algorithm under the Affine-
Invariant metric, the results of the algorithm are still promising. Furthermore, it is obvious
from the convergence plot of the algorithm that the algorithm converges nicely without showing
any abnormalities. Therefore, the algorithm can be used to find the L1 mean. However, it is
preferred to use the L1 averaging algorithm under the Log-Euclidean metric because of its
simple form and provable convergence.

4.5.2.2 Robustness Against Different Number of Outliers

In this experiment we compare the robustness of the Lq averaging methods for different values
of q, specifically, q ranging from 1 to 2 with an increment of 0.25. In this case we only consider
the Lq averaging algorithm under the Log-Euclidean metric. In order to show the robustness
of the algorithms, in addition to noise, we add different number of outliers in the dataset.
The percentage of outliers is varied from 0% to 40%, with an increment of 10%. RMS error
between the estimated value and the known ground truth is computed using (4.14).

It is obvious from the plot in fig. 4.8 that in the presence of outliers the results of the L1

averaging algorithm are more superior than the Lq averaging algorithms, for 1 < q ≤ 2.
Furthermore, the results of the L1 averaging does not vary much with change in percentage of
outliers in data. As shown in fig. 4.8, the only point where the error of L1 mean has higher
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Figure 4.8: Robustness against different proportion of Outliers (Log-Euclidean metric): The
above figure shows the results of the Lq averaging algorithm for different values of q, specifi-
cally, for q ranging from 1 to 2 with an increment of 0.25. In addition to noise, we add different
number of outliers to the dataset. In this case the percentage of outliers in the dataset is varied
from 0% to 40% with an increment of 10%. The number of outliers is varied over the x-axis of
the above figure. We only consider the Lq optimization under the Log-Euclidean metric. The
above plots show that in the presence of outliers the results of the L1 averaging algorithm are
closer to the ground truth than the Lq averaging algorithms for 1 < q ≤ 2. However, when
there are no outliers in data then the results of all the algorithms are roughly the same. Thus,
the L1 averaging method is preferred over other methods because of its robustness to outliers.

error the rest of the algorithm is when there are no outliers in the data, a situation that rarely
occurs in real data. Thus, in the absence of outliers the L2 algorithm is recommended because
it finds the solution in closed form. But in practice, having data free of outliers is not likely,
thus the proposed L1 averaging algorithm is very practical and is preferred.

4.6 Proofs

We dedicate this section to prove the convergence of the Lq Weiszfeld algorithm for points
on a Riemannian manifold, specifically a proof of Theorem 4.6. Furthermore, we give proofs
of two more theorems related to the continuity of logarithm map, that is Theorem 4.3 and
Toponogov’s Theorem for κ ≥ 0, that is Theorem 4.2.

4.6.1 Convergence Theorem: Proof of Theorem 4.6

In this section we prove the convergence of the Lq optimization method for points on a com-
plete Riemannian manifold with non-negative sectional curvature. Theorem 4.6 states that,
given a set of points Y = {y1, y2, . . . , yk}, k > 2, on a complete Riemannian manifold
M with non-negative sectional curvature, such that not all of the given points lie on a single
geodesic. Let all points yi, lie in a ball B(o, ρ) of radius ρ < rwcon/2 centered at o and define
D = {x ∈ M | Cq(x) ≤ Cq(o)}. Starting from an initial point x0 in D the sequence of
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points (xt) obtained using (4.2), defined as,

W(xt) = expxt

(
∑k

i=1 wt
i logxt(yi)

∑k
i=1 wt

i

)
if xt /∈ Y

= yj if xt = yj

, (4.15)

where

wt
i = d(xt, yi)

q−2 ,

converges to the global minimum of Cq, or it will get stuck at some point with xt = yi. Note
that the logarithm map is as defined in Theorem 4.3, that is the logarithm with respect to the
weakly convex set W. Here, we give a proof that the sequence of points (xt) converges to the
Lq mean. Our proof of the convergence theorem takes place in several steps, according to the
following outline based on Theorem 3.4 (p. 29) and Theorem 3.5 (p. 30) of chapter 3.

Outline 4.1. Given an update function W and a strictly convex function Cq, to prove that the
sequence (xt) obtained using xt+1 = W(xt) is convergent to the minimum of Cq we proceed
as follows:

1. The update function W is continuous function, defined on a compact domain D and
maps D to itself.

2. The value of Cq is non-increasing at every iteration.

3. The set S of Theorem 3.4 (p. 29) is a finite set containing the Lq minimum point and
{yi}.

4. Since there is a finite number of accumulation points, the sequence (xt) is in fact con-
vergent, see Theorem 3.5 (p. 30).

5. If (xt) converges to one of the given points, yj, then this is the minimum, except when
xt ∈ {yi} for any of the intermediate iterates.

6. Therefore, unless xt gets stuck at yi, it converges to the Lq minimum.

The proof will be completed by verifying each step of this outline in the following subsec-
tions, numbered in accord with the steps in the outline.

4.6.1.1 Continuous Update function W

The domain D is compact and lies in the open weakly convex set B(o, 2ρ). Since (as will
be shown in the next point) the update function W decreases the cost function at every step,
it maps D into D. The update function W is continuous as a function of x, since according
to Theorem 4.3 both expxt(yi) and logxt(yi) are continuous functions of xt. The apparent
discontinuity when xt = yi for some i is a removable singularity, as remarked in section 2.3
(p. 18).
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4.6.1.2 Non-Increasing Lq Cost

Below we show in lemma 4.7 that the cost function Cq is a non-increasing function under the
update function W, that is Cq(W(x)) ≤ Cq(x) with equality only when W(x) = x. In the
update step, an optimal update is first computed in the tangent space and then this updated
point is projected back to the manifold. It is therefore important to show that a decrease in
the Lq cost in the tangent space also results in a decrease in the Lq cost on the manifold. The
following lemma shows that the update function (4.2) results in a decrease in the value of Cq.

Lemma 4.7. For the update function W defined in (4.2), we have Cq(W(x)) ≤ Cq(x) , where
equality holds only when W(x) = x.

Proof. The inequality will be shown for any point xt and xt+1 = W(xt). Let C w
2 be a weighted

L2 function onM,

C w
2 (x) =

k

∑
i=1

wt
i d(x, yi)

2

where wt
i = 1/d(xt, yi)

q−2. Let ỹi and x̃t+1 be the corresponding points in the tangent space
at xt, under the logarithm map. Note that x̃t = 0. A corresponding weighted L2 cost function
C̃ w

2 is defined in the tangent space TxtM ofM, as

C̃ w
2 (x̃) =

k

∑
i=1

wt
i d(x̃, ỹi)

2 . (4.16)

Note that d(xt, yi) = d(x̃t, ỹi), so C̃ w
2 (x̃t) = C w

2 (xt). The updated point x̃t+1 in the tangent
space is the global minimizer of (4.16), so

C̃ w
2 (x̃t+1) ≤ C̃ w

2 (x̃t) = C w
2 (xt) = Cq(xt) . (4.17)

From the Toponogov Comparison Theorem for open weakly convex sets, Theorem 4.2, the
distance between two points on a positively curved manifold is less than the distance between
their images under the log map, that is d(xt+1, yi) ≤ d(x̃t+1, ỹi). This implies that

C w
2 (xt+1) ≤ C̃ w

2 (x̃t+1) ≤ Cq(xt) ,

the last inequality from (4.17). The conclusion of the theorem now follows from lemma 3.6 (p.
35) by setting ai = d(xt, yi) and bi = d(xt+1, yi). ut

Thus, under the update function W (4.2) the Lq cost function is a non-increasing function.

4.6.1.3 Finite set S

Under the update function W (4.2) the value of Cq remains constant in successive iterations
either when x = yj where W(yj) = yj, or when x is a minimum of Cq. From Theorem 4.4,
the Lq minimum x∗ is unique in B, and for this point W(x∗) = x∗. The set S in Theorem 3.4
(p. 29) is a finite set because it is the union of the Lq minimum point x∗ and {yi}.
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4.6.1.4 Convergent Sequence (xt)

From Theorem 3.5 (p. 30) the sequence (xt) is convergent. When the sequence of points (xt)
converges to a point other than yj, then (xt) converges to the Lq minimum x∗. However, when
the Lq minimum is one of the points yj then then the following section shows that this point
satisfies the minimum point condition of lemma 4.5.

4.6.1.5 Convergence to a point yj

In this section we show that when xt converges to one of the given points yj without getting
stuck at yi, then this point satisfies the conditions of lemma 4.5 and is a stationary point of Cq.
When a minimum point is not one of the given points yj then the Lq function is differentiable
at the minimum point, even for q = 1. However, when the Lq minimum is one of the points yj
then the following lemma shows that for 1 < q < 2 the gradient of the cost function vanishes
at this point, while for q = 1 the gradient of the Lq function omitting the entry corresponding
to yj has a norm no greater than one.

Lemma 4.8. For 1 ≤ q < 2, if the limit of the sequence (xt) is one of the points yj, then yj is
the minimum point of Cq, except when any of the intermediate iterates xt is equal to one of the
yi and the iteration gets stuck.

Proof. Suppose that the sequence xt converges to one of the points yi, which we take to be y1

for simplicity. Our goal is to invoke lemma 4.5 to show that y1 is a minimum.
Recall the definition of limit in a topological space: xi → x∗ if for every open set O

containing x∗ there exists an N such that xi ∈ O for i > N.
For simplicity, write log(x, y) instead of logx(y), and recall from Theorem 4.3 that as a

function from D× D into TM, this is continuous in both arguments. The update function is
defined as

xt+1 = expxt

(
∑k

i=1 wt
i log(xt, yi)

∑k
i=1 wt

i

)
,

or equivalently,

log(xt, xt+1) =
∑k

i=1 wt
i log(xt, yi)

∑k
i=1 wt

i

,

where wt
i = ‖ log(xt, yi)‖q−2 and xt is the estimate of the Lq minimum at iteration t. By a

small rearrangement one sees that

(log(xt, xt+1)− log(xt, y1))wt
1 =

k

∑
i=2

wt
i log(xt, yi)− log(xt, xt+1)

k

∑
i=2

wt
i .

(4.18)
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As t→ ∞ the limit of the right-hand side of (4.18) becomes

k

∑
i=2

log(y1, yi)

‖ log(y1, yi)‖2−q = ∇Ĉq(y1), (4.19)

with notation as in lemma 4.5. Note that this step uses the continuity of the logarithm, and
also the continuity of the Riemannian metric, and hence norm on TM. Now, turning to the left
hand side, one continues:∥∥∥∇Ĉq(y1)

∥∥∥ = lim
t→∞

∥∥∥(log(xt, xt+1)− log(xt, y1))wt
1

∥∥∥
= lim

t→∞

∥∥∥(log(y1, xt+1)− log(y1, y1))wt
1

∥∥∥
= lim

t→∞

d(xt+1, y1)

d(xt, y1)
d(xt, y1)

q−1.

(4.20)

Once more, continuity of the logarithm in the first argument justifies the step to the second line
here. The proof of the lemma is now completed using lemma 3.9 (p. 37), in the same way as
in lemma 3.8 (p. 36), since the limit is equal to 0 for q > 1 or is less than 1 for q = 1.

Now, the cases q = 1 and q > 1 must be dealt differently because when q > 1 the cost
function Cq is differentiable at y1, whereas when q = 1 it is not. Of course, the given limits
may not exist in either case. In applying lemma 3.9 (p. 37), to the right hand side of (4.20),
however, the limit is known to exist and equal ‖∇Ĉq(y1)‖.

Consider the case q > 1. Then in (4.20) the term ‖xt − y1‖q−1 converges to zero, since
xt → y1. It follows from lemma 3.9 and (4.20) that

‖∇Cq(y1)‖ = ‖∇Ĉq(y1)‖ = 0

so y1 is a stationary point (hence global minimum) of Cq.

In the case q = 1, lemma 3.9 and (4.20) yield

‖∇Ĉq(y1)‖ = lim
t→∞

d(xt+1, y1)

d(xt, y1)
≤ 1

which is the condition given in lemma 4.5 for y1 to be a minimum of the cost function. ut

4.6.1.6 Convergence to the Lq minimum

Thus, the sequence of points (xt) obtained using the update function W (4.2) converges to the
Lq minimum, except when some xt ∈ {yi} for any of the intermediate iterates.

This completes the proof of Theorem 4.6.
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4.6.2 Continuity of Logarithm map: Proof of Theorem 4.3

In this section we give a proof of Theorem 4.3, which shows the continuity of a logarithm
map defined on an open weakly convex set. If W is an open weakly convex set in a complete
Riemannian manifoldM, and x, y are two points in W, define logx(y) to be the vector v in
TxM ⊂ TM such that expx(v) = y, and expx(tv) ∈ W for all t ∈ [0, 1]. Then logx(y) as
a map from W ×W to TM is continuous in both variables.

Proof. It is well known (e.g. [Lang, 1999, p. 107]) that the Riemannian exponential is con-
tinuous as a map exp : TM → M. Let π : TM → M be the projection to the base
space of the tangent bundle, and define the continuous map exp : TM → M×M by
X 7→ (π(X), exp(X)). Note that X is mapped to the start and end points of the geodesic
defined by X.

Now let W ⊂M be an open weakly convex set inM, and for each s ∈ [0, 1] define

OW
s = {X ∈ TM | exp(sX) ∈W ×W},

where sX is in the tangent space Tπ(X). Further, define

OW
∪ = {(s, X) ∈ [0, 1]× TM | exp(sX) ∈W ×W} .

Each OW
s can be seen as a cross-sectional slice of OW

∪ , which itself is a union of all the slices
for s ∈ [0, 1]. Since exp(sX) is continuous in both s and X, and W ×W is open, OW

∪ is open
in [0, 1]× TM. Next, define

OW
∩ = {X ∈ TM | exp(sX) ∈W ×W for all s ∈ [0, 1]}

=
⋂

s∈[0,1]

OW
s .

This is an infinite intersection, but since [0, 1] is compact, and OW
∪ is open, it follows that OW

∩
is open in TM.

Note that for s ∈ [0, 1], exp(sX) traces out the (unique) geodesic in W from π(X) to
exp(X). Therefore, exp is an injective map from OW

∩ onto W ×W, and we can define a
Riemannian logarithm, logW : W ×W → OW

∩ by

logW(p, q) = exp−1(p, q).

Since logW(p, q) ∈ TpM and expp(logW(p, q)) = q by definition, this is a well defined
two-variable version of the usual pointwise Riemannian logarithm.

We show that logW(·, ·) is continuous by applying invariance of domain (e.g. [Dold, 1995,
Proposition IV.7.4]), which states that an injective continuous mapping from IRm to IRm has a
continuous inverse (restricted to its image). This can be applied to the mapping exp, which
is an injective mapping between two open sets OW

∩ and W ×W. Although these sets are not
subsets of any IRm, they are both open subsets of 2n-dimensional manifolds TM and W ×W
respectively. Since continuity is a local property, and the manifolds are locally homeomorphic
to IR2n, the result follows. ut
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4.6.3 Toponogov’s Theorem for κ ≥ 0: Proof of Theorem 4.2

We now give a proof of Theorem 4.2 that compares distances in an open weakly convex set in a
Riemannian manifold of non-negative sectional curvature with distances in the tangent space.
Let W be an open weakly convex set in M, a manifold of non-negative sectional curvature.
Let q, p1 and p2 be three points in W. Then, Theorem 4.2 states that the following inequality
holds,

d(p1, p2) ≤ d(logq(p1), logq(p2)) = ‖ logq(p1)− logq(p2)‖ .

Proof of Theorem 4.2: Consider a hinge in W consisting of the two geodesics from q to
p1 and p2, meeting at q. Under the logarithm map logq the three points map to q̃ and p̃i,
where q̃ = 0 in the vector space TqM. These three points form a hinge with the same
parameters as the hinge formed by q, p1 and p2 in W, namely, d(q, pi) = d(q̃, p̃i), and
∠(qpi, qp2) = ∠(q̃p̃i, q̃p̃2).

The desired conclusion is then seen as a particular case of Toponogov’s theorem [Cheeger
and Ebin, 1975] which states that d(p̃1, p̃2) ≥ d(p1, p2).

However, Toponogov’s theorem is true only under certain conditions. One required con-
dition is that one of the geodesics q pi is minimizing. In the present case, this is true in the
sense that the geodesic is minimizing in W, but not necessarily in M. A further condition,
seemingly always present in statements of the theorem, is that the manifold is geodesically
complete, which may be true for M, but it is not true for W. Therefore, we cannot apply
Toponogov’s theorem directly in its usual stated form, either toM or to W. Consequently, it
is necessary to verify that Toponogov’s theorem holds in this particular case.

We sketch a proof below, based on the proof given in [Meyer, 1989]. Since the main outline
of the proof is the same as in that paper, it is sufficient to give a somewhat brief proof here,
referring the reader to [Meyer, 1989] for more details.

The proof set out in [Meyer, 1989] can be significantly simplified for the present purposes.
First, Meyer deals with the case where the sectional curvature satisfies κ ≥ κ0. We are only
interested in the case κ ≥ 0, which simplifies things. Secondly, Meyer accounts for the case
when the distance function is not differentiable. This can occur when there are conjugate
points along the geodesics, and it complicates the proof substantially. In our case, because of
the absence of conjugate points in W, this complication can be avoided.

The proof is set out in three steps.
Step 1. Triangle distance inequality. Consider the triangle formed by points p1, p2 and
q in W and the geodesics joining them. Let p̃1, p̃2 and q̃ be the vertices of a triangle in IRn

with the same side lengths (note: this is not a corresponding hinge, in the sense that the angles
are not the same). Existence of this triangle is guaranteed because the sides of the triangle in
W satisfy the triangle inequality, according to lemma 4.1. Now, parametrize the two edges
p1p2 and p̃1p̃2 by arc-length; they have the same length by construction. Let pt and p̃t be
corresponding points with the same parameter value t. The first step of the proof is to show
that d(q, pt) ≥ d(q̃, p̃t).

For a fixed q, define f (p) = d(q, p) and g(p) = f (p)2/2. Similarly, define f̃ and g̃ in
terms of distances in IRn. The major technical point concerns the Hessian of the function g(p)
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inM. Provided κ ≥ 0 in W, the following operator inequality holds.

Hessg ≤ I . (4.21)

where I is the identity. This is to be interpeted as meaning that if Hessg is expressed as a
matrix in a local Riemannian coordinate system, then, I−Hessg is positive semi- definite.
Therefore, for two vector fields X and Y, the inequality Hessg(X, Y) ≤ 〈X, Y〉 holds.

This result is shown to hold for a “local” distance function (such at the distance dW defined
as geodesic length in the open set W), provided the path from q to p does not extend beyond
the first conjugate point. Since there are no conjugate points in W, this inequality holds there.
This is the main technical part of the proof (for details see [Meyer, 1989]), and the only place
where Riemannian geometry, or any information about the curvature is used.

Now, let γ(t) be a geodesic inM, parametrized by arc length, and let h(t) = g(γ(t));
thus, h is a function from IR to IR. Its second derivative is given by

h′′(t) = Hessg(γ
′, γ′) ≤

〈
γ′, γ′

〉
= 1 .

On the other hand, for a straight line in Rn, it is easily computed that h̃′′(t) = 1.
Now, apply this to the geodesic γ, defined for t ∈ [0, c], joining p1 to p2. Similarly, let γ̃

be the line (of the same length) joining p̃1 to p̃2 in Rn. With h = g ◦ γ and h̃ = g̃ ◦ γ̃ defined
as above, let λ(t) = h(t)− h̃(t).

We wish to prove that λ(t) ≥ 0 for all t ∈ [0, c]. This means that g(γ(t)) ≥ g̃(γ̃(t)), or
f (γ(t)) ≥ f̃ (γ̃(t)). In other words,

d(q̃, γ̃(t)) ≤ d(q, γ(t)) . (4.22)

Since the two triangles have sides of the same length, it follows that h(0) = h̃(0) =
dist(q, p1). Similarly, h(c) = h̃(c) = dist(q, p2). Thus λ(0) = λ(c) = 0. The proof
is completed by showing that λ is a concave function. This follows from the estimates of
h′′(t) ≤ 1 and h̃′′(t) = 1, since they imply that λ′′(t) ≤ 0.

Step 2. Angle inequality The next step is to extend this length inequality to any chord of the
triangle, that is, any geodesic between points on two sides of the triangle. Thus, let as be a
point on the edge qp1 and ãs the corresponding point on the side q̃p̃1. Then applying the
argument of the previous section to the triangle qp1pt a simple argument (see [Meyer, 1989])
shows that d(as, pt) ≥ d(ãs, p̃t). By letting these points approach the vertex p1 one deduces
that α̃1 ≤ α1 where these are the angles of the triangle at p̃1 and p1 respectively.

By symmetry, this inequality holds equally well for all angles of the triangle.

Step 3. Hinge inequality Toponogov’s hinge inequality now follows directly from the follow-
ing lemma.

Lemma 4.9. In IRn, let a and b be points on two lines meeting at a point c. Let α be the angle
between the two lines. Then d(a, b) increases monotonically as α increases from 0 to π.

Since the angle ∠q̃ ≤ ∠q, but d(p1, p2) = d(p̃1, p̃2), it follows that if the angle ∠q̃ is
increased to equal ∠q, then the distance d(p̃1, p̃2) is increased as well, giving the required
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result.

4.7 Remarks and Extensions

4.7.1 Bounds for Convergence on SO(3)

The convergence of the Lq algorithm to a global minimum was shown under the condition that
all the points yi lie in a convex ball of radius ρ < rwcon/2 around the initial estimate. This
is probably the best possible for SO(3), as it shows that the algorithm will converge to the
minimum if the points lie in a ball B(x0, π/2). If this condition does not hold, then one can
easily find examples where the minimum lies outside of a ball containing the yi; see [Hartley
et al., 2013].

4.7.2 A Flexible Approach

In the algorithm the logarithm map logxt(yi) used is the one defined by geodesics lying in
the weakly-convex set B(o, 2ρ). This is not always the logarithm of smallest norm, unless x
remains inside a convex (not just weakly-convex) set. However, this can be assured as long as
the yi lie in a ball of radius less than rconv/2. Such a ball is potentially half the size of the one
of radius ρ < rwcon/2 used in the theorem.

The condition can be relaxed to a condition that the yi lie inside a ball of radius ρ <
rconv by addition of one extra step to the algorithm. Note that rconv ≥ rwcon/2, so this may
strengthen the result. The extra step uses (4.3). If an intermediate estimate x = xt lies outside
of the convex ball B(o, ρ), then it may be replaced by the point x′ defined in (4.3). The mapping
x 7→ x′ is continuous. By adding this correction to the update step, all iterations remain inside
the convex ball B(o, ρ).

4.7.3 More on SO(3)

Finally, in SO(3), if all points yi lie inside a ball of radius ρ < rconv = π/2, then the update
function W will map B(o, ρ) into itself always, so the algorithm works without modification
in this case, and convergence is assured. This is because the update step may be thought of as
finding a weighted centroid in the tangent space TxtM of the points logxt yi. This weighted
centroid must remain inside the convex hull of the logxt yi, and this convex hull is mapped back
by expxt to a point in the convex hull of the points yi, and hence back into the ball B(o, ρ).

4.7.4 More on the Initial Point

Generally a randomly selected starting point will result in convergence of the Lq Weiszfeld
algorithm to the Lq minimum without getting stuck at yi. However, if such a condition occurs
where xt = yj then the Lq Weiszfeld algorithm, and even the original Weiszfeld algorithm, gets
stuck at that point. A simple strategy to escape this situation is to move the current solution xt

in the descent direction and continue with the algorithm. This condition is not very likely to
occur, and moreover can be avoided by a careful selection of a starting point x0, as explained
below in Algorithm 4.2.
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Algorithm 4.2. Given a set of points, {y1, y2, . . . , yk} ∈ IRN orM, k > 1. Let d(yi, yj), be
the distance between two points, yi and yj.

1. Among the yi select the one with minimum cost: x∗ = argminj Cq(yj), where Cq(x) =

∑k
i=1 d(x, yi)

q.

2. Compute the gradient of Cq and check x∗ = yj for the minimality condition according to
lemma 4.5. If it satisfies the condition then x∗ is the required minimum and the algorithm
is complete.

3. Otherwise, displace x∗ in the downhill gradient direction of Ĉq(x) to obtain x0. Back-
track if necessary to ensure Cq(x0) < Cq(x∗).

4. Repeat, xt+1 = W(xt) until convergence, where W is defined in (4.2).

The initial point x0 so found has cost less than any of the points yi, and iterations of the
algorithm from x0, can not again approach any of the yj. Thus Algorithm 4.2 ensures that the
non-differentiability condition never occurs by a careful selection of a starting point for the
algorithm. Hence the Lq Weiszfeld algorithm is guaranteed to converge to the minimum of
Cq(x).

4.8 Summary

In summary, we proposed an extension of the Lq Weiszfeld algorithm to find the Lq mean of
a set of points on a Riemannian manifold of non-negative sectional curvature. In addition to
the proof of convergence, we further relaxed the bounds on the maximum distance between
points on manifold. In order to show the applicability of the proposed algorithm we solved the
Lq rotation averaging problem and Lq averaging problem for SPD matrices. Our experiments
strongly confirmed that Lq averaging gives superior and more robust results than L2 averaging,
and still at very competitive cost of time. As shown in the case of the rotation averaging, it is
possible to get very good rotation estimates very quickly (3 minutes for the Notre Dame set)
with a median accuracy of about one degree.
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Chapter 5

Lq Optimization for Subspaces

In many computer vision applications information can be represented by affine subspaces, for
example, multibody structure and motion, objects under different illumination settings, etc.
This chapter presents Weiszfeld-inspired methods to find the Lq-closest-point, “intersection”
point, to a set of affine subspaces, for 1 ≤ q < 2. Given a set of subspaces, the Lq-closest-
point is defined as a point for which the sum of the q-th power of orthogonal distances to
all the subspaces is the minimum. We propose two strategies to find the Lq-closest-point to
a set of subspaces. We refer to the first approach as the gradient descent approach and the
second approach as the general approach. We give theoretical proofs for the convergence of
the proposed algorithms to a unique Lq minimum. In order to show the applicability of the
proposed algorithm in computer vision we solve the triangulation problem by finding the Lq-
closest-point to a set of lines in 3D space for the dinosaur dataset. Results have shown that in
the presence of outliers the proposed Lq methods give superior results to the L2-closest-point
and L2 bundle-adjustment methods.

In the following section we introduce the problem of finding the Lq-closest-point to sub-
spaces followed by a brief discussion on its applications in computer vision. We then formulate
the Lq-closest-point problem, define the notation and discuss some properties of the Lq cost
function in section 5.2. After the problem formulation we propose and give proofs of conver-
gence of the proposed Lq-closest-point algorithms, in section 5.4 and section 5.5. In the end,
we present our experimental results for the triangulation problem on the Dinosaur dataset.

5.1 Introduction / Literature Review

This chapter presents provably convergent methods, based on the Lq Weiszfeld algorithm
[Aftab et al.], to find the Lq-closest-point to a set of affine subspaces in IRN , for 1 ≤ q < 2.
Given a set of affine subspaces {S1,S2, . . . ,Sk}, possibly of different dimensions, we seek
a point X for which the sum of the q-th power of orthogonal distances to the subspaces is the
minimum. The minimization function is,

min
X∈IRN

k

∑
i=1

d(X,Si)
q ,

79
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where 1 ≤ q < 2 and d(X,Si) is the orthogonal distance of a point X from the i-th subspace
Si. We refer to the minimum of the above function as the Lq-closest-point to subspaces or
simply the Lq minimum. The distance function d(X,Si) is always the minimum Euclidean-
distance from the point to the subspace, equal to miny∈Si ‖X − y‖, where ‖ · ‖ represents
the Euclidean 2-norm. Thus, the q in Lq indicates that we are minimizing the q-norm of the
error-vector formed by the distances to all the subspaces; we are not considering the q-norm in
IRN .

The problem of finding the Lq mean or Lq-closest-point of a set of points (zero dimensional
subspaces) in IRN is a special case of the problem of finding the Lq-closest-point to a set
of subspaces. In the case of the Lq-closest-point to affine subspaces, given a set of affine
subspaces and a current estimate of the Lq minimum, the sum of the q-th power of orthogonal
distances to the subspaces is minimized, iteratively. Note that the orthogonal distances depend
on the current estimate of the Lq minimum and its projections on the subspaces. Since the
projection points change after every iteration, we take advantage of this property and propose
two methods for finding the Lq-closest-point to subspaces. The first approach, referred as
the Gradient Descent approach, finds an update by keeping the projection points fixed for an
iteration. On the other hand, the second approach, referred as the General approach, finds
an update by keeping both the current estimate and projection points as variables. Both the
approaches are Weiszfeld-inspired and compute updates analytically.

In considering the q-norm, we are most interested in the case q = 1, which gives a high
degree of robustness to outliers. However, considering the case 1 ≤ q < 2 presents no
additional difficulty in theory or implementation. It does in fact have an additional advantage,
since the distance function d(X,S)q is differentiable for q > 1, but not for q = 1. Thus, one
can avoid difficulties by considering values of q close to but not equal to 1, with no significant
difference in numerical results.

Nearest subspace problems. In many computer vision applications, data is represented by
linear subspaces in some Euclidean space. For example, subspaces are often used to repre-
sent multibody structure and motion, objects under different illumination settings, etc. The
problem of finding an optimal point of intersection of higher dimensional affine subspaces has
become an important component in a wide range of computer vision and pattern recognition
applications. The proposed algorithm can be used to solve the problem of triangulation [Hart-
ley and Sturm, 1997], [Triggs et al., 2000b], corner detection through the intersection of planes
[Furukawa et al., 2009a], etc.

For q = 2 the problem of finding the Lq-closest-point to subspaces can be solved in closed
form. Clearly, the L2 method is more efficient than the proposed iterative technique but it is
known that L2 methods are not as robust to outliers as the Lq methods, for some values of
q. Here, we are interested in finding a robust solution of the problem. Thus, we propose Lq

Weiszfeld-inspired [Aftab et al.] methods.
In this chapter, we show that the Lq Weiszfeld algorithm [Aftab et al.] for points, that

is zero dimensional subspaces, in IRN can be generalized to find a closest-point to a set of
higher dimensional subspaces, such as lines, planes, subspaces or their mixture. Just like the
Lq Weiszfeld algorithm, the proposed algorithms are iterative optimization techniques where
updates are computed analytically. Moreover, the proposed algorithms are simple to under-

Draft Copy – 22 October 2014



§5.1 Introduction / Literature Review 81

Figure 5.1: Triangulation: Due to noise in image point measurements lines through the center
of cameras and yi do not intersect at point X.

stand and easy to code because an existing closed-form L2 method can be modified to give
a more robust Lq solution. In short, the proposed algorithms inherits all features of the Lq

Weiszfeld algorithm.
An important point to note here is that the proposed algorithms find the Lq minimum even

if the given subspaces have different dimensions. For example, the proposed algorithms can
be used to find the Lq minimum to a set of lines and planes in IRN . We give proofs of conver-
gence of the proposed algorithms to the Lq minimum. These proofs follow from the proof of
convergence of the Lq Weiszfeld algorithm [Aftab et al.].

In order to show the applicability of the proposed algorithms we consider the problem of
triangulation [Hartley and Sturm, 1997; Hartley and Zisserman, 2004]. In triangulation we
seek a point in 3D space that best represents a point of intersection of lines, where each line
is passing through the center of camera and intersecting the image plane at the corresponding
image point. Due to various types of noise in image point measurements these lines are a
skewed form of the original lines, as shown in fig. 5.1. Therefore, these lines normally do
not intersect at a single point in 3D space, possibly these lines may not intersect at all. So the
triangulation problem is then reduced to the problem of finding the optimal point of intersection
of 1-dimensional subspaces and can be solved using the proposed algorithms.

One can also find the vertices of the objects in the scenes that have dominant planar struc-
ture, for example architectural scenes [Schindler and Bauer, 2003; Taillandier, 2005; Dick
et al., 2001], indoor scenes [Furukawa et al., 2009b; Müller et al., 2007; Wilczkowiak et al.,
2003], aerial images [Ameri and Fritsch, 2000; Remondino and El-Hakim, 2006], Manhattan
world [Vanegas et al., 2010; Werner and Zisserman, 2002; Furukawa et al., 2009a], building
reconstruction from laser scanning data [Ma, 2004; Henry et al., 2010; Pu and Vosselman,
2009] and others, by finding the point of intersection of planes, each representing an adjacent
planar face of the object, shown as red points in fig. 5.2. Ideally, we should be able to find
the vertices of a planar object as the point of intersection of planes of the adjacent faces. But
in practice, due to texture-poor surfaces, low resolution of images, lens distortion and various
types of noise, the estimated planes may not be a good representation of planar faces. Clearly,
when the point is defined by three planes then they intersect at a single point, possibly different
from the ground truth point. On the other hand, if a corner point lies at the intersection of more
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Figure 5.2: Corner point estimation: The object in the figure has a strong geometric structure
and corner points, in red, are at the intersection of more than 3 planar faces. In practice due
to various types of noise, planes representing these faces are skewed and may not intersect at a
single point, thus we need to find an optimal point of intersection of these planes. Image taken

from http://russta.wordpress.com/category/sketch-up

than three planes, indicated as red points in fig. 5.2, then the estimated planes may not intersect
at a single point and may not even generate a single corner point.

The problem, then, is to find an optimal point of intersection of skewed planes, each repre-
senting a planar face. Thus, we can apply the proposed algorithms to find the Lq-closest-point
to these planes. In order to improve the accuracy of results one can take several estimates for
each of the planar faces and then find the intersection of these planes by using the proposed
algorithm.

In this chapter we have shown that the Lq Wesizfeld algorithm can be used to find the
Lq-closest-point of affine subspaces of any dimension, for 1 ≤ q < 2. The simplicity of the
proposed Lq algorithms and the rapidity with which its iterative update may be computed make
the proposed methods attractive.

5.2 Lq-Closest-Point to Subspaces

In this section we formulate the problem of finding the Lq-closest-point to subspaces and define
notation that is used in the rest of the chapter. The Lq-closest-point, for 1 ≤ q < 2, to a set of
subspaces is defined as a point for which the sum of the q-th powers of orthogonal distances to
all the subspaces is the minimum, (fig. 5.3).

Given a set of affine subspaces {S1,S2, . . . ,Sk}, the Lq cost function is defined as

Cq(X) =
k

∑
i=1

d(X,Si)
q =

k

∑
i=1
‖X−PSi(X)‖q . (5.1)

where 1 ≤ q < 2 and d(X,Si) is the orthogonal distance of a point X from Si. Let PSi(X)
be the orthogonal projection of a point X onto Si, then the distance d(X,Si) is simply the
Euclidean distance between X and PSi(X), that is ‖X−PSi(X)‖.

For simplicity it is assumed that the affine subspaces Si do not intersect and are non-
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parallel, though extensions of the algorithms to cover such cases are not difficult.

Orthogonal Projection: In our notationPSi(X) represents the orthogonal projection of a point
X on an affine subspace Si. We can write PSi(X) as

PSi(X) = Ci + Ai (X− Ci) , (5.2)

where Ai is an orthogonal projection matrix and Ci ∈ Si is taken to be the origin of an orthonor-
mal basis of Si. Let {e1, e2, . . . , ed} be the orthonormal basis of a d-dimensional subspace S ,
the orthogonal projection matrix A can be computed as A = ∑d

i=1 eieT
i .

By substituting the value of PSi(X) in d(X,Si), the distance function can be explicitly
written as,

d(X,Si) = ‖X− (Ci + Ai (X− Ci))‖ = ‖Mi (X− Ci))‖ ,

where Mi = I− Ai.
Note that both Ai and Mi are orthogonal projection matrices or projectors. For a projection

matrix P we have P2 = P. Note that the matrix P is a symmetric matrix, that is P = PT. Thus,
we have, PTP = PP = P2 = P.

The above discussion simplifies the computation of the gradient of the squared distance
function,

∇d(X,Si)
2 = ∇((X− Ci)

T Mi (X− Ci)) = 2 Mi (X− Ci) . (5.3)

In our formulations we use PSi(X) to represent the orthogonal projection; however, it is
not difficult to replace PSi(X) with (Ci + Ai (X− Ci)) wherever desired.

Gradient of Cq: The Gradient of the Lq cost function (5.1) is

∇Cq(X) =
k

∑
i=1

wi (X−PSi(X)) , (5.4)

where wi = ‖X−PSi(X)‖q−2.

5.2.1 Comparison with Lq Optimization for Points

As mentioned before, the problem of finding the Lq-closest-point to a given set of subspaces
in IRN is closely related to the problem of finding the Lq mean of a set of points in IRN . In this
section we compare both the techniques.

In the case of the Lq optimization for points in IRN , a point is obtained using a gradient
descent approach that minimizes the sum of the q-th power of distances to all the given (fixed)
points. Thus, starting from an initial estimate of the Lq minimum, after every iteration the only
point that changes its location is the estimate of the Lq minimum, whereas given points are
held fixed and are never changed. This process is repeated till convergence.

On the other hand, in the case of the Lq-closest-point to subspaces, once again we start
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S3
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Figure 5.3: Lq-closest-point to Subspaces: The above figure shows three subspaces (lines), S1,
S2 and S3. We seek a point X for which the sum of the q-th powers of orthogonal distances is
minimum, that is ∑i d(X,Si)

q. Each grey point represents the orthogonal projection PSi(X)
of a red point X, onto a corresponding subspace.

from an initial estimate of the Lq minimum. This estimate is updated in the descent direction by
minimizing the sum of the q-th powers of orthogonal distances to all the subspaces. Although
subspaces are fixed in this scenario but we are minimizing the sum of orthogonal distances
which are dependent on the current estimate of the minimum and its projection onto the given
subspaces. Thus, unlike the Lq optimization for points in IRN where given points are held
fixed during the minimization, in this case the location of these projected points change with a
change in the location of the current estimate.

Thus, the problem of finding the Lq-closest-point to subspaces can be thought of as a
problem of finding the Lq mean of a given set of points in IRN , but instead of fixed points these
points change their position after every iteration. Thus, the problem of finding the Lq-closest-
point to subspaces is different from the problem of fining the Lq mean of a set of points.

We take advantage of this property of the Lq cost function for subspaces and define several
solution strategies to find the Lq-closest-point, depending on whether projections of a current
estimate are kept fixed or not during the estimation of an updated point.

5.2.2 Weighted L2 Function

Another type of cost function of interest is a weighted L2 cost function, which iteratively
minimizes a weighted sum of squared orthogonal distances to given subspaces. Let X0 be an
initial estimate of the Lq minimum. at iteration t, a weighted L2 cost function is defined as

C w
2 (X) =

k

∑
i=1

wt
i d(X,Si)

2 ,

where wt
i = d(Xt,Si)

q−2 and Xt is an estimate of the Lq minimum at iteration t.

The weighted L2 function takes two forms depending on whether the projected points are
held fixed during the estimation of an updated point or they are kept as variables. Starting from
an initial estimate X0 of the Lq minimum, at iteration t, an update is obtained by minimizing a
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weighted L2 cost function

C̃ w
2 (X) =

k

∑
i=1

wt
i ‖X−PSi(Xt)‖2 , (5.5)

where

wt
i = d(Xt,Si)

q−2 = ‖X−PSi(Xt)‖q−2 (5.6)

and PSi(Xt) is the projection of Xt on Si. Note that in this case projected points are held fixed
during the estimation of an update.

A slightly different form of the cost function C w
2 ,

Ĉ w
2 (X) =

k

∑
i=1

wt
i ‖X−PSi(X)‖2 , (5.7)

where PSi(X) is the projection of X on subspace Si. In this case PSi(X) are kept as variables.
The approach to solving for the minimum of the Lq cost (5.1) it to repeatedly find the min-

imum of the weighted L2 cost function (5.5) or (5.7), where weights wi are updated according
to (5.6) after every iteration. As will be seen, the minimum of the weighted cost functions (5.5)
or (5.7) may be computed in closed form.

A critical part of the proof of convergence of the proposed algorithms is to show that the
minimization of the weighted L2 cost functions results in a decrease in the Lq cost (5.1). To do
this, we use a lemma 3.6 (p. 35).

5.2.3 Solution Strategies

In this section we discuss the proposed solution strategies for finding the Lq-closest-point to a
given set of affine subspaces. As discussed before that the projection points change after each
iteration, we take advantage of this behavior of projection points and propose the following
two different minimization strategies:

• Gradient Descent Approach: In this approach an update is computed by minimizing
C̃ w

2 (X), as defined in (5.5). Note that during the estimation of the updated solution all
of the projection point are held fixed and these projection points depend on the solution
at the previous iteration. These fixed projection points are represented by PSi(Xt). It
will also be shown later in the chapter that the minimization of C̃ w

2 (X) (5.5) leads to
an update function that has the same form as the update function in the case of the Lq

Weiszfeld algorithm for points in IRN [Aftab et al.].

• General Approach: Unlike the gradient descent form where projections are held fixed
during the estimation of an updated solution, in this case both the estimate of minimum
and projection points are updated simultaneously. The general approach minimizes the
cost function Ĉ w

2 (X), as defined in (5.7).
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5.2.4 Lq Cost Function Restricted on a Subspace

At this point it is important to define another variant of the Lq cost function (5.1) that will be
used to find the Lq minimum on a subspace by restricting its iterates on it. This function finds
a point on the subspace for which the sum of the q-th power of orthogonal distances to the rest
of the subspaces is the minimum. A restricted Lq cost function on the j-th subspace is defined
as,

Cj
q(X) = min

X∈Sj
∑
i 6=j

d(X,Si)
q .

Just like the Lq cost function there are two restricted versions of the weighted L2 cost functions
defined in section 5.2.2. These two variations of the weighted L2 cost function are restricted
version of C̃w

2 (X) and Ĉw
2 (X) and are represented by C̃j

2(X) and Ĉj
2(X), respectively.

An advantage of using the restricted functions is that if the Lq minimum lies on one of the
subspaces then the minimization of a restricted cost function finds the minimum.

5.2.5 Properties of the Lq Cost Function

In this section we discuss some basic properties of the Lq cost function. Let {S1,S2, . . . ,Sk}
be a set of non-parallel affine subspaces. The Lq cost function, being a sum of individual
(convex) distance functions, is a convex function. Moreover, the Lq cost function is strictly
convex, except when there exists a vector V that is parallel to all the subspaces. Since we
assume that the given subspaces are non-parallel, such a vector does not exist and the cost
function has a unique global minimum. The following lemma shows that the Lq cost function
is strictly convex.

Lemma 5.1. Given a set of non-parallel subspaces {S1,S2, . . . ,Sk}, the Lq cost function is
strictly convex.

For a detailed proof regarding the convexity of the Lq cost function see section 5.4.5. In
what follows, we shall assume that the Lq cost function has a single global minimum.

Similar to what was shown in Weiszfeld [1937] for the classic Fermat-Weber problem, the
minimum of this cost function may be classified as follows.

Lemma 5.2. A point X∗ ∈ IRN is a minimum of the cost function (5.1) if and only if it satisfies
one of the following conditions:

1. ∇Cq(X) vanishes at X∗,

2. q = 1 and X∗ ∈ Sj and the gradient (omitting subspace Sj) ∇Cj
q(X) has norm no

greater than 1 and is orthogonal to Sj.

For the case q > 1 this follows easily, since the cost-function is differentiable. For q = 1,
the proof is similar to the case where each Si is a single point, as given in [Weiszfeld, 1937],
and is therefore omitted.

For the simplicity of formulation, we assume that the Lq minimum does not lie at the
intersection of subspaces. However, it is easy to extend the above definitions for such cases.
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5.3 L2-closest-point to Subspaces

The L2 form of the problem is very simple and can be solved in closed form. Given a set of
affine subspaces {S1,S2, . . . ,Sk}, the L2-closest-point to subspaces minimizes the sum of the
squared distances. The L2 cost function is defined as,

C2(X) =
k

∑
i=1

d(X,Si)
2 =

k

∑
i=1
‖X−PSi(X)‖2 ,

where ‖ · ‖ is the L2 norm.

As described before in section 5.2 that the distance function can be explicitly written as,

d(X,Si) = ‖X− (Ci + Ai (X− Ci))‖ = ‖Mi (X− Ci))‖ ,

where Mi = I− Ai, the matrix Ai is an orthogonal projection matrix for the i-th subspace and
Ci ∈ Si is taken to be the origin of an orthonormal basis of Si.

From (5.3), the gradient of the L2 cost function is,

∇C2(X) =
k

∑
i=1
∇((X− Ci)

T Mi (X− Ci)) =
k

∑
i=1

2 Mi (X− Ci) .

By equating the gradient of C2 to zero, the L2-closest-point to subspaces is computed as,

X =

(
k

∑
i=1

Mi

)−1 k

∑
i=1

Mi Ci . (5.8)

Thus, the L2-closest-point to subspaces has a closed form solution.

We now turn our focus on the primary goal of this chapter, that is the Lq-closest-point to
subspaces. In the rest of the chapter we discuss the algorithms to find the Lq-closest-point to
subspaces.

5.4 Lq Solution Strategy I: Gradient Descent Approach

In this section we discuss the Gradient descent approach, as mentioned in section 5.2.3, to find
the Lq-closest-point to a given set of subspaces. Given a set of non-parallel affine subspaces
{S1,S2, . . . ,Sk}, at iteration t, a current estimate of the Lq minimum Xt is updated by keeping
the projections of Xt fixed on the given subspaces. Thus, the update function in this case has
the same form as the update function in the case of the Lq Weiszfeld algorithm [Aftab et al.].
The only difference in this case is that after every iteration these projection points are updated
in accordance with the new location of the Lq minimum.

Let X0 be a random initial estimate of the Lq minimum. At iteration t, a current estimate
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Figure 5.4: Lq-closest-point to Subspaces (Gradient Descent Approach): The above figure
shows three subspaces (lines) S1, S2 and S3; and and a current estimate of the Lq minimum Xt.
In the gradient descent approach an updated point St+1 is computed by keeping the projections

PSi(Xt) fixed.

Xt of the Lq minimum is updated using an update function W defined as,

Xt+1 = W(Xt) =
∑k

i=1 wt
i PSi(Xt)

∑k
i=1 wt

i

, (5.9)

where wt
i = ‖Xt −PSi(Xt)‖q−2.

In the following section we show that under the update function W the Lq cost function is
non-increasing. Later, in the section we will give a proof of the convergence of the sequence
of points (Xt) to the global minimum of the cost function Cq(X).

5.4.1 Non-Increasing Lq Cost Function

In this section we prove that under the update function W (5.9) the value of Cq is non-
increasing. Let C̃ w

2 (X) be a weighted least squares cost function,

C̃ w
2 (X) =

k

∑
k=1

wt
i ‖X−PSi(Xt)‖2 , (5.10)

where wt
i = ‖Xt − PSi(Xt)‖q−2, as defined in (5.5). Note that the update function W (5.9)

finds an exact minimizer of C̃ w
2 (X). The following lemma proves that under the update func-

tion W the value of Cq is non-increasing.

Lemma 5.3. For an update function W (5.9), Cq(W(X)) ≤ Cq(X), where equality holds only
when W(X) = X.

Proof. We will apply lemma 3.6 (p. 35) to prove that the value of Cq is non-increasing under
the update function W defined in (5.5). Lemma 3.6 (p. 35) relates an Lq cost function with a
weighted L2 cost function. Moreover, it shows that for a particular choice of weights a decrease
in a weighted L2 function also results in a decrease in an Lq cost function. Note that W is an
update function finds an exact minimizer of C̃w

2 . Thus, for an updated value of X we have
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C̃w
2 (W(X)) ≤ C̃w

2 (X). To be able to apply lemma 3.6 (p. 35) to the Lq function Cq, and the
weighted L2 function C̃ w

2 , we proceed as follows:
Let ai = ‖X−PSi(X)‖ and bi = ‖W(X)−PSi(X)‖ in lemma 3.6 (p. 35). Since W finds

an exact minimum of C̃ w
2 , the following relation holds

k

∑
i=1

‖W(X)−PSi(X)‖2

‖X−PSi(X)‖2−q = C̃ w
2 (W(X)) ≤ C̃ w

2 (X) =
k

∑
i=1
‖X−PSi(X)‖q . (5.11)

Then from lemma 3.6 (p. 35) it follows that

k

∑
i=1
‖W(X)−PSi(X)‖q ≤

k

∑
i=1
‖X−PSi(X)‖q = Cq(X) .

Since ‖W(X)−PSi(W(X))‖ is the orthogonal distance of W(X) from Si, it is always less than
or equal to the distance of W(X) from any other point on the subspace Si, that is ‖W(X)−
PSi(X)‖. We then have

‖W(X)−PSi(W(X))‖ ≤ ‖W(X)−PSi(X)‖ ,

for all values of i.
From the above two inequalities the desired relation follows as

Cq(W(X)) =
k

∑
i=1
‖W(X)−PSi(W(X))‖q

≤
k

∑
i=1
‖W(X)−PSi(X)‖q ≤ Cq(X) .

where equality holds only when W(X) = X. ut

This completes the proof that under the update function W (5.9) the value of Cq decreases
after every iteration, except when W(X) = X.

5.4.2 Algorithm

Given a set of non-parallel affine subspaces of different dimensions, {S1,S2, . . . ,Sk} ∈ IRN ,
k ≥ 2. The following algorithm shows that the sequence of points (Xt) obtained using the
algorithm converges to the desired Lq minimum.

Algorithm 5.1. Our algorithm for finding the Lq minimum is as follows:

1. For each j find the point X∗j = argminX∈Sj
Cj

q(X), where Cj
q(X) = ∑i 6=j d(X,Si)

q.
Note that d(X∗j ,Sj) = 0. (For details see section 5.4.4.)

2. Among the X∗j select the one with minimum cost: X∗ = argminj Cj
q(X∗j ).
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3. Compute the gradient of Cq, omitting the subspace Sj containing X∗:

∇Cj
q(X∗) = ∑

i 6=j
∇d(X∗,Si)

q .

4. If ‖∇Cj
q(X∗)‖ ≤ 1, then X∗ is the required minimum (according to lemma 5.2), and the

algorithm is complete.

5. Otherwise, displace X∗ in the downhill gradient direction of ‖∇Cj
q(X∗)‖ to obtain X0.

Backtrack if necessary to ensure Cq(X0) < Cq(X∗).

6. Repeat, Xt+1 = W(Xt) until convergence, where W is defined in (5.9).

The initial point X0 so found has cost less than any point on the subspaces, and iterations
of the algorithm from X0, can not again approach any of the subspaces. Hence the algorithm is
guaranteed to converge to the global minimum of Cq(X).

Practicalities: In reality, it is unnecessary to use the initialization procedure of Algorithm 5.1,
which is given only to supply a provably convergent algorithm. Instead, one may start with
an arbitrary point X0, as in the original Weiszfeld algorithm. The likelihood of meeting one of
the subspaces is small. If iterations appear to converge towards a given subspace Sj, then one
may apply the restricted algorithm to find the minimum cost point on Sj, then determine using
lemma 5.2 whether this is the minimum of the complete cost function. If not, one may continue
from a point X with cost lower than that of the minimum on Sj. Because of the decreasing cost,
the subspace Sj will not be encountered a second time.

5.4.3 Proof of Convergence

In this section we give a proof that the sequence of points (Xt) obtained using Algorithm 5.1
converges to the Lq minimum. The algorithm has two main parts. In the first part a restricted
algorithm is applied to find a minimum on each subspace. In this case iterates are restricted to
a particular subspace. If the Lq minimum is on one of the subspaces, then this procedures finds
that minimum and the algorithm is complete. On the other hand, if the Lq minimum is not on
any of the subspaces, a repetitive application of the update function W (5.9) ensures that the
algorithm converges to the Lq minimum.

Theorem 5.4. Algorithm 5.1 converges to the Lq minimum.

Based on Theorem 3.4 (p. 29) and Theorem 3.5 (p. 30) we will use the following outline
to prove the convergence of Algorithm 5.1.

Outline 5.1. Given an update function W and a strictly convex function Cq, to prove that the
sequence (Xt) obtained using Xt+1 = W(Xt) is convergent to the minimum of Cq we proceed
as follows:

1. The update function W is continuous, defined on a compact domain D. The update
function W is a map from D to itself.
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2. The value of Cq is non-increasing at every iteration.

3. The set S of Theorem 3.4 (p. 29) is a finite set containing the Lq minimum point.

4. Since there are a finite number of accumulation points, the sequence (Xt) is in fact
convergent (see Theorem 3.5 (p. 30)).

Now, we will verify every step of the above outline to prove Theorem 5.4.

Proof of Theorem 5.4: The Lq minimum is categorized in two ways depending on whether
the minimum lies on any subspace or not. We deal with both the cases separately. If the Lq

minimum is on one of the subspaces then this point is obtained at the end of iteration 4 of
Algorithm 5.1. The algorithm terminates at this step and the desired Lq minimum is retrieved.
In section 5.4.4 we discuss specific details of the restricted algorithm. On the other hand, if the
Lq minimum does not lie on one of the subspaces then we proceed with the iterative process
of updating a current estimate of the Lq minimum by using the update function W defined in
(5.9).

Here, we only give a proof for the case when the Lq minimum does not lie on any subspace.
Thus, in the proof given below we assume that an initial estimate of the Lq mean is selected by
using the first five steps of Algorithm 5.1. A proof of the restricted algorithm is not difficult
and follows directly from the proof of unrestricted algorithm given below.

The above discussion simplifies the proof of Theorem 5.4 and we only need to verify that
the cost function Cq and the update function W satisfy all the conditions of the steps of Outline
5.1. Below we verify each step of Outline 5.1 to show that the sequence of points obtained by
using (5.9) converges to the Lq minimum.

1. The compact domain D is defined as D = {x ∈ IRN | Cq(X) ≤ Cq(X0)}, where X0

is a starting point selected using Algorithm 5.1. The set D is compact, except when
there exists a vector V that is parallel with every subspace, where the sub-level set is not
bounded. Since we assume that subspaces are not parallel, therefore such a vector does
not exist and the set D is compact. It is easy to see that the update function W (5.9)
is continuous because limX→C W(X) = W(C) for all values of X ∈ D. Since from
lemma 5.3 the cost function Cq is non-increasing under the update function W, the value
of Cq(Xt) will never be greater than Cq(X0). Thus, from the definition of D the update
function W maps a point in D to itself.

2. The cost function Cq is a non-increasing function under the update function W, that is
Cq(W(X)) ≤ Cq(X) with equality only when W(X) = X, see lemma 5.3.

3. Under the update function W the value of Cq remains constant in successive iterations
only when X is a stationary point of Cq, where the value of the function stops changing
in descent algorithms. The cost function Cq being strictly convex has a unique stationary
point X∗. Thus, the set S in Theorem 3.4 (p. 29) contains a single point, that is the
stationary point of Cq.

4. Since S is a finite set, from Theorem 3.5 (p. 30) every sequence (Xt) is convergent to
S = {X∗}, that is the Lq minimum.
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This completes the proof of our claim that the sequence of points (Xt) converges to the Lq

minimum, given that an initial estimate of the Lq minimum is selected by using the first five
steps of Algorithm 5.1. 2

In the following section we show that the restricted Weiszfeld algorithm converges to the
minimum of Cj

q, that is the Lq minimum on the j-th subspace.

5.4.4 Minimization on a Subspace

We now discuss the Lq optimization strategy restricted on a subspace. If the Lq minimum lies
on a subspace then this method finds that point, otherwise it gives a good starting point for the
unrestricted algorithm.

The minimization of a restricted Lq cost function takes the following form,

min
X∈Sj

Cj
q(X) = min

X∈Sj
∑
i 6=j

d(X,Si)
q .

This is the same optimization problem as in the unrestricted algorithm, except that the mini-
mization takes place on the affine subspace Sj.

The minimization of a restricted Lq cost function can alternatively be done by minimizing
a restricted weighted L2 cost function. However, to ensure that the Lq cost function is also
decreasing along with the weighted L2 cost function, a similar lemma as lemma 5.3 can easily
be proved.

Thus, the following derivation is for a weighted L2 cost function restricted on a the j-th
subspace.

Derivation: If the minimum point lies on the j-th subspace then the cost function to minimize
is

Xt+1 = argmin
X∈Sj

C̃j
2(X) = argmin

X∈Sj

∑
i 6=j

wt
i d(X,PSi(Xt))2 ,

subject to

ETX + d = 0 ,

where wt
i = ‖Xt − PSi(Xt)‖q−2 and ETX + d = 0 is the equation for subspace Sj and E is

a n× r matrix, with n being the dimension of the ambient space and r is the codimension of
subspace Sj and d is an r vector.

The Lagrangian is then

L(X, λ) = ∑
i 6=j

wt
i d(X,PSi(Xt))2 − (ETX + d)Tλ ,

where λ is an r vector. The gradient of L(X, λ) with respect to X is

LX(X, λ) = ∑
i 6=j

wt
i ∇‖X−PSi(Xt)‖2 − Eλ .
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or equivalently,

LX(X, λ) = 2 ∑
i 6=j

wt
i X− 2 ∑

i 6=j
wt

i PSi(Xt)− Eλ .

Let w = 2 ∑i 6=j wt
i and p = 2 ∑i 6=j wt

i PSi(Xt), then the above equation can be written as

LX(X, λ) = w X− p− Eλ . (5.12)

Setting LX(X, λ) equal to zero and computing the value of X we get

X =
1
w
(Eλ + p) . (5.13)

Applying the constraint ETX + d = 0, we get the value of λ as

λ = −(ETE)−1(ETp + w d) .

By using the value of λ we can compute Xt+1 using (5.13). Therefore the solution of C̃j
2(X) is

found by solving a set of linear equations. 2

The above derivation shows a method to minimize a weighted L2 cost function restricted
on a subspace. However, we require a method that minimizes a restricted Lq cost function. For

an updated value of Xt+1, we have C̃j
2(Xt+1) ≤ C̃j

2(Xt). A similar argument as in section 5.4.1
can be presented here to show that the value of Cj

q is non-increasing after every iteration of the
restricted algorithm.

Once again, we only need to verify all the steps of Outline 5.1 to prove that starting from a
random point on a subspace Sj, the sequence of points obtained using (5.13) converges to the

minimum of Cj
q. The proof is very simple and is hence omitted.

5.4.5 Strict Convexity of the Lq Cost Function

In this section we prove the strict convexity of the cost function Cq. It is known that a function
is strictly convex if the Hessian of that function is positive definite. In order to show that the
cost function (5.1) is strictly convex we need to prove that the Hessian of the cost function
is positive definite or equivalently, the sum of Hessians of the individual distance functions is
positive definite.

Let us first consider a simple case in which a d-dimensional subspace S in IRN , d < n, is
aligned with the canonical axis er+1, er+2, . . . , en, where r = n− d and ei is an n-dimensional
vector aligned with xi axis. Now, the orthogonal distance of a point X = (x1 x2 . . . xn)T from
S is given by the following equation

d(X,S)q =

(√
x2

1 + x2
2 + . . . + x2

r

)q

. (5.14)

Let X′ = (x1 x2 . . . xr)T, that is, the component of X that contributes in computing the
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distance. The Hessian H of the distance function is an n× n matrix of the following form.

H = c
[

H′ 0T
d×r

0d×r 0d×d

]
,

where c = (x2
1 + x2

2 + . . . + x2
r )

q−4
2 and H′ is an r× r matrix defined as

H′ =


X′TX′ − x2

1 −x1x2 . . . −x1xr

−x1x2 X′TX′ − x2
2 . . . −x2xr

...
...

. . .
...

−x1xr −x2xr . . . X′TX′ − x2
r

 .

We can rewrite H′ as follows,

H′ = (X′TX′)I− X′X′T . (5.15)

Let Q′ = [q1 q2 . . . qr−1] be a matrix composed of the n-dimensional vectors that form
the orthonormal basis of the orthogonal complement of the affine subspace formed by S and
X′/‖X′‖. Let Q = [ X′

‖X′‖ q1 q2 . . . qr−1] and such that QTQ = QQT = I. Then, X′X′T can be
written in the following form:

X′X′T = Q T QT ,

where T is an r× r matrix of the following form:

T =

[
X′TX′ 0T

(r−1)×1
0(r−1)×1 0(r−1)×(r−1)

]
.

By substituting X′X′T = Q T QT and I = QQT in (5.15), we get the following form

H′ = Q
(
(X′TX′)Ir×r − T

)
QT . (5.16)

The inner term of the above equation can be written as,

(X′TX′)Ir×r − T =

[
0 0T

(r−1)×1

0(r−1)×1 (X′TX′) I(r−1)×(r−1)

]
.

Thus, the final form of H′ (5.16) is,

H′ = (X′TX′) Q′ Q′T . (5.17)

Equation (5.17) shows that the Hessian of the distance function depends on the orthonormal
vectors that form the basis of the orthogonal complement of the affine subspace formed by
S and X′/‖X′‖. Let qi1 qi2 . . . qi(r−1), i = 1, 2, . . . , k be the orthogonal basis vectors of
the orthogonal complement of an affine subspace spanned by Si and X− PSi(X). Since, our
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Figure 5.5: Lq-closest-point to Subspaces (General Approach): The above figure shows three
subspaces (lines) S1, S2 and S3; and and a current estimate of the Lq minimum Xt. In the
general approach the value of projections PSi(X) is kept as variable and its value changes

simultaneously with the value of X during the estimation of an update Xt+1.

cost function is the sum of individual distance functions, the Hessian is the sum of Hessians of
individual distance functions. Therefore, the Hessian of the cost function depends on the basis
vectors qij of the Hessians of each of the distance functions. If the set of basis vectors, qij,
spans the whole space IRN then the Hessian of the cost function is a full rank matrix and our
cost function is strictly convex, that is, a unique solution exists that minimizes the cost.

5.5 Lq Solution Strategy II: General Approach

In this section we propose a slightly different method than the gradient descent approach to
find the Lq-closest-point to a given set of subspaces, we refer to it as the General approach.
Just like the gradient descent approach, the general approach is also an iterative minimization
technique. Given a current estimate Xt of the Lq minimum, the gradient descent approach
computes an update by keeping the projections of Xt fixed. On the other hand, in the general
approach a current estimate of the Lq minimum Xt is updated by keeping the projection points
as variables, as shown in fig. 5.5.

The Lq cost function is defined as,

Cq(X) =
k

∑
i=1

d(X,Si)
q =

k

∑
i=1
‖X−PSi(X)‖q ,

where ‖ · ‖ is the L2 norm. As described before that PSi(X) represents the affine projection
of X on Si, and can explicitly be written as PSi(X) = Ci + Ai (X− Ci), where Ai is a linear
projection matrix and Ci ∈ Si is taken to be the origin of the orthonormal basis of Si. The
distance function can be explicitly written as,

d(X,Si) = ‖X− (Ci + Ai (X− Ci))‖ = ‖Mi (X− Ci))‖ ,

where Mi = I− Ai. For details see section 5.2.
In the general approach, given a current estimate of the Lq minimum Xt, an update is
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computed as,

Xt+1 = W(Xt) =

(
k

∑
i=1

(wt
i)

2 Mi

)−1( k

∑
i=1

(wt
i)

2 MiCi

)
, (5.18)

where wt
i = ‖Xt −PSi(Xt)‖q−2. Note that for wt

i = 1, the above update function is the same
as the L2-closest-point solution (5.8). However, the above equation finds a closed form solu-
tion of the weighted L2 cost function Ĉ w

2 (X) defined in (5.7).

Numerical stability. If the current estimate Xt lies close to one of the subspaces Si, then the
weight wt

i given by (5.18) can become quite large. If the iterates Xt converge towards one of
the subspaces, then the corresponding weight becomes infinite. One can introduce some degree
of stability by dividing all the weights wi by the maximum weight wmax without changing the
problem. Thus, each weight is replaced by wi/wmax.

However, if one of the weights wi = wmax becomes very large, then the matrix M becomes
poorly conditioned. The matrix in (5.18) being inverted becomes increasingly close to singular.
The results will be numerically unstable, and meaningless as Xt approaches Si.

The problem here is the use of the method of normal equations to solve the least-squares
problem. An alternative (superior) method is to use Singular Value Decomposition (SVD) to
minimize C w

2 = ‖ MX− c ‖2, where M is formed as the stack of the matrices wt
iMi, and c is the

stack of vectors wt
iMiCi. Let M = UDV> be the SVD of matrix M. Then the solution X is given

by

X = V D−1U> c . (5.19)

When the weights wi are of very different orders of magnitude, this SVD method works very
much better than the method given by the update (5.18). For more on this topic, see Appendix
5 of Hartley and Zisserman [2004].

Algorithm: It should be noted that if one of the iterates Xt lands precisely on one of the
subspaces Si, then the update rule is undefined, because the corresponding weight wt

i is infinite
if q < 2. Therefore, a similar algorithm as Algorithm 5.1 can be proposed for the update
function defined in (5.18). A proof of convergence of that algorithm will be the same as the
proof of convergence of Algorithm 5.1 in section 5.4.3, and is therefore not provided here.

An important part of the proof is to show that the value of the Lq cost function is non-
increasing under the update function W (5.18). The following discussion shows that the update
function W computes the minimum of Ĉ w

2 (X) (5.7), and the Lq cost function is non-increasing
under the update function W.

Non-increasing Lq Cost: It is easy to show that under the update function W defined in
(5.18), the Lq cost function is non-increasing. Note that the update function defined in (5.18)
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minimizes a weighted L2 cost function,

Ĉ w
2 (X) =

k

∑
i=1

wt
i ‖X−PSi(X)‖2 , (5.20)

where wt
i = ‖Xt −PSi(Xt)‖q−2, as defined before in (5.7).

For an updated point W(X) we have,

k

∑
i=1

‖W(X)−PSi(W(X))‖2

‖X−PSi(X)‖2−q = Ĉ w
2 (W(X)) ≤ Ĉ w

2 (X)

=
k

∑
i=1
‖X−PSi(X)‖q .

The desired relation follows directly from lemma 3.6 (p. 35),

k

∑
i=1
‖W(X)−PSi(W(X))‖q = Cq(W(X)) ≤ Cq(X)

=
k

∑
i=1
‖X−PSi(X)‖q ,

where equality holds only when Xt+1 = Xt. Thus, a similar lemma as lemma 5.3 can easily be
proved for the update function defined in (5.18).

5.5.1 Minimization on a Subspace

The first step in this initialization algorithm is a restricted problem of finding the point with
minimum cost on each subspace Sj. This is done by applying a Lq Weiszfeld algorithm re-
stricted to this subspace. Starting from a point on a subspace, updates are computed by re-
stricting the solution to the subspace as,

min
X∈Sj

Cj
q(X) = min

X∈Sj
∑
i 6=j

d(X,PSi(X))q .

Just like the Gradient descent approach, a weighted L2 cost function restricted on a subspace
can be minimized and a similar lemma as lemma 5.3 can also be presented to show that the
value of Lq cost function is non-increasing under the update function computed in this section.
Once again, this is a simple problem (minimizing a quadratic function on an affine subspace)
and may be solved exactly by linear algebra as follows:

Derivation: If the minimum points lies on the j-th subspace then the weighted L2 cost function
to minimize is

Xt+1 = argmin
X∈Sj

Ĉj
2(X) = argmin

X∈Sj

∑
i 6=j

wt
i d(X,PSi(X))2 ,

Draft Copy – 22 October 2014



98 Lq Optimization for Subspaces

subject to

ETX + d = 0 ,

where wt
i = ‖Xt − PSi(Xt)‖q−2 and ETX + d = 0 is the equation for subspace Sj and E

is a n × r matrix, with n being the dimension of ambient space and r is the codimension of
subspace Sj and d is an r vector.

The Lagrangian is then,

L(X, λ) = ∑
i 6=j

wt
i d(X,PSi(X))2 − (ETX + d)Tλ ,

where λ is an r vector. The gradient of L(X, λ) with respect to x is,

LX(X, λ) = ∑
i 6=j

wt
i ∇d(X,PSi(X))2 − Eλ .

The gradient of the squared distance function d(X,PSi(X)) is ∇d(X,PSi(X))2 = 2Mi (X−
Ci) . By substituting the value of ∇d(X,PSi(X))2 in the above equation we get,

LX(X, λ) = 2 ∑
i 6=j

wt
i MiX− 2 ∑

i 6=j
wt

i MiCi − Eλ .

Let P = 2 ∑i 6=j wt
i Mi and Q = 2 ∑i 6=j wt

i MiCi, then the above equation can be written as

LX(X, λ) = PX−Q− Eλ . (5.21)

Setting LX(X, λ) equal to zero and computing the value of X we get

X = P−1(Eλ + Q) . (5.22)

Applying the constraint ETX + d = 0, we get the value of λ as

λ = −(ETP−1E)−1(d + ETP−1Q) .

By using the value of λ we can compute Xt+1 using (5.22). Therefore the solution of Ĉj
q(X) is

found by solving a set of linear equations. 2

Just like before, the above derivation shows a method to minimize a weighted L2 cost
function restricted on a subspace. From lemma 5.3, it is not difficult to show that the value of
Cj

q is non-increasing after every iteration of the restricted algorithm.

5.6 Experimental Results: Triangulation

In order to show the applicability of the proposed algorithms we solve the problem of triangu-
lation [Hartley and Sturm, 1997; Triggs et al., 2000b]. Given two or more images of a scene,
triangulation is a process of determining a point in 3D space from its image points, that is
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the projection of the 3D point onto multiple images. Each image point y corresponds to a
line in 3D space, passing through the center of the camera and intersecting the image plane
at y. Ideally, all the lines generated by the corresponding points in different images should
intersect at a single 3D point and that point should be the same as the original point in 3D
space. In practice, image points cannot be measured accurately because of various types of
noise, lens distortion, interest point detection error, etc. As a result, the lines obtained from
the image points are skewed form of original lines and generally do not intersect at a single
point, possibly these lines may not intersect at all. The problem then is to find an optimal point
of intersection of these skewed lines, that is a point for which the sum of the q-th power of
distances to all the lines is the minimum. Therefore, the proposed algorithms can be used to
find the Lq-closest-point to these lines.

Dataset and Starting Point of Algorithms: We apply the proposed algorithm on a well know
dinosaur dataset. This dataset contains a collection of 4983 track points that are tracked over
a set total of 36 images. Here we only consider the track points that are visible in more than
10 images. Thus, a minimum of 10 lines are available to perform triangulation. Since the
proposed algorithms are iterative minimization techniques, they require a starting point. We
take the L2-closest-point as a starting point for the Lq algorithms. There is no specific reason
for choosing the L2-closest-point as a starting point, any random point can also be taken as a
starting point.

Construction of Lines: A line is uniquely determined by two points. In our experimental
setup these two points are the camera center and a back projected image point. Thus, if a cam-
era matrix and an image point is known, a line from the center of camera and passing through
the image point can easily be constructed. In the dinosaur dataset both the camera matrices
and image measurements are provided. Thus, we can construct lines in IR3 to find their opti-
mal point of intersection.

Error Measure: The measure of accuracy for reconstructed 3D points is taken to be root mean
square (RMS) of the L1-mean of the re-projection errors, that is, the L1-mean of the distance
between reprojected points and measured image points for all the views in which that point
is visible. For n reconstructed points Xj, visible in mj views, the RMS error is computed as
follows:

RMS error =

√√√√ n

∑
j=1

e2
j /n ,

where

ej =
∑

mj
i=1 d(xij, x′ij)

mj
,

and x′ij is the measured image point and xij = PiXj is the reprojected point. Note that the
error reported here, that is the re-projection error, is different than the error minimized by the
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Figure 5.6: Triangulation results for Dinosaur dataset: The above figure shows re-projection
error plots for bundle adjustment, the L2-closest-point method and the proposed L1-averaging
methods. As can be seen, the results of the L1-averaging methods have lesser re-projection
errors than both the L2-averaging and bundle adjustment methods. Furthermore, as expected,
the convergence rate of the general approach is higher than the gradient descent approach.
Therefore, the general approach is recommended because of its higher convergence rate and

superior results.
.

proposed Lq algorithms, that is the q-th power of distances of a point from all of the given
lines.

5.6.1 Convergence Behavior

We compare the proposed Lq optimization algorithms, that is, the gradient descent algorithm
and the general algorithm, with the L2-closest-point method and the bundle adjustment algo-
rithm. Here, we only consider the Lq algorithms for q = 1. The L2-closest-point method finds
a point for which the sum of squared orthogonal distances to a set of subspaces is the mini-
mum. This is a fairly simple problem and can be solve in closed-form. The bundle adjustment
method simultaneously refines the 3D point as well as the camera parameters by minimizing
the sum of squared re-projection errors, that is an error between a re-projected 3D point and its
corresponding image point measurement [Triggs et al., 2000b]. Since we are only interested in
recovering the 3D structure of a scene, we assume that the camera matrices are known, hence
are not optimized. Bundle adjustment is carried out by using an open source sparse bundle
adjustment package [Lourakis and Argyros, 2009].

A comparison of the RMS error over all iterations of the methods is reported in fig. 5.6.
As can be seen, the L1-closest-point methods have smaller errors than both the L2-closest-
point method and bundle adjustment. Furthermore, the L2-closest-point method and bundle
adjustment have roughly the same re-projection error. The main reason for smaller RMS errors
for the L1 algorithms is their robustness to outliers.

As expected, the L1 optimization algorithm by using the general approach converges close
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Figure 5.7: Robustness to outliers: The above figure shows re-projection errors of the Lq-
averaging method (the general approach) for several values of q ranging from 1 to 2 with an
increment of 0.25. We test the algorithms for their robustness by adding different percentage of
outliers in the dinosaur dataset, ranging from 0% to 40% with an increment of 10%. We modify
image point correspondences to represent outliers. The above figure shows that the results of
L1 and Lq for q close to 1 are stable in the presence of outliers. Note: the RMS re-projection
error is computed without using the modified image point correspondences, that is the outliers.

.

to the minimum faster than the gradient descent approach. The reason for fast convergence is
that the general approach updates both a current solution and its projections simultaneously.
On the other hand, in the gradient descent approach projection points are held fixed during
the computation of an update. This results in a slow convergence rate of the gradient descent
approach, as shown in fig. 5.6. In summary, both the Lq optimization algorithms give superior
results than the L2 and the bundle adjustment methods, but the general approach a has higher
convergence rate than the gradient descent approach and is therefore recommended.

5.6.2 Robustness to Outliers

In this experiment we show the robustness of the Lq method, specifically the general algorithm,
for different values of q ranging from 1 to 2 with an increment of 0.25. In order to show
the robustness of the method, we add different proportion of outliers to the dinosaur dataset,
ranging from 0% to 40% with an increment of 10%. We modify some percentage of the
image points corresponding to each 3D point to represent outliers. Furthermore, the RMS
re-projection error is computed without using the modified image point correspondences, that
is the outliers. Here, we only consider the general algorithm for Lq optimization because of
its higher convergence rate than the gradient descent algorithm. In fig. 5.7, our experimental
results show that the Lq methods are more robust to outliers than the L2 method. Furthermore,
the L1 method has the least errors compared to the rest of the methods. On the other hand, as
expected, the L2 method is very sensitive to outliers and has larger errors than the Lq methods,
for 1 ≤ q < 2. In summary, the L1 method gives better results than the rest of the methods
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and is therefore recommended in the presence of outliers.

5.7 Conclusion

In this chapter we proposed provably convergent iterative methods, based on the Lq Weiszfeld
algorithm, to solve the problem of finding an Lq-closest-point to a set of affine subspaces for
1 ≤ q < 2. Moreover, our experimental results for the triangulation problem confirmed the
fact that in presence of outliers in data, the minimization of an Lq cost function gives superior
results than both the L2-closest-point and bundle adjustment methods. Ease of implementation
and fast iterations make the proposed algorithms attractive wherever Lq optimization is desired.
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Chapter 6

Lq-Bundle Adjustment

In this chapter we propose several methods to solve for a robust solution of bundle adjustment,
a non-linear parameter estimation problem. Given a set of images of a scene, bundle adjustment
simultaneously estimates camera parameters and 3D structure of the scene. Generally, a least
squares criterion is minimized by using the Levenberg-Marquardt (LM) method, a non-linear
least squares optimization method. We are particularly interested in finding an Lq solution of
the problem, for 1 ≤ q < 2. The proposed methods have an advantage of using the Levenberg-
Marquardt (LM) method to find a robust solution of the problem, especially an Lq cost function.
This being so, the proposed methods trivially fit in the existing literature of the least squares
bundle adjustment and have potential of being used as standard methods for bundle adjustment.

In the following section we introduce the bundle adjustment problem followed by its theo-
retical background. In section 6.3, we formulate the problem and describe our solution strate-
gies followed by a summary of the cost functions minimized. We then give a brief description
of the existing L2 bundle adjustment method in section 6.4. In section 6.5 and section 6.6 we
propose methods to minimize robust cost functions. In the end, we present experimental results
on the NotreDame set.

6.1 Introduction

We present extremely simple techniques to find a robust solution, especially an Lq solution,
of the bundle adjustment problem and therefore contradict the perception that the Lq-bundle
adjustment can not be done easily. An advantage of the proposed techniques is that they rely
on the Levenberg-Marquardt (LM) method, a least squares minimization technique, to find a
desired solution, even an Lq solution. Given a set of error vectors the LM method minimizes
the sum of squared errors. We show that the minimization of a desired cost function can be
achieved by using a modified difference vector or error vector, that is a vector representing the
difference between measured image points and predicted image points, in the LM method.

The minimization of an Lq cost function is achieved by using two different methods. The
first method, referred as the Lq method, minimizes the sum of the q-th power of errors by using
modified error vectors in the LM method. The second method is an Iterative Re-weighted Least
Squares (IRLS) technique where the sum of the q-th power of errors is minimized by iteratively
minimizing a weighted least squares cost function, that is a weighted sum of squared errors. In
addition to the Lq cost function, we propose a method to minimize the sum of the L1 norms of

103
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error vectors, we refer to it as the Absolute Value method. Note that the Absolute Value method
minimizes a slightly different function than the Lq cost functions, for q = 1.

In addition to the Lq cost function, we propose several methods to minimize a robust cost
function, specifically the Huber function. In robust statistics, the Huber function is a very
popular differentiable function that has a hybrid behavior of a linear function and a non-linear
function. The hybrid behavior of the Huber function depends on a set threshold value; the
function is non-linear for input values that are smaller than the threshold value and is linear for
input values that are larger than the threshold value.

A straightforward way of applying the Huber function for vector valued inputs is to apply
the Huber function on each component of the input vector. However, we apply the Huber
function on error vectors in the following two ways: Firstly, we apply the Huber function on
the magnitude of error vectors instead of on each component of error vectors; we refer to this
function as the Isotropic Huber function. Secondly, we introduce a re-thresholded version of
the Huber function, we refer to it as the Re-thresholded Huber function. The Re-thresholded
Huber function takes advantage of the iterative behavior of the LM method and decreases the
threshold value of the Huber function after a fixed number of iterations. As a result, after
some iterations the resultant function will have a dominant linear behavior and consequently
increased robustness.

Given two or more images of a scene, as shown in fig. 6.1, bundle adjustment [Hartley and
Zisserman, 2004; Triggs et al., 2000a; Engels et al., 2006] simultaneously estimates camera
matrices and 3D points of the scene and is therefore a non-linear optimization problem. Sev-
eral techniques exist in the literature to minimize a non-linear least squares problem, such as
the Gauss-Newton method, the Leveberg-Marquardt method, Trust Region methods, etc. The
Levenberg-Marquardt method has become a fairly standard technique to solve the bundle ad-
justment problem. In this chapter, we only focus on the Levenberg-Marquardt method for the
minimization of desired cost functions.

In practice, image points cannot be measured accurately because of various types of noise,
lens distortion, interest point detection error, etc. Consequently, image point correspondences
can not be established accurately. As a result, the solution obtained using the least squares
bundle adjustment method may be far from the ground truth.

Given a set of image point measurements xij, bundle adjustment solves for camera matrices
Pi and 3D points Xj such that xij = PiXj. Due to noise in image point measurements reprojected
points P̂iX̂j are not the same as the measured image points xij. Thus, the problem is to find an
optimal estimate of the camera parameters P̂i and 3D points X̂j such that the error between the
measured image points xij and the estimated image points P̂iX̂j is minimized. A least squares
form of the problem is

min
P̂i ,X̂j

∑
i,j

d(P̂iX̂j, xij)
2 , (6.1)

where d(x, y) is a geometric distance between the homogeneous image points x and y. The
choice of minimizing the sum of squared distances makes bundle adjustment very sensitive to
outliers. Instead of minimizing the L2 cost function the minimization of an Lq cost function, for
1 ≤ q < 2, increases the robustness of bundle adjustment against outliers. The minimization
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function is then,

min
P̂i ,X̂j

∑
i,j

d(P̂iX̂j, xij)
q . (6.2)

The above minimization problem is relatively harder than the least squares problem and is nor-
mally solved using complex optimization strategies. On the contrary, the proposed techniques
use the Levenberg-Marquardt method to minimize the Lq cost function and several other robust
cost functions, such as the Huber function.

In recent years, the attention of a large group of research community has been directed
to robust parameter estimation methods, especially L1 optimization methods. A recent paper
[Strelow, 2012] uses Wiberg algorithm to solve the L1 bundle adjustment problem but it require
very different formulation and does not trivially fits in the paradigm of the existing bundle
adjustment literature. On the other hand, we try to minimize this trade-off between simplicity
and robustness by presenting methods that use the Levenberg-Marquardt method to find a
robust solution of the bundle adjustment problem, especially an Lq solution for 1 ≤ q < 2.

Given an error vector the LM method minimizes its squared norm. We take advantage of
the squared norm minimization property of the LM method and modify the error vector such
that the squared norm of the modified vector results in the minimization of a desired robust cost
function. This modification is done in two ways: Firstly, by modifying each component of the
error vector; Secondly, by introducing an attenuation factor that mitigates the effect of outliers.
The squared norm of the modified error vectors can still be minimized by using the LM method.
Thus, the proposed methods trivially fit in the existing literature of the bundle adjustment and
only require a slight modification of the existing bundle adjustment implementations.

Several strategies have been proposed to make bundle adjustment a practically feasible
method, such as using sparse bundle adjustment [Hartley and Zisserman, 2004; Agarwal et al.,
2010], hierarchical bundle adjustment [Shum et al., 1999], incremental bundle adjustment
[Steedly and Essa, 2001] that tunes parameters after every new frame arrives, spectral par-
titioning approach [Steedly et al., 2003] for dividing large problem into smaller sub-problems,
real time bundle adjustment [Mouragnon et al., 2006], relative camera motion instead of abso-
lute positions [Holmes et al., 2009], probabilistic approach [Eudes and Lhuillier, 2009], etc. In
this chapter our focus is on increasing the robustness of bundle adjustment.

Bundle adjustment being an iterative minimization technique can not be guaranteed to
converge to an optimal solution from an arbitrary starting point. Since the major contribution
of this chapter is not on how to generate a good starting point for bundle adjustment, we assume
that the ground truth parameters are known and use modified parameters as a starting point for
the bundle adjustment algorithms.

In summary, this chapter presents extremely simple and easily visualizable techniques to
find a robust solution of the bundle adjustment problem, especially an Lq solution. As far as
the practicalities of the proposed methods is concerned, a simple approach and re-usability of
the existing least squares implementation (with minor changes) makes the proposed algorithms
a perfect candidate to replace a commonly used least squares bundle adjustment technique.

Draft Copy – 22 October 2014



106 Lq-Bundle Adjustment

(a) Image Points

(b) Starting Point

(c) Iteration 1

Figure 6.1: Bundle Adjustment: (a), shows projections of a 3D point on several images, rep-
resented by x1, x2 and x3. Starting from an initial estimate of camera parameters Pi and 3D
structure X, as shown in (b), bundle adjustment simultaneously updates camera parameters
and 3D structure of the scene by minimizing the re-projection error, that is ∑i ‖ei‖2, as shown

in (c).
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6.2 Theoretical Background

The Levenberg-Marquardt (LM) method [Levenberg, 1944; Marquardt, 1963] is a numerical
method for solving non-linear least squares problems. The LM method, a fusion of the steepest
descent and the Gauss-Newton, outperforms both the steepest descent and the Gauss-Newton
methods.

Let c(β) be a vector valued function and g(β) = c(β)Tc(β). The LM method minimizes
a squared norm of a vector valued function

min
β

c(β)Tc(β) . (6.3)

Like other numerical optimization methods the Levenberg-Marquardt method also depends on
finding an update direction to reduce the cost function. A current estimate of parameters β is
updated in a direction δ such that g(β+ δ) ≤ g(β). This process is repeated until convergence.
The resultant cost function g(·) is then,

g(β + δ) = c(β + δ)Tc(β + δ) . (6.4)

By using the first order approximation of c, we get

g(β + δ) ≈ [c(β) + Jcδ]T [c(β) + Jcδ] , (6.5)

where Jc is the Jacobian of vector c(β). Assuming that the function is linear; by taking the
derivative and equating to zero we get,

JT
c Jcδ = −JT

c c(β) , (6.6)

for details see [Hartley and Zisserman, 2004]. In the Gauss-Newton method, the value of δ

is obtained as the solution to the above normal equations. The assumption of linear function
eliminates the need to compute the second-order derivative. The Gauss-Newton method does
not guarantee convergence if the initial parameter estimates are far from the optimum value.

In the case of the Levenberg-Marquardt method the normal equations of the Gauss-Newton
method (6.6) are replaced with the augmented normal equations as,

(JT
c Jc + λI)δ = −JT

c c(β) , (6.7)

where λ is known as a damping factor that enables the LM algorithm to behave like both the
steepest descent and Gauss-Newton methods. The value of the damping factor λ, is adjusted
at each iteration depending on the change in the function value. If there is a rapid change in
the cost function, a smaller value of λ can be used to make the LM algorithm behave more
like the Gauss-Newton algorithm. On the other hand, if there is a small or no change in the
cost function then the value of λ can be increased to reduce the cost of function by moving in
the gradient descent direction. Thus, the LM method has a higher convergence rate than both
the Gauss-Newton and steepest descent methods. Due to its high convergence rate the LM
algorithm has become a standard method for solving non-linear least squares problems.
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6.3 Problem Formulation

Let xi ∈ IR2 be a noisy measurement 1 of a vector x̄i and X be a vector obtained by concatenat-
ing all measurements: X = (x1, x2, . . . , xN), where N is the total number of measurements.
The measurement vector X is assumed to be related by a non-linear function f to a parameter
vector β. The mapping of parameter vector β ∈ IRM to measurement vectors X̂ ∈ IR2N , that is
X̂ = f (β). We seek a parameter vector β for which the desired cost function C has minimum
value,

min
β

C(X, β) . (6.8)

Typically, the LM method minimizes the squared norm of a vector function. Therefore we can
write the above cost function as inner product of two vectors as

min
β

ETE , (6.9)

where E is an error vector computed from the values of X and f (β). Depending on the cost
function to be minimized, there are several ways of computing the error vector E. For example,
when minimization of the least squares cost is desired then the vector E is taken as the differ-
ence of vectors X and f (β), E = X− f (β). Then from (6.9), the least squares cost function to
be minimized is

C2(X, β) = ∑
i
‖ei‖2 = ∑

i
d(xi, fi(β))2 , (6.10)

where d(xi, fi(β)) is the Euclidean distance between a measured value xi and a predicted value
fi(β); and ei ∈ IR2 is computed as difference of the vectors xi and fi(β), ei = xi − fi(β),
while it is assumed that the measurement xi is related by a function fi to a parameter vector β.
From here on we assume that ei = xi − fi(β).

Since the minimization of a squared vector norm ‖E‖2 is built into most implementations
of the Levenberg-Marquardt method, we need to find a way to use the Levenberg-Marquardt
method to minimize some desired robust cost functions, for example an Lq cost function,

Cq(X, β) = ∑
i
‖ei‖q = ∑

i
d(xi, fi(β))q . (6.11)

In addition to minimization of the Lq cost, the proposed solution strategies can be used to
minimize several other cost functions, such as the Huber function.

6.3.1 Solution Strategies:

In this section we discuss the techniques that are used to minimize a desired robust cost func-
tion. The first technique modifies each component of the error vectors ei such that the inner
product of the modified error vectors result in the minimization of a desired cost function, dif-
ferent than the least squares cost function. However, in the second technique each error vector

1In general, the theory applies to measurements in spaces of any dimension.
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ei is multiplied by a scalar term, commonly referred as the attenuation factor, that mitigates the
effect of outliers on the overall cost and consequently results in the minimization of a desired
robust cost function. These two techniques are explained below:

6.3.1.1 Modified Error Vector

One of the techniques to achieve the minimization of a desired cost function is to replace the
error vector E in (6.9) with a modified error vector E′. This new vector is obtained by modifying
each component of E. This modification results in the minimization of a desired cost function
different than a least squares cost function. The resultant minimization function is,

min
β

(E′)T(E′) , (6.12)

or equivalently,

min
β

∑
i
‖e′i‖2 . (6.13)

Since the minimization function is still a squared norm of the modified error vector, the resul-
tant cost function can be minimized by the LM method. Thus, the modified cost function does
not require any new optimization method.

6.3.1.2 Attenuation Factor

Another strategy to minimize a desired cost function is to multiply each vector ei by an atten-
uation factor αi, such that the inner product of the modified error vectors e′i = αiei result in
minimization of a desired function ψ(·). The minimization function takes the following form,

min
β

∑
i
‖e′i‖2 = min

β
∑

i
α2

i ‖ei‖2 , (6.14)

or equivalently,

min
β

∑
i

ψ(‖ei‖) . (6.15)

The value of the attenuation factor can be computed from the following equality

‖e′i‖2 = ψ(‖ei‖) = α2
i ‖ei‖2 , (6.16)

as

αi = ψ(‖ei‖)1/2/‖ei‖ . (6.17)

In this case, the value of the attenuation factor determines the impact of the corresponding
error vector on the resultant cost function. For example, error vectors corresponding to large
values of the attenuation factor will have more influence on the resultant function than error
vectors corresponding to small values of the attenuation factor. Thus, the resultant function
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can be made robust to outliers by increasing the impact of inliers and decreasing the impact of
outliers.

Same as before, the proposed modification does not require any new optimization strategy
because (6.15) is a result of the inner product of the modified error vector E′, that can be
minimized by using the LM method.

6.3.2 Cost Functions

Now, we summarize the existing and proposed cost functions that are used to solve bundle
adjustment. Let ei be the i-th error vector and ej

i be the j-th component of ei. We particularly
consider the following cost functions:

• Squared Error Function: minimizes the sum of squared errors

CSE = ∑
i
‖ei‖2 .

• Lq cost function: minimizes the sum of errors

CLq = ∑
i
‖ei‖q .

• Lq cost function using IRLS technique: uses an iterative re-weighted least squares
technique to find an Lq solution

CIRLS = ∑
i
‖ei‖q .

• Absolute Value function: minimizes the sum of the L1 norm of error vectors,

CAV = ∑
i

∑
j
|ej

i | .

• Isotropic Huber function: For some scalar input, depending on a set threshold value,
the Huber function shows a hybrid behavior of a linear function and a non-linear func-
tion. Instead of applying the Huber function independently on each component of error
vectors, in this case the Huber function is applied on the magnitudes of error vectors

CIsoH = ∑
i

h(‖ei‖)2 ,

where h(·) is the Huber function. For details see section 6.6.1.

• Re-thresholded Huber function: Since, the hybrid behavior of the Huber function de-
pends on a set threshold value, we take advantage of the iterative minimization technique
and decrease the threshold value after some fixed number of iterations. As a result, the
Huber function will have a dominant linear behavior and increased robustness after few
iterations.
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Figure 6.2: Squared Error function (1D plot): The above figure shows a plot of ψSE(ε) for
a scalar input ε. The quadratic behavior of Squared Error function indicates that the impact
of values far from the origin, that is outliers, is higher than the impact of values closer to the

origin, that is inliers.

6.4 Existing Techniques

In this section we discuss some of the existing techniques to solve the bundle adjustment prob-
lem. We are particularly interested in the Squared Error function and the Huber function. The
Squared Error function is a differentiable function and is popular because of the simplicity of
the solution. On the other hand, the Huber function, a hybrid of a non-linear function and
a linear function, is a more robust function than the least squares function and is commonly
used because it is a convex function and is differentiable at the minimum. This section briefly
describes the Squared Error function. However, the Huber function is discussed in section 6.6.

In the rest of the chapter we assume that the vector E is formed by concatenation of error
vectors ei, where ei is a vector representing the difference between a measured value xi and a
predicted value fi(β) and is computed as ei = xi − fi(β). Furthermore, ej

i represents the j-th
component of the i-th error vector ei and ε simply represents a scalar value.

6.4.1 L2 or Squared Error Function (SE):

The Minimization of a squared distance function is a fairly standard and widely used technique.
For some scalar input ε, the Squared Error (SE) function ψSE is,

ψSE(ε) = ε2 . (6.18)

A plot of ψSE(ε) for different values of ε is shown in fig. 6.2. An advantage of using the
Squared Error function is that it is a continuous function and is at least twice differentiable; but
unfortunately it suffers from a major drawback when it comes to robustness against outliers.
Typically, an outlier is a point that is distant from the actual observation. Thus, has a large
error value. Since the Squared Error function has a quadratic behavior, the impact of large
input values, that is outliers, is magnified on the overall cost function.

For some vector ei, the Squared Error function ψSE is

ψSE(‖ei‖) = ‖ei‖2 . (6.19)
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(a) SE Contours (b) SE Attenuation (c) Resultant SE Contours

Figure 6.3: Squared Error Function (2D): (a) shows an isotropic contour plot of e′Ti e′i/α2
i

for two dimensional error vectors. A plot of the constant attenuation factor αi is shown in (b).
Isotropic contours and a constant attenuation factor indicates that both inlier and outlier data
is treated equally, therefore the Squared Error function is not robust against outliers and the

resultant function also has isotropic contours, as shown in (c).

The value of αi from (6.17) is computed as

αi =
ψSE(‖ei‖)1/2

‖ei‖
=
‖ei‖
‖ei‖

= 1 . (6.20)

By replacing ei with e′i = αiei in (6.9), the resultant cost function CSE, is

C2(X, β) = ∑
i

e′Ti e′i = ∑
i

eT
i ei = CSE(β) . (6.21)

It can easily be seen that C2 minimizes the sum of the squared Euclidean distances, that is CSE.
Since the Squared Error function is a quadratic function, the effect of outliers on the overall cost
function is magnified; as a consequence the resultant cost function is very sensitive to outliers.
For 2D vectors ei, the quadratic behavior of the Squared Error function is evident from the
isotropic contours of e′Ti e′/α2

i , as shown in fig. 6.3(a). A constant plot of the attenuation
factor in fig. 6.3(b) shows that the Squared Error function assigns equal weights to all the error
vectors and does not distinguish between the inlier and outlier data. A constant attenuation
factor indicates that the resultant function e′Ti e′ is still a quadratic function and has isotropic
contours, as shown in fig. 6.3(c).

Since the Squared Error function has a quadratic behavior and the attenuation factor does
not distinguish between the outlier and inlier data, the resultant function CSE is not robust
enough to outliers. Thus, even a single outlier of higher magnitude can deviate the final solution
from its true value.

In the following sections we will show that the minimization of a desired cost function can
be achieved either by a careful selection of the attenuation factor or by modifying each com-
ponent of error vectors in a specific way; and that the resultant cost function can be minimized
by using the LM method.
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6.5 Proposed Lq Cost Functions

This section presents three ways of minimizing an Lq cost function. We are particularly in-
terested in the following two forms of the Lq cost functions: Firstly, an Lq cost function that
minimizes the sum of the q-th power of error, that is

min
β

∑
i
‖ei‖q .

Secondly, an L1 cost function that minimizes the sum of the L1 norms of error vectors, as

min
β

∑
i,j

ej
i .

In order to distinguish both the functions we refer to the first function as the Lq cost function
and the second function as the Absolute Value function. The solution of the Lq cost function
is found by using two methods: Firstly, by introducing an attenuation with each of the error
vectors; Secondly, by using an Iterative Re-weighted Least Squares technique. On the other
hand, the solution of the Absolute Value function is obtained by modifying each component of
the error vectors. Below we discuss these techniques in detail.

6.5.1 Lq Cost Function:

The Lq cost function finds the minimum of,

CLq = ∑
i
‖ei‖q ,

by using the modified error vectors approach discussed before. The minimization of the de-
sired function is achieved by associating an attenuation factor αi with each corresponding error
vector ei.

For some scalar input ε, the Lq function ψLq is defined as

ψLq(ε) = |ε|q . (6.22)

Unlike the Squared Error function, where the function has quadratic behavior, the Lq cost
function, for q = 1, is a linear function. For large values of input the Lq function has a
relatively smaller output than the Squared Error function. As a result, the impact of outliers on
the final solution is reduced and robustness is increased. Fig. 6.4 shows several plots of ψLq
against ε for different values of q. Note that, for values of ε far from the origin, that is outliers,
the output of the L1 cost function is the minimum compared to the rest of the Lq cost functions,
for 1 < q ≤ 2. Therefore, the L1 cost function is more robust to outliers than the rest of the Lq

cost functions.

We show that error vectors in the LM method can be modified in a way that their squared
norm results in the minimization of the sum of the q-th power of errors, that is CLq(X, β),
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Figure 6.4: Lq Cost Function (1D plots): The above figure shows plots of ψLq(ε) against ε for
different values of q ranging from 1 to 2. Note that the output of the L1 cost function is the least
compared to the rest of the Lq cost functions, for 1 < q ≤ 2. Therefore, in the case of the L1
cost function the influence of values far from the origin, that is outliers, is not as magnified as

in the case of other Lq cost functions.

instead of C2(X, β). For some vector ei, the Lq function ψLq is

ψLq(‖ei‖) = ‖ei‖q . (6.23)

The value of αi from (6.17) is computed as

αi =
ψLq(‖ei‖)1/2

‖ei‖
=

‖ei‖q/2

‖ei‖
= ‖ei‖(q−2)/2 . (6.24)

By replacing the value of ei with e′i = αiei in (6.9), we get

C2(X, β) = ∑
i

e′Ti e′i = ∑
i

α2
i eT

i ei

= ∑
i
‖ei‖q−2 ‖ei‖2 = CLq(X, β) . (6.25)

Thus, the proposed modification results in minimization of CLq(X, β) instead of C2(X, β).
This enables us to use the Levenberg-Marquardt method to minimize the Lq cost, that would
otherwise require relatively complicated strategies to find a solution. Although, the proposed
algorithm finds an Lq solution for 1 ≤ q < 2, but here we are particularly interested in q = 1
where the Lq cost function has a linear behavior and is more robust to outliers than the Lq cost
function for the rest of the values of q.

L1 case: Here we assume that the value of q is 1, however, a similar analysis for other values of
q can easily be done. Fig. 6.5(a) shows isotropic contours of e′Ti e′i/α2

i , that is errors without
the attenuation factor. A bell shaped curve of the attenuation factor, in fig. 6.5(b), shows
that that the values close to the origin, that is inliers, have higher attenuation factor αi than the
values far from the origin, that is outliers. A higher value of attenuation factor indicates that the
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effect of the particular entry on the overall cost function is magnified, whereas a lower value
of attenuation factor indicates that the effect of the corresponding entry is reduced. Since,
the attenuation factor gives more weight to inliers and less weight to outliers, the proposed
L1 cost function is more robust to outliers than the Squared Error function. The isotropic
contours together with the bell shaped curve of the attenuation factor enables the resultant
function e′Ti e′i to behave like a linear function and to mitigate the effect of outliers, as shown
in fig. 6.5(c).

6.5.2 Lq Optimization using Iterative Re-Weighted Least Square (IRLS):

The technique proposed in this section uses an Iteratively Re-Weighted Least Squares (IRLS)
technique to solve for an Lq solution of the problem. The IRLS technique iteratively solves
a weighted least squares cost to minimize a relatively robust cost function than the standard
least squares cost. The weighting factor in this case has the same role as the attenuation factor
in the case of the Lq cost function, that is to increase or decrease the influence of a particular
error vector on the resultant function. The robustness of an IRLS cost function depends on the
weight values used.

A general form of the IRLS objective function is

min
β

∑
i

wi ‖xi − fi(β)‖2 , (6.26)

where wi is a scalar value associated with its corresponding error vector ei. Since this is an
iterative minimization method, weights can be updated at each iteration. One can use the
parameter values recovered in the previous iteration to update the weights. There can be sev-
eral choices of how to update the weight values at each iteration but if we choose weights as
‖ei‖q−2, then the IRLS technique results in minimization of the Lq cost function, for details
see [Aftab et al.]. If we choose different weights then the resultant function may be more ro-
bust to outliers than the Squared Error function or even the Lq function, but in that case the
resultant function will no longer be the Lq cost function.

At iteration t, a current estimate of parameters βt is updated as,

βt+1 = argmin
β

∑
i

wt
i‖xi − fi(β)‖2 , (6.27)

where wt
i is some positive weighting term and is computed as wt

i = ‖xi − fi(βt)‖q−2.
Since the Levenberg-Marquardt method is a numerical optimization algorithm, a modified

solution of (6.9) at iteration t is computed as

CIRLS(X, β) = ∑
i

wt
i ‖et

i‖2 , (6.28)

where et
i = xi − fi(βt) and

wt
i = ‖et

i‖q−2 . (6.29)

In this case, it is obvious that CIRLS is equivalent to Cq. However, in the case of analytical
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optimization techniques if we use ei instead of et
i in (6.28), the IRLS technique still results in

the minimization of the Lq cost function [Aftab et al.].

L1 case: Once again, we perform our analysis for q = 1. Fig. 6.5(d) shows isotropic contours
of ‖et

i‖2, without the influence of the weighting term, for two dimensional vector inputs. A
plot of the weighting term is shown in fig. 6.5(e). Note that the weighting term has the same
behavior as the attenuation factor in the case of the Lq cost function, that is to assign lower
weights to outliers and higher weights to inliers. This makes the resultant cost function more
robust to outliers than the Squared Error function, as shown in fig. 6.5(f).

6.5.3 Absolute Value Function (AV):

The Absolute Value function minimizes the sum of the L1 norms of error vectors. The desired
minimization function takes the following form:

min
β

∑
i
‖ei‖1 = min

β
∑
i,j

ej
i ,

where ‖ · ‖1 is the L1 norm and ej
i is the j-th component of the i-th vector. Unlike the Lq

cost function discussed before, the minimization of the Absolute Value function requires mod-
ification of each component of the error vector ei, independently. This is done by using the
technique discussed in section 6.3.1.

For some scalar input ε the Absolute Value function fAV is defined as

fAV(ε) =

{ √
ε if ε ≥ 0
−
√
−ε otherwise

. (6.30)

Since, we are only interested in the squared value of functions, the squared Absolute Value
function ψAV for some scalar input ε is,

ψAV(ε) = fAV(ε)
2 = |ε| . (6.31)

The Absolute Value function is a slightly different function than the Lq cost function, for q = 1,
proposed earlier. However, for one-dimensional data both the functions are the same, as shown
in fig. 6.4.

Let e′ be the modified error vector obtained by applying the Absolute Value function fAV
on each component of an error vector e. This new vector is computed as,

e′ =
(

fAV(e1), fAV(e2), . . . , fAV(en)
)T

, (6.32)

where ej is the j-th component of e.
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(a) L1 Contours (b) L1 Attenuation (c) Resultant L1 Contours

(d) IRLS Contours (e) IRLS Attenuation (f) Resultant IRLS Contours

(g) AV Contours (h) AV Attenuation (i) Resultant AV Contours

Figure 6.5: Proposed Lq Functions (2D): The above figure shows plots of the L1, IRLS and
Absolute Value functions. The left column of the above figure shows contour plots of e′Ti e′i/α2

i
for two dimensional error vectors. The middle column shows plots of attenuation factors αi.
The right column plots e′Ti e′i, that is contour plots obtained by multiplying the left and middle
columns. In the case of the L1 and IRLS functions, robustness against outliers is achieved
through the attenuation factor. The bell shaped curve of the attenuation factor indicates that
the effect of inliers is magnified and the effect of outliers is reduced on the resultant function.
However, in case of the Absolute Value function, non-isotropic contours indicates that the
robustness against outliers is encoded in the function itself and is not achieved through the

attenuation factor.
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By replacing ei with e′i in (6.9), we get

C2(X, β) = ∑
i

e′Ti e′i

= ∑
i

∑
j

fAV(e
j
i) fAV(e

j
i)

= ∑
i,j
|ej

i | = CAV(X, β) . (6.33)

Since the above equation minimizes a squared error function, the Absolute Value function can
be minimized by using the LM method.

Fig. 6.5(g) shows a contour plot of e′Ti e′i for two dimensional input vectors. Since the
attenuation factor does not play any role in this case; we take the attenuation factor as a constant
of value 1, as shown in fig. 6.5(h). The non-isotropic contours of the Absolute Value function
show that unlike the previously proposed techniques where attenuation factor played a major
role in achieving robustness against outliers, in this case the robustness against outliers is
encoded in the function itself.

6.6 Proposed Huber Cost Functions

In this section we show that the LM method can be used to minimize the Huber function. The
reason for choosing the Huber function is that it is a differentiable function that preserves the
convexity and is more robust to outliers than the Squared Error function. For some scalar input,
depending on a set threshold value, the Huber function shows a hybrid behavior of a linear
function and a non-linear function. We propose two ways of using the Huber function to solve
the bundle adjustment problem. The first method, referred as the Isotropic Huber function,
applies the Huber function for vector valued inputs. The second method, referred as the re-
thresholded Huber function, takes advantage of the iterative behavior of the LM method and
changes, specifically decrease, the threshold value of the Huber function after some iterations
to increase the robustness of the resultant cost function.

The rest of the section describes the Huber function and a standard way of applying the
Huber function to vector inputs, followed by the proposed Isotropic Huber function and the
re-thresholded Huber function.

6.6.1 Huber Function:

In robust statistics, a very popular function to minimize is the Huber function [Huber, 1964].
Given a threshold value b, the Huber function h(·) for a scalar input ε is,

h(ε) =


ε if |ε| ≤ b√
(2ε− b)b if ε > b
−
√
−(2ε + b)b if ε < −b

. (6.34)
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Figure 6.6: Huber function (1D): The above figure shows plots of the Huber function, h(ε),
represented by a red line, and the squared Huber function, ψH(ε), represented by a blue line.
Note that the blue curve starts as a quadratic curve and its behavior changes from quadratic
to linear after some threshold value. However, the red line shows that the function ψH(·) is
a differentiable function and gradient descent algorithm will converge nicely without getting

stuck at a point where function has same value for different parameter values.

A plot of h(·) for different values of input is shown by the red line in fig. 6.6. Since, we are
only interested in a squared function, the squared Huber function ψH(·) is,

ψH(ε) =

{
ε2 if |ε| < b
2b|ε| − b2 otherwise

. (6.35)

A plot of the squared Huber function is shown by the blue line in fig. 6.6.
The Huber function shows a hybrid behavior depending on the value of the threshold b; for

inliers, that is |ε| < b, the Huber function acts as a quadratic function, whereas for outliers, that
is |ε| ≥ b, the Huber function has a linear behavior. The selection of an appropriate threshold
value is very important in this case because the dominant behavior of the Huber function is
determined by the set threshold value. For smaller threshold values the Huber function behaves
more like a linear function, whereas for higher threshold values it has a dominant quadratic
behavior. It is evident from the blue line in fig. 6.6 that the the Huber function has a quadratic
behavior below the threshold value, that is close to the origin, and a linear behavior far from
the origin.

Furthermore, the threshold value also plays an important role in making the resultant cost
function robust to outliers. For example, if the threshold value is too low then the dominant
behavior of the Huber function is linear and the cost function is more robust to outliers than
the L2 cost function. On the other hand, if the threshold value is very high then the dominant
behavior is quadratic and the resultant function is no better than the L2 cost function in terms
of robustness against outliers. Thus, a careful selection of the threshold value is very important
in this case.

Another advantage of using the Huber function is that the cost function is differentiable,
unlike the L1 cost. The Huber function minimizes the trade-off between robustness and differ-
entiability without compromising the convexity of the function. A major problem with several
other robust functions is that they achieve robustness at the cost of convexity of the function.
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6.6.2 Standard Huber Function

A standard way of applying the Huber function on some vector valued input ei, is to apply the
Huber function h(·) on each component ej

i of the vector as,

e′i =
(

h(e1
i ), h(e2

i ), . . . , h(en
i )
)T

. (6.36)

By replacing the value of ei with e′i in (6.9) we get

C2(X, β) = ∑
i

e′Ti e′i = ∑
i,j

ψH(e
j
i) = CH(X, β) . (6.37)

Thus, the minimization of C2 results in the minimization of a hybrid function that adapts the
minimization strategy based on each component of error vectors.

A contour plot of e′Ti e′i for a two dimensional input vector is shown in fig. 6.7(a). The
non-isotropic contours show that the resultant function adapts its behavior depending on the
value of individual components of the error vector, that is smaller values of ej

i are treated with
the quadratic function whereas bigger values of ej

i are treated with the linear function. Thus,
instead of treating a whole point ei as an outlier or inlier, the influence of the higher components
of the error vector is mitigated to increase the robustness of the cost function to outliers. Since
each component of error vectors is modified independently, we take the attenuation factor for
all error vectors as a constant of value 1, as shown in fig. 6.7(b). Thus, the resultant function
has non-isotropic contours, as shown in fig. 6.7(c).

6.6.3 Proposed Isotropic Huber (IsoH) Function

In this section we propose a slightly different application strategy of the Huber function for
vector valued inputs, we refer to it as Isotropic Huber function because of its isotropic contours.
Instead of changing the behavior of the Huber function on the basis of each component of the
error vectors as mentioned before, the Isotropic Huber function adapts its behavior on the basis
of the magnitudes of the error vectors, that is ‖ei‖. This is done by introducing an attenuation
factor with each error vector. Unlike the Huber function, the Isotropic Huber function treats
the whole vector ei as an outlier or inlier depending on the value of its magnitude. As a result,
robustness against outliers is achieved instead of robustness against the high value components
of error vectors.

For some input vector ei, the Isotropic Huber function ψIsoH(·), is

ψIsoH(‖ei‖) = ψH(‖ei‖) . (6.38)

The value of αi from (6.17) is computed as,

α2
i ‖ei‖2 = ψH(‖ei‖) , (6.39)
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(a) Huber contours (b) Huber Attenuation (c) Resultant Huber con-
tours

(d) IsoH Contours (e) IsoH Attenuation (f) Resultant IsoH contours

Figure 6.7: Huber Functions (2D): The above figure shows plots of the Huber and Isotropic
Huber functions. The left column of the above figure shows contour plots of e′Ti e′i/α2

i for
two dimensional error vectors. The middle column shows plots of attenuation factors αi. The
right column plots e′Ti e′i, that is contour plots obtained by multiplying the left and middle
columns. The non-isotropic contours and a constant attenuation factor of the Huber function
indicates that the robustness to outliers is encoded in the function itself and is achieved through
the attenuation factor. On the other hand, the isotropic contours and a bell shaped curve of
attenuation factor of the Isotropic Huber function indicates that the robustness against outlier

is achieved through the attenuation factor.

or equivalently,

αi =
ψH(‖ei‖)1/2

‖ei‖
. (6.40)

Finally, a modified error vector is computed as e′i = αiei. By substituting the value of e′i in
(6.9) we get

C2(X, β) = ∑
i

e′Ti e′i = ∑
i

α2
i eT

i ei

= ∑
i

ψH(‖ei‖) = CIsoH(X, β) . (6.41)

The Isotropic Huber function CIsoH categorizes the data on the basis of the magnitude of
the input vector. Therefore, the influence of the whole data point on the resultant function is
reduced or magnified regardless of the values of the individual components as in the case of the
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Huber function described before. Thus, the resultant cost function CIsoH, deals with outliers
in a more intuitive way than the Huber cost function CH. Once again the robustness of the
proposed algorithm depends on the threshold value. So, by changing the threshold value of the
Huber function the robustness of the algorithm can be increase or decreased.

A contour plot of e′Ti e′i/αi for two dimensional input vectors is shown in fig. 6.7(d). The
isotropic contours indicate that all the inputs are treated equally without any distinction of
being an inlier or outlier. However, the bell shaped curve of the attenuation factor in fig. 6.7(e)
shows that the robustness to outliers is achieved through an attenuation factor associated with
each input vector. The bell shaped attenuation curve together with the isotropic function makes
the resultant function e′Ti e′i robust to outliers by assigning less weight to outliers, as shown in
fig. 6.7(f).

6.6.4 Re-Thresholded Huber Function:

The Huber function is a hybrid of a linear function and a quadratic function, where the hybrid
behavior is controlled by a set threshold value. Depending on the input value, the Huber func-
tion decides on the basis of the set threshold value whether to treat the corresponding entry with
a quadratic function or a linear function. The proposed technique updates the threshold value
of the Huber function after some iterations to increase the robustness of the Huber function
against outliers. Therefore, it is referred as the Re-Thresholded Huber function.

The threshold value generally represents the threshold for outliers, that is, if an input value
is greater than the threshold then it is treated as outlier, otherwise it is treated as an inlier. Thus,
the threshold value plays an important role in defining the robustness of the Huber function.
There is no fixed rule to determine the optimum value of the threshold. Depending on the type
of problem the optimum value of threshold may vary. The threshold value can not be set to
very large or very small values because it determines the dominant behavior of the resultant
function. For large values of threshold the influence of outliers is magnified by the quadratic
behavior of the Huber function. However, for small values of threshold the resultant function
behaves like a linear function and suffers from a problem of being close to non-differentiable.
Therefore, a careful selection strategy for threshold is very important for the robustness of the
resultant function.

We take advantage of the iterative behavior of the LM method and update, specifically
reduce, the threshold value of the Huber function after some fixed number of iteration. Given
an initial threshold value, the Re-Thresholded Huber function solves for (6.37) using the LM
method and after some iterations the threshold value is reduced by some factor. This way,
after some number of iterations the Huber function will have a dominant linear behavior and
consequently increased robustness.

6.7 Experiments

We apply the proposed algorithms to a subset (20 views) of the popular and publicly available
NotreDame dataset. Our experiments are focused on the following aspects of the proposed
algorithms: The first experiment shows the convergence behavior of the proposed algorithms
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on real data. The second experiment is designed to show the robustness of the proposed al-
gorithms to outliers. In this case, different percentage of outliers is added to the dataset and a
comparison of the results of the proposed algorithms is presented. The last experiment shows
the convergence behavior of the L1-bundle adjustment from different starting points, close to
each other.

In the case of the convergence behavior of the proposed algorithms on real data, parameter
estimates of the Absolute Value and re-thresholded Isotropic Huber methods are closer to the
ground truth than the rest of the algorithms, for details see fig. 6.8. On the other hand, in the
presence of outliers, as expected the L2-bundle adjustment has higher error than the rest of
the techniques, and the parameter estimates of the re-thresholded Isotropic Huber method are
closer to the ground truth than the rest of the algorithms, as shown in fig. 6.9. In the end, it is
shown that the convergence behavior of the L1-bundle adjustment does not change a lot when
different, but sufficiently close, starting points are used, as shown in fig. 6.10.

In our experiments we assume that the intrinsic camera parameters are known. There-
fore, we only solve for rotations and translations of cameras, and 3D structure of the scene.
Furthermore, we assume that the ground truth parameters are known and errors are computed
by using these values. Note that the error curves shown in the figures are not monotonically
decreasing because the errors reported are different than the error minimized by the bundle ad-
justment algorithms, that is the re-projection error. Furthermore, the plots shown in the figures
are cropped to enhance the visibility.

Starting Point: Bundle adjustment being an iterative technique requires a good starting point.
Since, the primary purpose of this chapter is not on how to generate a good starting point for
bundle adjustment, we add noise to the known ground truth parameters and use these parame-
ters as a starting point.

• Rotation parameters: Each camera rotation is perturbed by a maximum angle of 5◦,
by creating a rotation matrix from a random vector (maximum magnitude 5◦) and then
multiplying with the ground truth rotation.

• 3D points and Camera centers: Each component of X (3D point) and C (camera center)
is scaled by a maximum factor of 0.2. Note that each component is modified indepen-
dently.

Outliers: The percentage of outliers in the dataset varies in different experiments. We modify
some percentage of projection points or image points of every 3D point to represent outliers.
Let n be the percentage of outliers to be added in the data. A Gaussian noise of zero mean and
standard deviation of 25 is added to n% of the projections of every 3D point.

Error Measures: Here we discuss error computation methods for rotations, camera centers
and 3D points. All errors are computed with respect to the known ground truth values.

• Error in Rotations: Let {Ri} be a set of estimated rotation matrices and {R̂i} be the
corresponding set of ground truth rotation matrices. Let T be the L2 mean [Hartley et al.,
2011] of the rotation matrices RiR̂

T
i . Then, error in degrees for each rotation matrix is
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(a) Mean Error Rotations (Degrees) (b) Mean Percentage Error 3D Points

(c) Mean Percentage Error Camera Centers

Figure 6.8: Convergence Behavior: The above figures show the convergence behavior of the
proposed algorithms on real data, with no outliers added explicitly. The above plots show
that the Absolute Value and re-thresholded Isotropic Huber techniques give better results than
the rest of the techniques. Thus, whenever there are not many outliers in the dataset then the

Absolute value and re-thresholded Isotropic Huber techniques are recommended.

computed by finding the difference in angle between the ground truth rotation R̂i and the
transformed rotation R

′
i = TRi. Finally, the mean of errors is reported.

• Error in Camera Centers and 3D points: We report a mean percentage error between
true and estimated 3D point clouds. Let {xi} be a set of k ground truth points and {yi}
be a set of estimated points. Let T be the transformation between the points clouds,
computed using the Horn’s method [Horn et al., 1988]. The mean percentage error e
between points is computed as,

e =
1
k

k

∑
i=1

(
abs(‖xi‖ − ‖Tyi‖)

‖xi‖
× 100

)
,

The same technique is used for computing errors in camera centers.

In the rest of the section we will discuss our experimental results.

6.7.1 Convergence Behavior

This experiment demonstrates the convergence behavior of the proposed algorithms on real
data, with no outliers added explicitly. Since the proposed techniques are advantageous in the
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(a) Mean Error Rotations (Degrees) (b) Mean Percentage Error 3D Points

(c) Mean Percentage Error Camera Centers

Figure 6.9: Robustness to Outliers: The above figures show the results of the proposed methods
in the presence of different number of outliers in the dataset. In this case the percentage of
outliers is varied from 0% to 40% with an increment of 10%. The results have shown that
the re-thresholded Isotropic Huber technique has the least error, except when there are no
outliers in the dataset. Furthermore, as expected, the results of the L2 method are far from
the ground truth than the rest of the techniques. Therefore, in the presence of outliers the
re-thresholded Isotropic Huber technique is recommended because of its superior results and

adaptive threshold values.

presence of outliers, we do not expect the results of the proposed techniques to be much dif-
ferent than the existing least squares technique. As described before that the starting point of
algorithms is generated by modifying the ground truth parameters, where rotation matrices are
perturbed by a maximum of 5◦, and camera centers and 3D points are scaled by a maximum
factor of 0.2. It evident from fig. 6.8 that the results of the Absolute Value and re-thresholded
Isotropic Huber techniques are close to the ground truth than the rest of the techniques. Thus,
whenever there are not many outliers in the dataset then the Absolute value and re-thresholded
Isotropic Huber techniques are recommended. Since the LM method is a numerical optimiza-
tion method, the results of the L1 and IRLS methods are the same.

6.7.2 Robustness to Outliers

This experiment demonstrates the robustness of the proposed algorithms against outliers. In
order to achieve this purpose we add different percentage of outliers to the dataset ranging from
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(a) Mean Error Rotations (Degrees) (b) Mean Percentage Error 3D Points

(c) Mean Percentage Error Camera Centers

Figure 6.10: Convergence from Different Starting Points (L1-bundle adjustment): The above
figures show the convergence behavior of the L1 method from different starting points. Each
colored line represents a different starting point of the algorithm. Results have shown that the
convergence behavior of the L1 method does not change much with a change in the starting
points of the algorithm and that the parameters recovered are generally close to each other.

0% to 40% with an increment of 10%. We are particularly interested in the L1, L2, Absolute
Value, Isotropic Huber and re-thresholded Isotropic algorithms. As expected, the results of the
L2 algorithm are far from the ground truth values than the rest of the techniques. However, the
parameter estimates of the re-thresholded Isotropic Huber algorithm are closer to ground truth
than the other proposed algorithms. Note that the Absolute Value algorithm gives superior
results than the rest of the algorithms only when no outliers are added explicitly to the dataset,
that is real data. Thus, if the robustness against outliers is desired then the re-thresholded
Isotropic Huber algorithm is recommended.

6.7.3 Convergence from Different Starting Points

Since bundle adjustment uses the Levenberg-Marquardt method, a numerical optimization
method, to find a solution, the final output of the algorithm depends on the starting points
of the algorithm. This experiment shows that the convergence behavior of the L1-bundle ad-
justment does not change much with a small change in the starting point of the algorithm.
Here, we test the algorithm by taking different starting points close to each other. In order to
generate different starting points for our algorithm, in addition to the basic noise in parameters
as defined before, we further perturb the rotations by 1◦, and camera center and 3D points by a
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factor of 0.05. Each colored line in fig. 6.10 indicates the convergence of the L1 technique from
a different starting point. These plots have shown that the results of the L1-bundle adjustment
will not change drastically with a small change in initial parameter estimates and that the final
parameter estimates are mostly close to each other.

6.8 Summary

In summary, we proposed techniques to minimize several robust cost functions, especially an
Lq cost function, for 1 ≤ q < 2, and the Huber function. An advantage of the proposed
techniques is that an existing implementation of the L2 bundle adjustment can be modified to
minimized a desired cost function because the proposed techniques still use the LM method
to find a robust solution. Furthermore, our experimental results on the NotreDame set showed
that the proposed techniques are more robust to outliers than the L2 bundle adjustment. A
Simple approach and easy implementation makes the proposed algorithms practically feasible.
The applicability of proposed techniques is not only limited to bundle adjustment problem but
a wide class of non-linear parameter estimation problems, that use the Levenberg-Marquardt
method for minimization, can be solved robustly using these techniques.
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Chapter 7

Conclusion

We proposed several methods to solve two classes of problems: Firstly, Lq-closest-points prob-
lems where we seek a point for which the sum of the q-th power of distances to a given set of
measurements, such as points, lines, subspaces, or their mixture, is the minimum. Secondly,
non-linear parameter estimation problems where we solve for a solution of the Lq-bundle ad-
justment problem by minimizing the sum of the q-th power of re-projection errors. Our exper-
imental results, confirm the fact that the proposed Lq techniques, for 1 ≤ q < 2, mitigate the
effect of outliers and are more robust to outliers than the L2 methods.

Lq-closest-point Problems: In the first part of the thesis we proposed several generalizations
of the Weiszfeld algorithm. The first generalization, the Lq Weiszfeld algorithm, solves for the
Lq mean of a set of points in IRN . Later, this algorithm is generalized to find the Lq mean of a
set of points on a Riemannian manifold of non-negative sectional curvature. In addition to the
proof of convergence, we showed that the convergence of the proposed algorithm is guaranteed
even when the bounds on the maximum distance between points on a manifold are more relaxed
than the existing L1 methods in the literature. In the end, we proposed an algorithm to find the
Lq-closest-point to a set of affine subspaces, possibly of different dimensions, in IRN .

The proposed generalizations inherit all the advantages of the Weiszfeld algorithm, such
as guaranteed convergence to the Lq minimum, analytical updates, etc. Unlike other gradient
descent methods that rely on an expensive line search for an update step, our methods compute
updates analytically. Therefore, the Lq algorithms proposed here are substantially simpler than
the line-search based gradient-descent algorithms. Below we summarize some features of the
closest-point algorithms:

• Provable convergence to the Lq minimum, for 1 ≤ q < 2.

• Updates are computed analytically.

• For q > 1, Lq cost functions are differentiable at the minimum.

• Simple to understand methods these algorithms iteratively solve weighted L2 cost func-
tions to find the Lq solution.

• Easy to code, because an existing least squares implementation can be modified to find
the desired solution.

129
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In addition to the theoretical proof for the convergence of the Lq-closest-point algorithms
to the Lq minimum, we showed the applicability of the proposed algorithms by solving the
problems of rotation averaging, symmetric positive-definite matrices averaging, and triangula-
tion. Our experimental results showed that the results of the Lq algorithms, for 1 < q ≤ 2, are
closer to the ground truth than the L2 algorithms. Although, in some cases the error minimized
is different than the error reported but still the results of the Lq methods, especially for q = 1,
are superior than the L2 methods.

Parameter Estimation Problems: In the last part of the thesis we proposed several methods
to find a robust solution of the bundle adjustment problem, especially an Lq solution, for 1 ≤
q < 2. Once again, the proposed methods use a non-linear least squares method, namely the
Levenberg-Marquardt method, to find a robust solution, even an Lq solution. Therefore, an
existing implementation of the L2 bundle adjustment is used, with slight modifications, to find
a desired robust solution. Our experimental results on the NotreDame set confirmed that the
proposed algorithms are more robust to ouliters than the least squares bundle adjustment.

The Simple approach and easy implementation of the proposed L1-bundle adjustment
makes it practically useful. The applicability of proposed techniques is not only limited to
bundle adjustment problem but a more general class of non-linear problems, that uses the
Levenberg-Marquardt method for minimization, can be solved robustly using these techniques.

Ease of implementation and fast iteration make the proposed algorithms attractive wherever
Lq optimization is desired. An interesting observation is that the Lq methods, for q = 1, tend
to emphasize (and largely ignore) outliers by allowing large individual errors to occur, whereas
L2 methods will strive to keep all errors low. For this reason the L1 methods may be useful in
identifying outliers. A question that remained partially unanswered is, which computer vision
problems can be solved using this technique?

7.1 Future Work

Here we discuss some future research directions of the proposed algorithms. Note that future
work for some contributions of this thesis have already been discussed in the corresponding
chapters, and are not repeated here.

7.1.1 RANSAC-style Algorithm

In the presence of a large proportion of outliers in data a RANSAC-style algorithm, based
on Lq algorithms, can be proposed to robustly estimate parameters of a model. RANSAC
is an iterative method to estimate parameters of a model from a set of measurements and is
designed to cope with a large proportion of outliers in data. Instead of using as much of the
data as possible to obtain an initial solution, RANSAC generates candidate solutions by using
the minimum number of observations required to estimate the underlying model parameters. It
uses the smallest set possible to obtain an initial solution and proceeds to enlarge this set with
consistent data points.
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(a) Frame 1 (b) Frame 2

Figure 7.1: Multi-body Structure and Motion: The above figure shows two images of a scene
where the position of camera is fixed, while objects (vehicles) in the scene undergo motion in

different directions independent of each other.

As mentioned before, Lq methods are generally more robust to outliers than L2 methods.
For example, the geometric median or L1 mean of a set of points has a breakdown point of 50%,
which means that the L1 mean remains unaffected by outliers unless more than 50% of points
are outliers. Therefore, a RANSAC-inspired approach, based on Lq optimization techniques,
can be used to find a robust solution of a problem in the presence of a large proportion of
outliers in data. A RANSAC-inspired approach can be used to generate some candidate models
by selecting a subset (not the minimal set) of measurements, estimating parameters of a model
using an Lq algorithm and repeating the procedure for a different subset of points. Finally,
from among the candidate models, a model is selected that has the minimum error. Clearly,
this procedure requires lesser number of iterations than the RANSAC algorithm that estimates
model parameters from a minimal set of points.

7.1.2 Multi-body Structure and Motion (MSaM) through Model Selection

Multi-body structure and motion (MSaM) is closely related to the problem of structure and
motion (SaM). Structure and motion is the problem of estimating geometric parameters from
multiple images of a scene under the assumption that there is a single dominant motion in
scene. It is a well studied problem in computer vision and a variety of method have been
developed to solve this problem [Longuet-Higgins, 1981; Hartley, 1992]. On the other hand,
Multi-body structure and motion recovers parameters of a dynamic scene where objects in the
scene undergo a rigid body motion. Several methods have been proposed to solve the problem
of MSaM such as multi-body fundamental matrix [Vidal and Sastry, 2003, 2002], multi-body
homographies [Vidal and Ma, 2004], etc.

An alternative approach to tackle the MSaM problem is use a clustering based approach
where points are clustered based on their motions [Schindler and Suter, 2006]. This approach
is based on recover-and-select scheme where several candidate models are recovered based on
Monte-Carlo sampling of the image point correspondences and models are selected on the basis
of their residual errors. The output of the clustering based method depends on the robustness
of the method that is used to instantiate the motion models. Thus, we can use Lq minimization
techniques to generate candidate models. Once candidate models are generated, models that
best describe the measurements can be selected.
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