
Implementing an event camera

region of interest filter for real-time

object tracking

A thesis submitted in part fulfilment of the degree of

Bachelor of Engineering (Honours)

by

Lachlan Spencer

U6672529

Supervisor: Prof. Jochen Trumpf

Examiner: Prof. Robert Mahony

College of Engineering and Computer Science

The Australian National University

June 2024

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university. To the best of the author’s knowledge, it contains

no material previously published or written by another person, except where due ref-

erence is made in the text.

Lachlan Spencer

6 June 2024

©Lachlan Spencer

Acknowledgements

Thank you to my family for their constant support throughout my studies. Thank you

to my partner Maggie for all her hard work keeping me fed and motivated.

i

Abstract

Reducing the amount of data processed in event camera systems lowers power con-

sumption and increases the speed of computation of tracking algorithms. A filter that

reduces the Region of Interest of the camera reduces the amount of data that is output

and consequently processed, at the cost of performance. This performance decrease

comes from the FPGA not transmitting events individually over USB, but in batches

called buffers. By reducing the buffer size, the decreased performance can be negated.

This leads to a decrease in data output with maintained system performance.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures vi

List of Tables vii

Nomenclature viii

1 Introduction 1

1.1 Thesis contributions . 3

2 Literature Review 4

2.1 Object tracking . 4

2.2 Event Cameras . 5

2.3 Field Programmable Gate Arrays . 6

2.4 Object tracking using Field Programmable Gate Array’s with Event-

based Cameras . 6

3 Background 8

3.1 Event Cameras . 8

3.2 Latency . 10

3.3 Region of Interest filter . 12

3.4 Field Programmable Gate Array (FPGA) 13

3.5 Embedded Linux with the Yocto Project and PetaLinux 14

3.6 Robust work environment . 15

4 Work Environment Design 17

4.1 Containers . 17

4.2 Virtual Machines . 18

4.3 Decision . 19

4.4 Result . 20

5 Methodology 23

5.1 Experiment . 23

iii

Contents Contents

6 Results and Analysis 25

6.1 Region of Interest . 25

6.1.1 Measurements . 26

6.1.1.1 Buffer size . 28

6.1.1.2 Time between events 30

6.1.1.3 Time between buffers of events (Buffer delay) 34

6.1.1.4 Buffer time span . 38

6.1.1.5 Event rate . 41

6.1.1.6 Total number of events in the experiment 44

7 Conclusion 46

7.1 Future Developments . 47

7.1.1 The Next Step . 47

7.1.2 An Alternative . 48

7.1.3 Applications . 48

A Experimental Setup 50

B RDK System 53

C Scripts 56

C.1 Region of Interest C++ script . 56

C.2 Region of Interest Python analysis script 57

C.3 Python table generation and experiment trend plots 58

C.4 Python image magnify procedure . 58

D Additional Results 60

Bibliography 67

iv

List of Figures

1.1 A basic view of the RDK2 system . 2

3.1 Comparison of how a Frame-based sensor views an action to an Event-

based sensor [1] . 9

3.2 Format of events [2] . 9

3.3 Visualisation of latency and jitter on time axis in reference to the event

camera used [3] . 10

3.4 The different axes of time relative to each other 11

3.5 A Region of Interest (blue) in a pixel array [4] 12

3.6 Visualisation of the RDK camera output with no filters applied 13

3.7 Visualisation of the RDK camera output with a 150 × 150 region of

interest filter applied . 13

3.8 Vivado block diagram for this project [5] 14

4.1 Left to right movement of the camera in the stage with the default event

polarity . 21

4.2 Left to right movement of the camera in the stage with the flipped event

polarity . 22

6.1 Buffer size across all ROI experiments 29

6.2 ∆Tevent across all ROI experiments . 31

6.3 Baseline ∆Tevent histogram . 31

6.4 Typical buffer of events in baseline experiment 32

6.5 10% ∆Tevent histogram . 33

6.6 Typical buffer of events in 10% ROI experiment 33

6.7 Buffer delay across all ROI experiments 35

6.8 Typical buffers in baseline experiment 36

6.9 Typical buffers in 10% ROI experiment 36

6.10 Baseline buffer delay histogram . 37

6.11 10% buffer delay histogram . 38

6.12 Baseline ∆Tbuffer histogram . 40

6.13 10% ∆Tbuffer histogram . 40

6.14 ∆Tbuffer across all ROI experiments . 41

6.15 Event rate across all ROI experiments 42

6.16 Baseline event rates histogram . 43

v

List of Figures List of Figures

6.17 10% event rates histogram . 44

6.18 Total number of events across all ROI experiments 45

A.1 Experimental stage setup . 50

A.2 Side view of experimental stage setup 51

A.3 Black and white target of experimental stage setup 51

A.4 Experimental setup showing the placement of the RDK within the stage

during the polarity experiment . 52

A.5 Experimental setup showing the placement of the RDK within the stage

during the ROI experiments . 52

B.1 System block diagram for the Prophesee RDK showing the CCAM5

module, the FPGA and its sub-modules and the Trenz board represent-

ing the RDK system after the FPGA [5] 54

B.2 Block diagram for the main processing block inside the FPGA [5] . . . 54

B.3 High level system view of the RDK, broadly showing the path events

take from detecting to output [3] . 55

C.1 State diagram for C++ sample collection script 57

D.1 20% ROI measurements . 62

D.2 30% ROI measurements . 62

D.3 40% ROI measurements . 63

D.4 50% ROI measurements . 63

D.5 60% ROI measurements . 64

D.6 70% ROI measurements . 64

D.7 80% ROI measurements . 65

D.8 90% ROI measurements . 65

D.9 100% ROI measurements . 66

vi

List of Tables

4.1 Strengths and weaknesses of containers [6] [7] [8]. 18

4.2 Strengths and weaknesses of virtual machines [9] [10] [11]. 19

6.1 Table of results for all ROI experiments 27

6.2 Table of results for each ROI experiments ratios relative to the baseline 27

D.1 Table of Pearson correlation coefficient values 60

D.2 Table of RMSE values . 61

vii

Nomenclature

RDK Reference Design Kit

EVK Evaluation Kit

FPGA Field Programmable Gate Array

µs microsecond

ROI Region of Interest

∆Tevent Time between events

∆Tbuffer Time between buffers of events

RMSE Root Mean Squared Error

RTC Real Time Clock

WSL Windows Subsystem for Linux

csv Comma-Separated Values

GUI Graphical User Interface

IC Integrated Circuit

HDL Hardware Description Language

PLM Platform Loader and Manager

u-boot Universal Bootloader

FSBL First Stage Bootloader

OS Operating System

MPSoc MultiProcessor System On Chip

GPIO General-Purpose Input/Output

MIPI Mobile Industry Processor Interface

viii

Chapter 1

Introduction

Technology evolves over time as its limitations can no longer keep pace with innovation.

Camera technology is at this stage currently, as conventional frame-based sensor tech-

nology fails to keep up with new system requirements. As systems become faster and

more efficient, technology needs to keep pace. Industries such as mining, Defence, and

manufacturing, and fields such as robotics and autonomous vehicles use systems and

devices that operate as close to real-time as possible. In most robotics applications,

real-time is a term used when the system has a time performance requirement in the

order of microseconds. Every process that the system performs takes a finite amount

of time, meaning that for a system to perform in real-time, every process must be as

efficient as possible.

Frame-based cameras have been the standard technology for a long time, however they

come with one major drawback: the amount of data they produce. This problem wor-

sens as the resolution of the camera increases. A standard 12 mega-pixel (MP) camera

with a frame rate of 30 frames per second (fps) over one second produces 360 million

pixels worth of data. This is an enormous amount of data that requires processing, and

as resolutions improve, this only worsens. This is where newer technologies, such as

event cameras, come in. Unlike frame-based cameras which operate by using a shutter

that exposes all the pixels in the camera to a scene at once, the pixels in an event

camera work individually and asynchronously. The pixels are triggered by changes in

light, producing no data when no change occurs.

For example, a dark scene at night that contains a small light that blinks on and off.

Using a 12MP, 30fps frame-based camera, the 360 million pixels worth of data would

contain no useful information except for the area of pixels that contain the light source.

Using an event camera in this situation however, only the pixels that detect the light

source would send data to the user, producing millions of points of data less than the

frame-based sensor.

This thesis studies ways to further improve the event camera performance from the

perspective of the system user. Figure 1.1 shows a basic block diagram of the system.

1

Chapter 1 Introduction

Figure 1.1: A basic view of the RDK2 system

The amount of pixels that a tracking algorithm requires to track a target is related

to the relative speed between the target and the sensor. If the relative speed between a

target and the camera is low, an object tracking algorithm does not need the entire res-

olution of the camera to track the target. As the sensing rate of the camera increases,

the relative speed will decrease as it is related to the time span between consecutive

images. Frame-based sensors generally have frame rates that are relatively slow, in

the order of 30 to 60fps, unlike event-based sensors which have equivalent frame rates

greater than 10 thousand frames per second [12].

This project uses Prophesee’s Reference Design Kit (RDK) which is based on their

Evaluation Kit 2 (EVK2) hardware platform with an IMX636 event-based sensor [5].

It is built around the AMD Xilinx Zynq UltraScale+ MPSoC Field Programmable

Gate Array (FPGA). This kit uses the CCAM5 module, which contains the IMX636

event-based sensor with a pixel resolution of 1280 × 720 and a maximum output rate

of 1.1 billion events per second.

In this thesis I propose the use of a Region of Interest (ROI) filter to limit the number

of pixels information is gathered from. I further suggest a method to maintain system

performance while achieving this reduced data output.

Firstly, to establish a reliable computer system to enable this research, a robust work

environment is discussed in Section 4. Secondly, the methodology of the experiments

performed are detailed in Section 5. The proposed method is by using an ROI filter

to limit information output from the FPGA, called events. I expect and show the

relationship between the system performance from the perspective of the FPGA, to be

closely related to the ROI in Section 6. These findings are related to the overall system

latency in Section 7, before alternative methods to improve the system are given in

Section 7.1.

2

Chapter 1 Introduction 1.1 Thesis contributions

1.1 Thesis contributions

The main contributions of this thesis are:

• A systems engineering trade-off analysis of virtualisation methods for the project

work environment. Given in Section 4.

• An implementation of an FPGA ROI filter, Section 3.3.

• An analysis of the relationship between the ROI and the processing performance

of the FPGA. Given in Section 6.

• A proposed solution to the negative time performance gain of an ROI filter in an

event camera system. Given in Section 7.1.1.

• Two proposed alternative methods to an ROI filter for improving performance in

an event camera system. Given in Section 7.1.2.

3

Chapter 2

Literature Review

This thesis centres around the processing performance of event cameras when used with

Field Programmable Gate Arrays, in the aim of improving object tracking perform-

ance. Each of these three areas have been extensively researched, with little research

performed on the combination of all three. This thesis aims to bridge this gap and

study the use of all three technologies, tying these well researched fields together. The

current literature for Object Tracking, Event Cameras, Field Programmable Gate Ar-

rays (FPGA’s) and their intersection is summarised in Sections 2.1, 2.2, 2.3 and 2.4

respectively.

2.1 Object tracking

Object tracking has been extensively researched for decades but is a complex field that

still has many issues. Tracking continues to struggle with noisy images, complex object

motion, non-rigid objects, complex shaped objects, changes in the illumination of the

scene, and real-time processing [13]. For this thesis processing in real-time is directly

relevant, however, the scenes’ illumination is very relevant to the field of event cameras.

Some trackers combat illumination variation by using correlation filters such as Dis-

criminative correlation filters (DCFs). Chen et al. [14] finds that correlation filter-

based-trackers (CFTs) improve robustness, speed and the accuracy of the tracker in

scenes of variable illumination. Huang et al. [15] showed that an ”aberrance repressed

correlation filter (ARCF)” improves robustness and accuracy when tracking objects

in scenes with a lot of background noise, occlusion and illumination variation. This

method was verified with footage recorded at only 10 frames per second (fps), however

Bolme et al. [16] proposed a correlation filter based on squared error that exceeded

600fps using only grey scale images. If an algorithm such as this were applied to an

event camera this is not an issue as event cameras currently do not support coloured

output.

Other proposed methods to counter illumination variation include histogram equal-

isation, demonstrated by Sun et al. [17] who use a Bas-relief technique to recover any

4

Chapter 2 Literature Review 2.2 Event Cameras

information possible from an image. Li et al. [18] proposed another method that uses

the shape, texture and colour of an image to create robust tracking in variably lit

scenes. However, this method was shown to have limited real-time processing ability

as it was presented. Their algorithm could only support real-time processing at 15fps

for images with a pixel resolution of 160 × 120, or 3fps at a resolution of 320 × 240.

While the resolutions may not be an issue in event camera object tracking through

the use of a Region of Interest (ROI) filter as discussed in this thesis, the frame rate

indicates that the processing speed of this algorithm is not optimal.

2.2 Event Cameras

Event cameras are a prominent alternative technology to frame-based sensors which

are currently the standard. The applications of event cameras largely centre around

tracking due to the equivalent frame rate speeds these cameras boast. The speed and

low relative power consumption make event cameras ideal for real-time embedded sys-

tems. As this technology is still relatively new, there are a number of differences to

standard frame-based cameras that need to be addressed to make these cameras vi-

able. These issues include the difference in space-time output [19], and the difference

in photometric sensing. In this context, the difference in photometric sensing refers to

how standard frame-based cameras often operate in colour images while event-based

cameras do not. Even when frame-based cameras generate grey scale images, they are

fundamentally different from the polarity event cameras use in colour’s stead.

Qinyi et al. [20] propose the use of a neural network architecture called PointNet

that treats the event stream as three-dimensional point clouds for accurate real-time

gesture recognition. They found that this method has one of the best accuracies of ex-

isting gesture recognition methods with an accuracy of 97.08%. However, this method

reduces the number of input events down to only 40,000 events per second, which they

state shows that it is viable for ”real-time applications with strict timing and memory

requirements”. Due to the limited number of events in this method, it may not be

viable for larger systems.

Cian et al. [21] use a Prophesee event camera, similar to what is used in this thesis, for

a blink detection algorithm. This paper uses the entire pixel resolution of the camera,

1280× 720 pixels, and shows that their algorithm has a wider range of accuracy than

Qinyi et al., 98% at best and 80.3% at worst. They state that this is due to movement

in the head, as their method sampled heads in static positions. The algorithm is pro-

posed as real-time, however they state that groups of 50,000 events are accumulated

over five milliseconds before any inference occurs. This alone introduces what is pos-

sibly too much latency in a true real-time system.

5

Chapter 2 Literature Review 2.3 Field Programmable Gate Arrays

Ridwan [22] proposes a looming object detection algorithm that processes closer to the

temporal limit of the event camera used, in the order of single microseconds. This

algorithm is viable for real-time systems as it processes events individually rather than

in batches such as the blink detection algorithm from Cian et al. [21].

2.3 Field Programmable Gate Arrays

FPGA’s are popular mainly due to their flexibility and very high computational through-

put. They also benefit from low power consumption, making them ideal alternatives

to traditional Integrated Circuits (ICs).

Neural networks such as that proposed by Liu et al. [23] show the complexity and

size of networks that FPGA’s can handle while maintaining low power consumption.

The network proposed here is able to simulate almost 17 million synapse connections

with a power consumption of only half a Watt. This paper also proposed networks

that were able to implement algorithms that recognise MNIST data with accuracies

ranging from 83.16% to 97.81% from video with frame rates of nearly 210fps. This is in

contrast to Saddik et al. [24] who showed that their architecture could only process up

to 107fps, which they state ”meets real-time constraints”. For the FPGA System on

Chip (SoC) used, Saddik et al. are still able to boast a maximum power consumption

of only 1.8W [25], while a typical CPU power consumption is in the order of 50W [26].

Lamoureux et al. [27] found that energy efficiency can be improved by a further 14.6%

by implementing efficient clock networks, as they found that the applications FPGA’s

are typically used in implement complex generic clock networks. This implies that if

the system does not implement any clock networks, the energy efficiency would improve

further again, potentially crucial in real-time embedded systems.

2.4 Object tracking using Field Programmable Gate

Array’s with Event-based Cameras

A real-time embedded object tracking system would benefit from the use of both event

cameras and FPGA’s as shown in the previous sections. Ordinarily, object tracking

algorithms tend to use frame-based cameras as they are readily available, cheaper, and

the standard for camera technology currently. The combination of FPGA and event

camera technology is gaining popularity, but a majority of research does not have power

or timing constraints strict enough to warrant the complexity of using these technolo-

gies together. However, there does exist some research utilising all of these technologies.

6

Chapter 2 Literature Review
2.4 Object tracking using Field Programmable Gate Array’s with Event-based

Cameras

Yizhao et al. [28] present a reconfigurable FPGA architecture which performs real-time

multi-object tracking from event data. They found that their architecture processed

almost 3 million events per second with a maximum power consumption of 5.45W.

Comparing this to a baseline software trial, Yizhao et al. found that their architecture

had a throughput 44 times higher and a power efficiency 35.4 times higher. They also

found that their worst-case latency was almost 100 times less than the baseline.

Barrios-Avilés et al. [29] suggest that the cause for event camera technology not being

a standard in industrial applications despite their benefits is due to the technology not

yet having established data buses for transfer. As it stands event systems use much

higher bandwidth than most industrial systems can handle, with the simple fact that

an event camera generates so many events it floods data networks. Barrios-Avilés et al.

create a network node based on an FPGA that is able to handle this data accordingly.

They test this by using a two axis robot that uses event cameras for fast image re-

cognition, something that would be used in industrial applications. They were able to

reduce event data by up to 85% while achieving a 99ms increase in position detection

compared to the traditional frame-based camera.

Another paper by Barrios-Avilés et al. [30] further investigate the reduction of event

data by implementing a filtering algorithm to reduce data without information loss.

They verify their filter by implementing an object tracking algorithm and process the

data on a Xilinx Virtex6 FPGA. They found that their filter decreases error com-

pared to the baseline filter, simultaneously reducing data by 85%. From their results,

Barrios-Avilés et al. conclude that a system that implements an event data reduction

filter such as theirs, processed on an FPGA, shows ”real time operation capabilities

and very low resource usage”.

7

Chapter 3

Background

This thesis requires knowledge on five main topics, namely: event cameras, latency,

Field Programmable Gate Array’s (FPGA’s), the Yocto project, and robust work en-

vironments. This will be discussed in Sections 3.1, 3.2, 3.4, 3.5 and 3.6 respectively.

3.1 Event Cameras

To understand how an event-based vision system works, an understanding of how a

frame-based vision system works is needed.

Standard cameras, such as those used in Smartphones and Security Cameras, are what

are called frame-based cameras. The camera’s resolution comes from the size of its

pixel array, a grid of rows and columns of individual pixels. These cameras work by

capturing an image as a shutter exposes the pixel array to a scene. A shutter can either

be something that mechanically covers the pixel array or logic that electronically turns

off the pixels. The output from this exposure is called a frame, and the rate frames are

captured is called the frame rate.

The time between exposures of the camera defines the frame rate of the camera. To

sample the image, the camera reads the intensity of light at each pixel in the camera’s

resolution. In a situation where the scene does not change much between consecutive

frames, such as at night, unnecessary data is captured and processed.

An event-based camera does not use frames or shutters to sample pixels at a fixed

interval. Instead, the pixels of an event-based sensor are triggered by a change in light

intensity and are independent of one another. This difference results in event cameras

having much higher frame rate equivalents compared to frame-based cameras, with the

difference between technologies illustrated in Figure 3.1.

When a pixel captures a change in brightness, it creates what is called an event,

which contains data on the position of the pixel, the timestamp of when the change

happened, and the polarity of the brightness change. The event data format is illus-

trated in Figure 3.2.

8

Chapter 3 Background 3.1 Event Cameras

Figure 3.1: Comparison of how a Frame-based sensor views an action to an Event-based

sensor [1]

Figure 3.2: Format of events [2]

The typical notation used to describe an event is given as [31]:

e = [x, y, t, p]T

Where e represents the event, and x and y represent the x and y coordinates of the

pixel respectively. t is the timestamp, denoting when the event happened to a mi-

crosecond resolution [1]. p represents the polarity, given as a binary value showing

whether the change in brightness was either an increase or decrease.

When an event is registered by a pixel, the pixel will create an event in this form,

and send an alert to an arbiter [32]. The arbiter then sorts through the pixel array

by determining the priority of the requested events based on the row coordinates [33].

The arbiter reads through rows of pixels, skipping rows if no request has that row

coordinate. It then adds requested events it finds to a buffer that holds events to get

output. This method of searching is much faster than going through every pixel and

determining if there is an event there as it is able to potentially skip numerous pixels.

For an n × m camera pixel resolution, (width × height), a linear search would take

O(n*m) time, while a row selection algorithm would take only O(n+m).

9

Chapter 3 Background 3.2 Latency

The event camera used in this project is the CCAM5 module with the IMX636 event-

based vision sensor [34]. It has a pixel resolution of 1280× 720 and is able to output a

maximum of 1.1 billion events per second as used in this project. It connects to the rest

of the system used in this project with two MIPI CSI-2 lanes capable of transmitting

1.5 billion bits per second per lane.

3.2 Latency

This project focusses on the performance metric of latency. Latency in an embedded

system is the ”time delay between input event being applied to a system and the as-

sociated output action from the system” [35]. In simpler terms, latency is the time it

takes a process from start to finish, and jitter is a measure of the consistency of the

latency.

For the RDK used in this project, latency is ”the pixel response delay to a temporal

contrast step” [3]. This definition is generic and relative to an axis of time. This project

requires an understanding of latency from different perspectives, namely the camera,

the FPGA, and the user.

The perspective of the camera is best illustrated with Figure 3.3 which has a time

axis that shows when a lighting change occurs and when a pixel in the camera detects

this change. This figure also shows jitter, another important performance metric in

embedded systems that, for the RDK, ”corresponds to the temporal precision at pixel

level” [3].

Figure 3.3: Visualisation of latency and jitter on time axis in reference to the event

camera used [3]

From the perspective of the FPGA, latency is of primary focus in the experiments

explained in Chapter 5 and measured in Chapter 6. This is shown as ∆t̂ and ∆T in

Figure 3.4, which shows three different time axes representing perspectives within the

RDK2 system shown in Figure 1.1. In real-time, there are four time axes which in-

cludes the addition of the real-time or physical time axis. For the event camera system,

10

Chapter 3 Background 3.2 Latency

this represents when a change in light takes place. For simplicity, this axis is combined

with the camera axis, which represents when the event camera captures this lighting

change and creates an event. They were combined as the timing resolution of the event

camera used in the RDK is very small, less than a microsecond, and as such for these

purposes is negligible and out of the project scope.

The other two time axes are the FPGA and user time axes. Respectively, these repres-

ent when the FPGA registers an event after any transfer delay from the camera to the

FPGA, and when the FPGA registers an event from the perspective of the user. The

time axis from the perspective of the user, includes all previous delays described, along

with delays that come from the transfer from the FPGA to the user. This primarily

includes delay from the USB driver that connects the user to the RDK system.

Figure 3.4: The different axes of time relative to each other

The total latencies in reference to the FPGA and the user is described in Equations

3.1 and 3.2 as seen in Figure 3.4.

ζFPGA = ∆t̂ (3.1)

ζuser = ζFPGA +∆T +∆t̃ (3.2)

Where ζ is latency and the subscript shows the perspective. ∆t̂, ∆T and ∆t̃ are time

variables, illustrated in Figure 3.4.

∆t̂ is the delay between the camera and the FPGA, ∆T is the difference in timestamps

between the first event in a buffer to the last event. ∆t̃ is the delay from after a buffer

is sent from the FPGA to when the user receives it.

For the scope of this project, I focus on ∆T and ∆t̃. ∆T represents the ∆Tbuffer

described in Section 6.1.1.4, and is related to all other measurements described in

Section 6.1.1. From the scope of this project, from the perspective of the user the

11

Chapter 3 Background 3.3 Region of Interest filter

performance of the system is only concerned with ∆T . As the goal of this project is

to increase the performance of the RDK, I show the effect of reducing the number of

events on metrics such as ∆T , and relate it back to the overall ∆t̃.

3.3 Region of Interest filter

In object tracking the tracking algorithm only needs a select area around the object

being tracked, any excess information is not needed. An ROI filter specifies an area

and excludes all events outside this and is visualised in Figure 3.5.

Figure 3.5: A Region of Interest (blue) in a pixel array [4]

Figure 3.6 shows a screen capture of the output event stream from the RDK without

any filters, showing the full pixel resolution of the CCAM5. Events are represented

as blue and white pixels and are seen covering the full 1280 × 720 area coming from

uniform noise. The output shown in figure 3.7 comes from the RDK with an ROI filter

applied to the FPGA, restricting the area down from 1280 × 720 to 150 × 150. The

event streams shown in these figures were captured in the same environment, with the

same lighting conditions resulting in very similar noise. The area of interest in Figure

3.7 was the upper left corner of the image, representing a square with the coordinates

(0,0) and (150,150) in the CCAM5’s coordinate system. This figure shows the absence

of events in the rest of the frame.

An example of where this filter would be useful in a tracking algorithm would be

tracking a torch moving in the dark. An object tracking algorithm would not need

to process any pixel representing the background, as it only needs the pixels around

the area of the torch. The goal would be to feed updated areas of interest from the

tracking algorithm into the event-based camera, moving the ROI and tracking more

efficiently with reduced processing.

12

Chapter 3 Background 3.4 Field Programmable Gate Array (FPGA)

Figure 3.6: Visualisation of the RDK camera output with no filters applied

Figure 3.7: Visualisation of the RDK camera output with a 150 × 150 region of interest

filter applied

3.4 Field Programmable Gate Array (FPGA)

An FPGA is a type of Integrated Circuit (IC), which is built so that the user can

reconfigure it. ICs are small silicon wafers containing components such as transistors,

capacitors and resistors [36] etched into the material. Conductive materials, com-

monly copper, are placed between the components to connect them. In normal ICs,

these paths are created during the manufacturing process and cannot change as they

are made with a specific purpose in mind.

In FPGA’s, components are not etched into the semiconductor. Instead, the FPGA

contains smaller logic blocks, which in turn contains flip-flops, lookup tables and ad-

ders. The FPGA is configured through a Hardware Description Language (HDL),

which produces a bitstream. A bitstream is a binary file that contains the configur-

ation and is loaded into the FPGA at boot. One such creation method of HDL’s is

Xilinx’s Vivado [37], which is a software suite for HDL synthesis and design.

The FPGA in Prophesee’s RDK uses a bitstream designed in Vivado. Vivado provides

13

Chapter 3 Background 3.5 Embedded Linux with the Yocto Project and PetaLinux

a visual interface to design and create the bitstream for an FPGA. Bitstreams define

the hardware configuration of FPGA’s, and Vivado translates input, such as seen in

Figure 3.8, down to the level of describing where a logic gate should be. The com-

pilation chain required is immense, relying on numerous packages to control different

parts. This is discussed further in Section 3.6.

Figure 3.8: Vivado block diagram for this project [5]

The FPGA used in this project is Xilinx’s Zynq UltraScale+ XCZU6EG-FFVC900-

1-E MPSoC implemented on a module made by Trenz. This FPGA has an Application

Processor Unit (APU) built on a quad-core ARM Cortex-A53 processor. It has more

than 450 thousand logic cells and 256KB of internal memory. The FPGA interfaces

with ”PCIe Gen2, USB 3.0, SATA 3.1, DisplayPort and Gigabit Ethernet” [5].

3.5 Embedded Linux with the Yocto Project and

PetaLinux

Linux is successful largely due to its open source nature, and due to it being more

lightweight than other operating systems, enabling it to run on most systems. It is

common for developers to redistribute Linux for different systems by creating a new

distribution. As Linux is open source, it is possible to alter a distribution to only

include the features and packages it requires.

The Yocto Project, or Yocto for short, is an open source project for Linux distribution

development. Yocto makes it simple to redistribute a custom Linux distribution and is

”the foundation of a whole sector of embedded Linux, as well as being a complete build

system” [38].

PetaLinux [39] is an abstraction of Yocto combined with Xilinx specific layers and

extra tools [40]. PetaLinux was created by Xilinx’s parent company AMD, and is con-

14

Chapter 3 Background 3.6 Robust work environment

sidered as Yocto for Xilinx devices.

This project uses two files that are output by PetaLinux : BOOT.BIN and image.ub.

BOOT.BIN is the boot binary image that contains the bitstream as well as some Xil-

inx specific configuration such as a Platform Loader and Manager (PLM), and general

bootloader binaries such as the universal bootloader (u-boot) and a first stage boot-

loader (FSBL) [41]. image.ub is the Linux kernel image in u-boot format. During the

experiments described in Section 3.3, this project only changes the bitstream, and as

such only the BOOT.BIN needs to be updated.

As Prophesee’s RDK is built around Xilinx’s Zynq UltraScale+ MPSoC FPGA, Proph-

esee used PetaLinux to develop its custom Linux distribution. This Linux image is

written to the QSPI flash memory of the RDK. The image contains the bitstream used

to configure the FPGA, as well as all the mechanisms and protocols needed to make

the system usable. One such system is the USB protocol, which is used to transmit

the data that comes from the CCAM5, through the FPGA, out through a connected

USB to a host computer.

3.6 Robust work environment

In the context of this thesis, a work environment refers to the setup of the computer

used throughout the project. The project primarily involves work on a computer. This

project uses specific software, namely Vivado and PetaLinux, discussed in Sections 3.4

and 3.5 respectively.

A robust environment refers to an environment that stays constant, is predictable, and

is reliable. This project needs a robust work environment to prevent software issues.

In software development, most issues come from ‘Dependency Hell ‘ [42], which occurs

from numerous conflicting dependencies installed. As software advances, it becomes

more complex, increasing in libraries and packages called dependencies. Two different

versions of a single package cannot be installed to the same system. In large systems

with hundreds of dependencies across multiple projects, managing these dependencies

and their versions becomes tedious, difficult, and error-prone.

In order to avoid this problem, packages need to be kept separate so that they don’t

conflict. The simplest solution is to use versions of programs that don’t conflict with

each other, however this project’s constraints include the use of specific versions of

software. While one solution could be to use different computers for conflicting soft-

ware, this is not a realistic solution for many, including this project.

The emulation of computers on a single host is called Virtualisation [9], in which there

are two primary methods, via virtual machines [11], discussed in Section 4.2, and via

15

Chapter 3 Background 3.6 Robust work environment

containers [8] (also called containerisation), discussed in Section 4.1. The work envir-

onment used in this project is discussed in Section 4.3.

The experiments performed in this project are explained in Section 5, with the ex-

planation and discussion of the measured results in Section 6. This thesis concludes

its findings in Section 7 before detailing further work on this topic in Section 7.1.

16

Chapter 4

Work Environment Design

Virtualisation was investigated to provide protection against potential software com-

patibility issues that may come later in the project. Containers and virtual machines

were analysed early on in the project, in the hope that if implemented I could be

confident that my applications, namely Vivado and PetaLinux, will work as intended.

The project was set with realistic expectations, knowing that the ultimate goal of the

project was not to design a work environment. Unless a viable virtualisation solution

was found, I would use native installations, and assume the risk of future issues.

While Virtual Machines and Containers are different technologies that accomplish dif-

ferent tasks, they are both virtualisation technologies meaning that they share sim-

ilarities in their high level goal, simulating a workspace. I will look at the strengths

and weaknesses of the two main methods of virtualisation, containerisation and via

virtual machines in Sections 4.1 and 4.2 respectively. The final decision based on these

sections is discussed in Section 4.3, and the success of this decision is shown in Section

4.4.

4.1 Containers

Containers are designed to simulate a computer’s operating system. Containers are

runtime environments, which are sub-systems within the computer, and are made to

run on-top of a computers operating system, not touching the hardware. A container

takes advantage of this by sharing the operating system with the physical native host,

resulting in a lightweight environment. This means that a user isn’t able to use or

experience a different system. An example of this would be that on a native Windows

host, a container would not be able to truly run Linux. In this example, Windows could

use Windows Subsystem for Linux (WSL) to emulate a Linux kernel, but that is all it

is, an emulation, as any WSL functions are translated to functions that Windows can

understand. A container can emulate the Linux kernel, but it cannot emulate a Linux

operating system. Despite this, a container provides independence and separation of

programs and applications, making it simpler to run multiple, potentially conflicting,

applications in parallel.

17

Chapter 4 Work Environment Design 4.2 Virtual Machines

A container can be viewed as a snapshot as it doesn’t automatically update on its

own. The state it was created in will be the state it stays in. This may be seen as a

negative if a container environment was used as the main development environment,

but generally containers are used in situations where this is a positive. Projects that

require specific dependency versions would benefit from this as there’s no risk that it

will update and render the project unable to compile. In production this is especially

desirable as developers would want as much control as they can get, and not be sus-

ceptible to their products suddenly not working because a package was updated and is

incompatible with a different package.

When container environments are installed, often the user will configure a limit to the

system’s resources that the containers can use. This is a limit and does not actually

allocate the resources to the container, but results in a fluid use of memory between

the native host and the containers. If the containers are complex or there are a lot of

them, this can cause some bottlenecks as they reach this limit however, causing the

containers to fight for the resources.

Table 4.1 shows the strengths and weaknesses, as just discussed, in a table format

for ease. This table and Table 4.2 were used to design the work environment used in

this thesis.

Table 4.1: Strengths and weaknesses of containers [6] [7] [8].

Containerisation

Strengths Weaknesses

Lightweight and portable Can’t run different operating systems to

the host

Doesn’t update on its own Requires destroying the container to up-

date

Reduces hardware cost through consolid-

ation

Shares resources for applications within

the same container

4.2 Virtual Machines

The goal of virtual machines is to simulate a system down to the hardware level and be

as independent of the native physical system as possible. To achieve this, virtual ma-

chines require their own operating systems and a software program called a hypervisor

to communicate between operating systems. This fact makes virtual machines more

resource intensive and less lightweight than a container. Along with this, as a virtual

machine simulates the hardware of a physical machine, the physical system’s resources;

18

Chapter 4 Work Environment Design 4.3 Decision

CPU, memory, and RAM, are split between the physical and virtual machines. When

a virtual machine is first created, the installer partitions system resources, assigning

them to the physical machine and the virtual one. This means that the resources

allocated to the virtual machine are entirely its own, nothing outside the virtual ma-

chine will use them, but they are shared by processes within the virtual machine. As a

virtual machine contains so much and is woven so tightly into the physical hardware,

it means that it isn’t realistic to move virtual machines between hosts or share them

with colleagues. A brand new virtual machine would need to be installed on a different

system.

These costs do not come without benefits. By having a separate operating system, you

are able to use multiple operating systems on one physical computer at the same time.

This is especially useful for projects that may have applications that only run on spe-

cific operating systems, but the team is constrained to a single host. Junior developers

or researchers at the start of their project would benefit from being able to experiment

and find the system that best fits easily. Another benefit to virtual machines is that

because they are a fully enclosed system, they get the advantage of supported updates.

Just like any other computer, a virtual machine could be configured to automatically

update, resulting in very low maintenance for the user.

Table 4.2 shows the strengths and weaknesses, as just discussed, in a table format

for ease. This table and Table 4.1 were used to design the work environment used in

this thesis.

Table 4.2: Strengths and weaknesses of virtual machines [9] [10] [11].

Virtual Machines

Strengths Weaknesses

Can run a different operating system to

the host

Are quite resource intensive and not port-

able

Can be updated without needing to be re-

installed

Susceptible to automatic updates

Reduces hardware cost through consolid-

ation

Shares resources for applications within

the same virtual machine

4.3 Decision

As discussed in Section 3.6, this project heavily relies on two Xilinx applications,

namely Vivado and PetaLinux. These applications are both extremely complex and

layered in terms of dependencies.

19

Chapter 4 Work Environment Design 4.4 Result

In Section 3.6 I discuss the concept of ‘Dependency Hell ‘, and for a complex system

such as Vivado or PetaLinux, this is a situation to be avoided at all costs. Working

versions of these applications should be viewed as fragile, as simply having a conflicting

package installed elsewhere on the computer can cause them to no longer work. While

Vivado and PetaLinux are separate applications with different features and goals, they

still share dependencies, and it would only take one conflict to cause major issues. For

this reason virtualisation was researched as a possible solution, as my project was con-

strained to one computer, meaning that physically separating the programs was not an

option. While both containerisation and virtual machines are excellent technologies,

they are only possible solutions, especially as creating a robust work environment was

not the end-goal of this thesis.

After detailed comparisons of the two technologies and designing implementations,

it was decided that there is no viable virtualisation for this project. I identified that

containers met my requirements better than virtual machines and so pursued them. As

the applications needed for my project were so complex, they had intense resource con-

sumption, meaning that the overhead of virtual machines made them a poor candidate.

For this project, I recommend using at least 16 GB of RAM and an SSD storage of at

least 1 TB. Additionally, the way virtual machines handle updating, while it could be

managed, made it less than ideal for my project. Consequently, I decided that out of

containerisation and virtual machines, a container would best fit my requirements; not

being too resource hungry and providing an isolated version snapshot with no risk of

change.

Researching and designing containers, I found that while in idea a container suited

my needs well, in application they were difficult to create. Containers had various is-

sues such as directing the Graphical User Interface (GUI) to the host not the container,

and the issue of USB pass-through between the host and the container. I believe that

it is possible to design a container for Vivado and PetaLinux, but given my position I

decided that the difficulty of designing it was out of scope for the project. As such I

found natively installing my programs to be the best solution, despite the risks.

4.4 Result

After installing bothVivado and PetaLinux I recompiled the respective projects provided

by Prophesee, verifying that the installations were a success. In order to make changes

to the RDK, I needed to be able to re-flash, or update, the currently running Linux

image and FPGA bitstream. Prophesee provided two methods to do this in their

Technical Reference Manual [5], namely the fastboot protocol and directly overwriting

20

Chapter 4 Work Environment Design 4.4 Result

sections in memory using the dd command. For memory safety and protection against

accidentally writing data to the wrong area in memory and overwritting other parts,

I decided that using the fastboot protocol was the best option. In order to verify that

the updates worked, I made changes to both the PetaLinux image and the Vivado

bitstream. The change to the PetaLinux image was nothing of note, simply changing

text in a file, but the bitstream was not as simple to verify that it had changed. As

my best option was to make a visual change, I decided to flip the polarity of all the

events coming from the camera.

The changes were successful and the results of the polarity flip can be seen in Fig-

ures 4.1 and 4.2. The experimental setup needed to be reproducible and as consistent

as possible. For this a simple stage was created as seen in Figures A.1 and A.2 in

Appendix A, with the RDK placed as shown in Figure A.4 in Appendix A. The RDK

was moved along the edge of the stage directed at the black and white background as

can be seen in Figure A.3 in Appendix A. The stage was designed to allow light to filter

through the top and from behind the camera, while limiting shadows from the sides.

The camera was moved methodically from one side to the other, and the camera would

detect the edges of the black and white background moving as events. This resulted

in an event stream of two clear lines of events, one showing the light decreasing (a

negative event) as the black moved into frame, and one showing the increase in light

(a positive event) as the black moved out of frame.

Figure 4.1: Left to right movement of the camera in the stage with the default event

polarity

For both experiments, the camera was moved from image left to image right. In

Figure 4.1 the default polarity has the blue pixels denoting negative events and white

pixels for positive events. Once the polarity was flipped, the roles of the two coloured

pixels reverse, with blue pixels now showing a positive event and white pixels showing

a negative event, as seen in Figure 4.2.

21

Chapter 4 Work Environment Design 4.4 Result

Figure 4.2: Left to right movement of the camera in the stage with the flipped event

polarity

22

Chapter 5

Methodology

The objective of this thesis is to investigate ways to increase the processing speed

within the FPGA of the Prophesee RDK. The IMX636 event-based sensor the RDK’s

CCAM5 module uses has a resolution of 1280 × 720 pixels and can output up to 1.1

billion events every second [34]. To maximise the benefit from the sensor’s speed, any

processing and transmission that occurs between the sensor and the user must be as

fast as possible. This chain of processes is complex, as such this project focuses on one

link in this chain, the processing within the FPGA.

The CCAM5 outputs events directly into the FPGA, as shown in Figure B.1 in Ap-

pendix B. As the FPGA is the first sub-system in the chain, after the CCAM5 itself

and the connector between the two, any improvements found will likely have a flow on

effect to the subsequent sub-systems. This fact makes the FPGA an ideal target for

this study.

Figure B.1 in Appendix B shows the overall structure of the FPGA, and it is clear that

this system is complex which means it has multiple places a possible bottleneck could

occur. Figure B.2 in Appendix B shows the structure of huahine Interface, the FPGA

sub-system largely responsible for processing the event data. I identified this as the

most likely place for a bottleneck to occur, and so focused my effort there.

This projects’ goal is to increase processing speed for tracking applications. By fil-

tering the input event stream to discard events outside a certain area, I aim to show

the effects this has on processing speeds and data transmission.

Section 3.3 explains the Region of Interest (ROI) filter used in the experiments de-

scribed in Section 5.1.

5.1 Experiment

In order to quantify the effect an ROI filter had on data processing, I performed ten

experiments which each consisted of 100 runs. Firstly I collected baseline data, using a

bitstream that had no filters applied, then I performed experiments with ten different

23

Chapter 5 Methodology 5.1 Experiment

ROI filters. Each filter had the same aspect ratio as the full resolution of the camera,

but each at different percentages of the height and width. For example, one experiment

filtered the resolution to 10% of the full resolution, representing a pixel resolution of 128

pixels wide by 72 pixels high. The ten experiments ranged from 10% to 100% in 10%

increments. An experiment with a filter with the full 100% resolution was performed

to view the effect the filter alone has, before any events are filtered. Each experiment

consisted of 100 runs to provide more accurate measurements and reduce the effects of

outliers. Each run lasted 45,000 microseconds, calculated from the timestamps of the

events, to avoid any outside influence that could come from timing through the Real

Time Clock (RTC) of the computer. The RDK was set up within the stage as shown

in Figure A.1, with the camera pointing toward a corner at a distance of about an inch

and a half, shown in Figure A.5 in Appendix A. A C++ script, described in Section

C.1 in Appendix C was made that used API’s from Prophesee to initialise an instance

of the CCAM5 to begin streaming the data. As the data was streamed, the events were

captured in a Comma-Separated Values (csv) file containing the event timestamps and

a flag describing the events’ relation to the buffer it came in. The script was designed

to reinitialise the camera instance for each run, to remove any chance of overflowed

buffers from previous runs. Each run wrote to a separate file for ease of access. Once

100 runs were collected from the RDK with no filters, the bitstream was updated using

fastboot as described in Section 4.4 to contain a ROI filter. The next experiment was

then started, re-running the C++ script again. The RDK stayed in the same position

between experiments which were performed within minutes of each other.

A Python script was created, described in Section C.2 to analyse this data and cal-

culate different measurements, which will be presented in Section 6.1. Measurements

such as the average time between consecutive events and buffers were calculated as they

quantified the effect of the ROI filter, showing its effects on the systems delay. This

script also produced graphs depicting various patterns of interest, such as the spread

of output events and event buffers through time. These graphs will also be shown and

analysed in Section 6.1.

In creation of this report, two more python scripts were created. Script C.3 gener-

ates the plots Figures 6.1, 6.2, 6.14, 6.7, 6.15, and 6.18, as well as Tables 6.1, 6.2, D.2,

and D.1. Script C.4 alters images to magnify certain areas and was used to generate

Figures 3.6, and 3.7.

24

Chapter 6

Results and Analysis

6.1 Region of Interest

This section will discuss the results from the Region of Interest (ROI) experiments

detailed in Section 5.1. Table 6.1 summarises the findings from the experiments that

will be discussed in the subsequent sections, and Table 6.2 gives ratios comparing each

measurement in each experiment to the respective measurement in the baseline exper-

iment. The ROI experiments measured different aspects of the output event stream

buffer from the RDK such as the time between consecutive events and buffers, and the

rate at which the buffer filled with events. Taking the results from the ten experiments,

graphs were constructed and provide clear visual descriptions the change in ROI has

on FPGA processing.

From these results it is clear that decreasing the ROI increases the delay on the level

of individual events. The ROI algorithm is built into the bitstream, and as such does

not affect the CCAM5 module. This means that from the perspective of the camera

the same number of pixels is monitored by the arbiter, regardless of the ROI. Within

the bitstream, the ROI filter ignores events coming from outside the ROI coordinates,

simply discarding them and not passing them on to the USB buffer to be sent to the

client. Due to this fact, as the event camera arbiter still needs to go through the full

pixel resolution of the camera. While the CCAM5 has a time resolution of one micro-

second, it still takes the arbiter time to collect events from individual pixels. There is

a finite amount of time between when a light change is detected by a pixel and when

the camera arbiter assigns that event a timestamp, and in scenes with a lot of light

which cause a lot of events this is exaggerated.

As the ROI filter is integrated at the FPGA level and the camera sensor is unaf-

fected, it is expected that decreasing the ROI will increase the time between events as

a function of the pixelrow height of the ROI. This is due to the way the row based

algorithm the arbiter takes to iterate through the pixel array, as it assigns the same

timestamp to each event in the same row [43]. When the ROI decreases and the pixel

array dimensions decrease, the time the arbiter spends assigning timestamps to pixels

25

Chapter 6 Results and Analysis 6.1 Region of Interest

outside the area becomes more noticeable. This leads to larger ∆T values, which is

exactly what I see as shown in Sections 6.1.1.2, 6.1.1.3 and 6.1.1.4.

The relationship is expected to be given by the function shown in Equation 6.3, which

describes the inverse relationship between the ROI pixel height and the measurement.

A = ROIx ∗ROIy (6.1)

f(A) =
A× y100
10, 000

(6.2)

f(ROIy) =
100× y100
ROIy

(6.3)

Where ROIy is the pixel height of the ROI as a percentage of the full sensor height.

f(ROIy) represents a measurement explained in Sections 6.1.1.2, 6.1.1.3 or 6.1.1.4.

y100 is the measured value at an ROI 100% of the full sensor dimensions. The value of

100 in Equation 6.3 is used as the measured value at an ROI pixel height percentage

of 100 was used to scale and anchor the curve.

The value of 10, 000 in Equation 6.2 is used as the measured value at an ROI area

percentage of 100 was used to scale and anchor the curve. 10, 000 is the square of 100,

used because the area is found with Equation 6.1.

6.1.1 Measurements

For each of the ten experiments performed, six measurements where calculated and

analysed. These measurements are:

• Overall average buffer size across the experiment, measured in number of events;

• The time difference between consecutive events, ∆Tevent, measured in the time

resolution of the RDK given in µs;

• The length of time it takes for a buffer to fill with events, ∆Tbuffer, measured as

the time difference between the first event in the buffer and the last given in µs;

• The rate at which buffers fill with events, measured in number of events per µs;

• The time delay between consecutive event buffers, measured in the time resolution

of the RDK given in µs; and

• The total number of events that were processed across the experiment, measured

in number of events.

26

Chapter 6 Results and Analysis 6.1 Region of Interest

Table 6.1: Table of results for all ROI experiments

Experiment

Measurement 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Baseline

Buffer size (events) 316 317 317 317 317 317 316 318 318 318 318

∆Tevent (µ s) 1.96 0.89 0.6 0.47 0.41 0.34 0.29 0.25 0.23 0.21 0.21

∆Tbuffer (µ s) 611.78 280.82 189.98 150.11 128.9 109.44 91.91 79.51 71.76 65.92 67.98

Event rate (events/µ s) 2.19 2.4 2.63 2.88 3.14 3.45 3.81 4.2 4.56 4.9 4.75

Buffer delay (µ s) 2.13 0.9 0.6 0.47 0.41 0.35 0.29 0.25 0.23 0.21 0.21

Total number of events (events) 97189 106555 116956 128075 139549 153109 169231 186393 202100 217406 210599

Table 6.2: Table of results for each ROI experiments ratios relative to the baseline

Experiment

Measurement 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Buffer size (%) 99.2 99.5 99.5 99.5 99.6 99.5 99.4 100.0 100.0 100.1

∆Tevent (%) 917.1 414.7 280.2 221.3 189.9 161.3 135.4 117.0 105.6 97.0

∆Tbuffer (%) 899.9 413.1 279.5 220.8 189.6 161.0 135.2 117.0 105.6 97.0

Event rate (%) 46.1 50.6 55.5 60.8 66.2 72.6 80.3 88.5 96.0 103.3

Buffer delay (%) 997.7 422.2 281.5 221.1 190.5 161.9 135.8 117.1 105.6 97.3

Total number of events (%) 46.1 50.6 55.5 60.8 66.3 72.7 80.4 88.5 96.0 103.2

The results in Table 6.2 come from the same data as Table 6.1. Each table shows the

six key measurements taken from all ten experiments. All the measurements, except

the total number of events, are the calculated average values across each experiment.

During the analysis of each experiment, these five measurements were calculated for

each buffer. The experiment average was then taken as the average values from all

buffers. The total number of events was not an average but a count of events across

the experiments. Table 6.2 show the relation between the values of the experiments

and the baseline in Table 6.1. These relations were calculated as the ratio between the

experiment and baseline values using Equation 6.4.

ratio = 100 ∗ vs
vb

(6.4)

Where vs is the experiment measurement value and vb is the baseline measurement

value.

Using the values in Table 6.1, plots were created for the measurements across the ten

experiments. These plots are shown and discussed in Sections 6.1.1.2, 6.1.1.3, 6.1.1.4,

27

Chapter 6 Results and Analysis 6.1 Region of Interest

6.1.1.5 and 6.1.1.6. Each plot shows the expected behaviour and also contains a line of

best fit approximating the direction of the data. The lines of best fit are Least Squares

polynomial fit models, and the expected relationships are calculated using functions

discussed in each respective section. One way to measure the correlation between a

trend-line and the data is to find the Pearson correlation coefficient (r) values, which

is a value in the range of [−1, 1], where the further the value is from 0 the stronger the

correlation. The r values for both the expected trends and lines of best fit are given in

Table D.1.

For each measurement, Table D.1 shows that the expected relationships almost

perfectly correlate to the data, proving that my hypothesis was correct.

The error of both trend-lines were calculated using the Root Mean Squared Error

(RMSE) formula given in 6.6. RMSE measures the error of individual points in the

approximation to the actual points in the data, which provides a measure of the accur-

acy of the models. The RMSE values calculated for each plot is shown in Table D.2,

organised by data measurement.

x̂ = fit(y, x) (6.5)

RMSE =

√∑N
i=1(xi − x̂i)2

N
(6.6)

Where N is the number of points in the model, xi is the measured ith value of the data

and x̂i is the ith approximated value given from the regression algorithm represented

as the function fit(y, x) in Equation 6.5.

6.1.1.1 Buffer size

The buffer size measurement shown in all three tables represents the number of events

that are in each of the buffers transmitted from the RDK. The values shown in Table

6.1 for the buffer size are the average size of the buffers in each experiment. This is

measured in the number of events and is always an integer. The values shown here are

average values across all buffers rounded to integer values. Individual buffer sizes were

calculated using Equation 6.7, and the average was then calculated using Equation 6.8

before being rounded.

The values shown in Table 6.1 shows some deviation, seen by the second order line

of best fit in Figure 6.1. This figure shows us that the buffer size stays relatively con-

stant. The expected trend has an RMSE value of 0.645 which is very small relative to

the scale of the data, showing the close fit of the approximation.

28

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.1: Buffer size across all ROI experiments

|b| = len(b) (6.7)

|b| =
∑n

0 |b|
n

(6.8)

Where |b| is the size of the buffer, b is a buffer which is a one dimensional list of events,

|b| is the mean of the buffer sizes and n is the number of buffers in the experiment.

The zeroth order line of best fit is seen to be slightly lower than the expected con-

stant behaviour due to the slight decrease in measured data as the ROI decreased.

The ratios given in Table 6.2 show us that the buffer size stayed very constant across

experiments, and is largely independent of the ROI. The 10% ROI experiment had the

largest difference from the baseline of the experiments with a 0.8% decrease, whilst all

the other experiments are within 0.5% of the baseline average buffer size.

If the buffer size did not change at all, it would be expected that buffer size stays

constant across all experiments. The fact that the buffer sizes do differ, means that

the event buffer is adaptive to some degree. The fact that the change is so small, in

the order of 2 events, means that the buffer size was very well engineered, not needing

large changes to keep performance.

Adaptive in the context of the event buffer means that the number of events that need

to be in the buffer before being transmitted out from the RDK to the user changes. In

the case where all buffers are found to be the same size, there would be a set limit of

events required that was immutable. By looking at the values given in Table 6.1 the

average baseline buffer size is roughly 318 events, while the experiment with the lowest

average buffer size, 10% ROI, contains 316 events. This difference of only 2 events

29

Chapter 6 Results and Analysis 6.1 Region of Interest

makes up less than 1% of the baseline buffer size, and when considering how an ROI of

10% has an area 1% the size of the full 100% ROI, this difference is almost negligible.

6.1.1.2 Time between events

The time between events, or simply ∆Tevent, is the time difference in microseconds

between consecutive events calculated using Equation 6.9. The inconsistency of this

time is a type of jitter, a term primarily used in networks. The ∆Tevent values given in

Table 6.1 is the average value across all events within each experiment calculated using

Equation 6.10, and represents the overall event jitter of the experiment. Equation 6.10

was used to first calculate the average ∆Tevent across a single experiment, and then

using the experiment averages, was used to calculate the experiment ∆Tevent.

∆Tevent = tn − tn−1 (6.9)

∆T event =

∑m
i=1∆Tevent

m
(6.10)

Where tn is the nth event timestamp in the experiment.

m is either the number of measurements in the run or the experiment, depending on

whether ∆T event is being calculated for the run or the experiment.

Table 6.2 show that across the experiments, ∆Tevent changes drastically, ranging from

97% on the low end with an ROI of 100%, up to a ∆Tevent 917.1% that of the baseline

experiment for the 10% ROI experiment. The difference between an ROI of 10% and

100% of nearly 10 times, while the difference between 20% and 100% is only 4 times.

What is important is that these large deviations still match with the expected be-

haviour. ∆Tevent is expected to be related to the pixel height of the experiment as

explained in Section 6.1. Shown in red is the expected behaviour which was created

using the function described in Equation 6.3.

The fit of this curve can be seen to be close, supporting the hypothesis that ∆Tevent is

related to the ROI pixel height. This fit was calculated to have a Pearson correlation

coefficient (r) of 0.998 which shows the strong correlation. The RMSE for the expected

behaviour was found to be 0.068 which is very low for the scale of the data, again

showing the accuracy of the model. Comparing the RMSE and Pearson correlation

coefficients of the expected behaviour and the line of best fit further supports the ex-

pected behaviour of the data.

Figure 6.2 shows the measured ∆Tevent values, along with the expected behaviour

and the line of best fit.

30

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.2: ∆Tevent across all ROI experiments

Figure 6.3 is a histogram of the average experiment ∆Tevent for the baseline ex-

periment. It has a roughly normal distribution, which is expected. As the ∆T range

is very small, from 0.208 to 0.22, the standard deviation is also very small, with the

mean at 0.2. The small range and normal distribution shows us that the experiment

has little jitter, and that ∆Tevent when not using an ROI filter can be expected to be

constant. This is the ideal case as it shows that the FPGA is passing events to the

USB buffer at regular intervals and with inconsequential delay, for the buffers to be

sent to the user.

Figure 6.3: Baseline ∆Tevent histogram

This is further supported by Figure 6.4 which is a spread of 75 events across a

typical buffer in the baseline experiment. Although this graph contains 75 events,

31

Chapter 6 Results and Analysis 6.1 Region of Interest

only 13 are visible due to fast event rate causing multiple events to share the same

timestamps, which I will discuss more in Section 6.1.1.5. The y-axis of this figure only

ranges from 16 to 28, with groups of events seen regularly spaced in one timestamp

intervals.

Figure 6.4: Typical buffer of events in baseline experiment

To compare the effect different ROI resolutions have to x∆Tevent , the results from

the 10% ROI experiment are used as they deviated from the baseline measurements

the most. Therefore, the histogram of x∆Tevent for the 10% ROI experiment is shown

in Figure 6.5. This figure shows that the distribution is no longer normal, meaning

that there can be much less confidence in the expected jitter when using a 10% ROI

filter. This is shown with the much higher standard deviation of 3.52 and the much

larger range of values, spreading from just over zero to just under 14 µs. With the mean

∆Tevent being two µs, ignoring jitter, the performance of the system in terms of ∆Tevent

has decreased by a factor of ten. While the time difference is still in the order of two

µs, if the camera was being used in high speed, situations which was already pushing

the time resolution of camera, this difference would become much more noticeable.

Subplot a in Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8 and D.9 in Appendix D

show the ∆Tevent histograms of the other experiments, and it can be seen that as the

ROI approaches the baseline resolution, the distribution becomes more normal. Each

figure shows the standard deviations and means of the distributions.

32

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.5: 10% ∆Tevent histogram

Further exploring the jitter of the 10% ROI experiment with Figure 6.6, a typical

spread of events appears quite different from a typical baseline buffer. Firstly, more

events are visible, meaning that the event rate has decreased as fewer events are sharing

timestamps. The individual x∆Tevent ’s is inconsistent, with a mix of small and quite

large gaps. As the jitter is quite large in this experiment, in comparison to the baseline

experiment, the FPGA is clearly being delayed by something, causing events to be

inconsistently passed to the USB buffer.

Figure 6.6: Typical buffer of events in 10% ROI experiment

Histograms of the event time differences in the other experiments are shown in

subplot e in Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8 and D.9 in Appendix D.

These histograms show how the event time differences are effected by the ROI. As the

ROI increases towards the full resolution, the histogram reflects Figure 6.3, and as

33

Chapter 6 Results and Analysis 6.1 Region of Interest

the ROI decreases towards the 10% ROI, the histograms appear similar in scale and

distribution to Figure 6.5.

6.1.1.3 Time between buffers of events (Buffer delay)

Buffer delay in Table 6.1 represents the average time between consecutive buffers across

the experiment. As the event camera used has a microsecond time resolution, buffer

delay is measured in µs. Along with ∆Tevent discussed in Section 6.1.1.2, buffer delay

is another type of jitter of the RDK. The time between buffers was calculated similarly

to the time between events as it was found as the difference between consecutive event

timestamps. The events used needed to be the last event in a buffer and the first event

in the next buffer, as they are consecutive events that represent the start and end

timestamps of consecutive buffers. Equation 6.11 shows the equation used to calculate

buffer delay for a pair of buffers. Equation 6.12 shows the equation used to calculate

the average across the experiment. The experiment results for buffer delay are shown

in Table 6.1.

Delay = t0b − tn−1b−1
(6.11)

Delay =

∑m
i=1Delay

m
(6.12)

Where t0b is the first event timestamp in buffer b and tn−1b−1
is the last event timestamp

in buffer b− 1, the buffer that precedes b. m is either the number of buffer delay meas-

urements in the run or the experiment, depending on whether Delay is being calculated

for the run or the experiment.

Buffer delay deviates very similarly to ∆Tevent discussed in Section 6.1.1.2. Table

6.2 shows us that with the 100% ROI experiment, the buffer delay is 97.3% that of

the baseline buffer delay. The 10% ROI experiment is more than 997.7%, the largest

deviation of any measurement in any experiment. As buffer delay was calculated the

same as ∆Tevent, as the difference between consecutive events timestamps, they had

very similar values ranging roughly from 0 to 2 as shown in Table 6.1. The true shape

of the relationship between ROI and buffer delay is shown when all ROI experiments

are plotted, as they are in Figure 6.7.

34

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.7: Buffer delay across all ROI experiments

Buffer delay is expected to be related to the ROI pixel row height as explained

in Section 6.1, similar to ∆Tevent. Shown in red is the expected behaviour which was

created using the function described in Equation 6.3.

The fit of this curve can be seen to be close, supporting the hypothesis that buffer

delay is related to the ROI height. This fit was calculated to have a Pearson correl-

ation coefficient (r) of 0.996 which shows the strong correlation. The RMSE for the

expected behaviour was found to be 0.057 which is very low for the scale of the data,

again showing the accuracy of the model. Comparing the RMSE and Pearson correla-

tion coefficients of the expected behaviour and the line of best fit further supports the

expected behaviour of the data.

To understand what could be causing this behaviour, Figure 6.8 provides a view of

five typical consecutive buffers and their timestamp ranges in the baseline experiment.

These buffers have minimal gaps between them, having at most one µs difference.

35

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.8: Typical buffers in baseline experiment

Figure 6.9 is a typical collection of five consecutive buffers taken from the 10%

ROI experiment, as it provides the greatest deviation from the baseline of all the

experiments. The time difference between buffers shown here averages nine µs which,

while on the lower end, matches the order of magnitude the buffer delay for a 10% ROI

has in Table 6.1. However, This average is skewed by an outlier, namely the difference

between the first and second buffers. Using a 25% trimmed mean, the mean of this

data is actually x̄0.25 = 3.5, but due to the small experiment size this is an unreliable

value.

Typical spreads of buffers from the other nine experiments are shown in subplot f in

Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8 and D.9 in Appendix D. The averages

from each of these also loosely fit the corresponding buffer delay values in Table 6.1 to

a degree that can be expected of by such a small experiment size.

Figure 6.9: Typical buffers in 10% ROI experiment

36

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.10 shows the distribution of buffer delays over the baseline experiment.

This is clearly a normal distribution around the mean of 0.2 µs with a standard devi-

ation of 0.02. The bins of the histogram range from 0.18 to 0.24 µs, a very small spread

of averages which shows the consistency and speed events were transmitted from the

RDK during this experiment.

The histogram generated from the 10% ROI experiment, shown in Figure 6.11, however

cannot be described as normal. The standard deviation is over 200 times that of the

baseline, showing the large unpredictability of the buffer delay. The larger spread of

values and distribution explain how while a majority of buffers have little time between

each other, a significant number of outliers to this brings the average up, in the order

of a factor of two.

Figure 6.10: Baseline buffer delay histogram

Despite these decreases in performance, the most important finding from this meas-

urement is that with the decrease in ROI, no events are lost between buffer transmis-

sions. It was a possibility that as the ROI decreased and time between events increased,

that events could be dropped as the time resolution went up. However, as best shown

in Figure 6.9 and comparing this to Table 6.1, the time between buffers matches the

expected ∆Tevent, accounting for outliers. This means that there is nothing different

between the time between consecutive events within a buffer, and the last event of one

buffer and the first event of the next buffer.

37

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.11: 10% buffer delay histogram

Histograms of the buffer delays in the other experiments are shown in subplot b

in Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8 and D.9 in Appendix D. These his-

tograms show how the buffer time differences are effected by the ROI. As the ROI

increases towards the full resolution, the histograms reflect Figure 6.10 and as the ROI

decreases towards the 10% ROI the histograms appear similar in scale and distribution

to Figure 6.11.

From the perspective of the FPGA, ROI does not affect the incoming event stream.

The jitter as discussed here and in Section 6.1.1.2, is most likely caused by the dumping

of events. Despite the FPGA deleting events, timestamps are still assigned using the

same row based algorithm described in Section 3.1.

6.1.1.4 Buffer time span

The time span across a buffer, or (∆Tbuffer), is the difference in timestamps between

the first and the last events in the buffer. This is the earliest and latest events, or

more simply the accumulation time of the buffer. This is an important measurement

as it shows the delay in the system at the level of the buffer, which is more noticeable

than an event by event basis. Equation’s 6.13 and 6.14 were used to calculate the

experiment average and the experiment average respectively.

∆Tbuffer = tn−1b − t0b (6.13)

∆T buffer =

∑m
i=1∆Tbuffer

m
(6.14)

Where t0b is the first event timestamp in buffer b and tn−1b is the last event timestamp

in buffer b.

38

Chapter 6 Results and Analysis 6.1 Region of Interest

m is either the number of measurements in the run or the experiment, depending on

whether ∆T buffer is being calculated for the run or the experiment.

∆Tbuffer is the last measurement in Table 6.1 that has a negative relationship with

ROI. In Table 6.2, ∆Tbuffer has very similar results to ∆Tevent, even compared to buf-

fer delay. This shows how ∆Tbuffer is closely related to ∆Tevent. As buffers average

318 events as seen in Section 6.1.1.1, the experiment values for ∆Tbuffer are seen as

roughly the product of ∆Tevent and buffer size. This makes theoretical sense as ∆Tbuffer

is equivalent to the time between two events exactly one buffer size apart.

The experiment ∆Tbuffer value was calculated as the average of all ∆Tbuffer across the

runs. Rounding and non-normal distributions of ∆Tbuffer is what causes the difference

between the measured ∆Tbuffer and the theoretical ∆Tbuffer calculated using ∆Tevent

and buffer size.

Figures 6.12 and 6.13 show the distributions of ∆Tbuffer for the baseline experiment

and the 10% ROI experiment respectively. The other experiment ∆Tbuffer distribu-

tions are shown in subplot c in Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8 and D.9

in Appendix D.

The distribution of ∆Tbuffer for the baseline experiment is relatively normal, with

an average of 68 µs and a standard deviation of σbaseline = 0.98µs. However, the

∆Tbuffer distribution of the 10% ROI experiment has a mean of 611.8 µs and a stand-

ard deviation of σ10% = 1086.42, an increase of more than 1100%. This difference

shows that the received event stream in terms of the ∆Tbuffer, is effected greatly by

the decrease in ROI negatively. ∆Tbuffer is too unpredictable in timing, sometimes

taking much longer to pass an event buffer to the user. This would be further affected

by the distribution of events across the cameras focus. If there were little events oc-

curring for the camera to capture, it is likely that ∆Tbuffer would increase even more,

and potentially decrease in situations with many events.

The distributions across all experiments becomes more normal, and hence more pre-

dictable, as the ROI approaches the baseline resolution.

39

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.12: Baseline ∆Tbuffer histogram

Figure 6.13: 10% ∆Tbuffer histogram

∆Tbuffer is expected to be related to the ROI pixel height as explained in Section

6.1 similar to ∆Tevent. Shown in red is the expected behaviour which was created using

the function described in Equation 6.3.

The fit of this curve can be seen to be close, supporting the hypothesis that ∆Tbuffer

is related to the ROI height. This fit was calculated to have a Pearson correlation

coefficient (r) of 0.998 which shows the strong correlation. The RMSE for the expected

behaviour was found to be 24.004 which is very low for the scale of the data, again

showing the accuracy of the model. Comparing the RMSE and Pearson correlation

coefficients of the expected behaviour and the line of best fit further supports the ex-

pected behaviour of the data.

40

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.14 shows the measured ∆Tbuffer values, along with the expected behaviour

and the line of best fit.

Figure 6.14: ∆Tbuffer across all ROI experiments

The relationship ∆Tbuffer, ∆Tevent and buffer delay have with the ROI pixel height

is due to the way the event camera detects and assigns events. As described in Section

6.1.1.3, this comes from the way the cameras row arbiter indexes through pixels and

assigns timestamps. The cameras’ arbiter works the same, despite the filter, as the

ROI filter is integrated into the FPGA. Events are simply ignored and not passed to

the client if outside the ROI. However, these pixels still produce events in the camera

and are passed to the FPGA. The arbiter still spends a finite amount of time indexing

through all pixels, regardless of whether they are ignored in the FPGA or not.

6.1.1.5 Event rate

The event rate here is the rate at which events fill a buffer and is measured in events

per µs. This value is calculated over one buffer, using the buffer span, as discussed in

Section 6.1.1.4, and the number of events in the buffer, discussed in Section 6.1.1.1.

Individual buffer event rates were calculated using Equation 6.15, and Equation 6.16

was used to calculate the average run and experiment event rates.

Rateevent =
sizeb

∆Tbuffer

(6.15)

Rateevent =

∑m
i=1Rateevent

m
(6.16)

Where sizeb is the size of the buffer defined in Equation 6.7. ∆Tbuffer is the differ-

ence in time of the first and the last event in the buffer, defined in Equation 6.11.

m is either the number of measurements in the run or the experiment, depending on

41

Chapter 6 Results and Analysis 6.1 Region of Interest

whether ∆T buffer is being calculated for the run or the experiment.

Event rate is seen to decrease as the ROI of the camera also decreases in Table 6.1,

unlike ∆Tevent, ∆Tbuffer and buffer delay which all increased as ROI decreased. Figure

6.15 shows the experiment event rates, including the expected behaviour, and the first

and second order lines of best fit.

Figure 6.15: Event rate across all ROI experiments

The event rate is expected to be related to the pixel area of the experiment as

explained in Section 6.1 and given by the function in Equation 6.2. Shown in red is the

expected behaviour which was created using the function described in Equation 6.2.

This behaviour deviates from the measured data, which means that there is an effect

other than the ROI area that effects the event generation. To deviate as is seen, the

event camera must be generating more pixels as the ROI area decreases. The scenes

between experiments were kept similar. This means that it does not come from differ-

ent experiments experiencing different amounts of light. It is possible that the culling

of events occurs within either the event camera, or within the FPGA. To further study

this effect, data output from the event camera needs to be compared to the data output

from the FPGA. This will expose where this effect originates.

Looking at the measurements in Table 6.2, a 20% ROI, which has an area 4% that

of a 100% ROI, decreases the event rate by 50%. The event rate decreases with ROI

and does so at a rate of approximately 0.3 events per µs per 10% ROI change. As event

rate is calculated using the size of a buffer and the number of events in the buffer, as

shown in Equations 6.15 and 6.16, they should be reflected in Table 6.1 using buffer size

42

Chapter 6 Results and Analysis 6.1 Region of Interest

and ∆Tbuffer. As these values are experiment averages there is some difference between

the values that can be calculated here and what is reported in the table. At higher

ROIs, the reported event rate matches closely the approximate event rate calculated

using the other measurement averages. As the ROI decreases however, this accuracy

decreases down to the point where for the 10% experiment the values differ by a factor

of 4. This reinforces the wide range of ∆Tbuffer values shown in subplot c in Figures

D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8 and D.9 in Appendix D.

Looking at the distribution of event rates over the baseline experiment in Figure

6.16, the mean rate is x̄ = 4.7µs and the standard deviation is σ = 0.07. The distri-

bution is close to normal, ranging from approximately 4.6 to 4.9 µs. Using the 10%

ROI experiment, Figure 6.17 shows the distribution of event rates over the experiment.

The shape of the distribution is far from normal, instead showing a multi-modal distri-

bution. This means that there is likely to be more error if it was used as a predictive

model for future event rates, especially over longer periods of time. The distributions

of the event rates of the other experiments is shown in subplot d in Figures D.1, D.2,

D.3, D.4, D.5, D.6, D.7, D.8 and D.9 in Appendix D.

The mean rate for the 10% ROI experiment of x̄ = 2.2, is less than half that of the

baseline. The standard deviation also increased by a factor of 24, up to σ = 1.69.

A larger σ means that the event rates across the experiments vary more than in the

baseline experiment.

Figure 6.16: Baseline event rates histogram

43

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.17: 10% event rates histogram

6.1.1.6 Total number of events in the experiment

The total number of events collected is expected to be similarly related to the ROI

area as the event rate, explained in Section 6.1 and given by the function in Equation

6.2. As the area decreases the number of events collected is expected to decrease at the

same rate. The first order line of best fit in Figure 6.18 confirms this. Shown in red

is the expected behaviour which was created using the function described in Equation

6.2. This behaviour deviates from the measured data, which means that there is an

effect other than the ROI area that effects the event generation. The possible cause of

this effect is discussed further in Section 6.1.1.5. To understand the cause of the effect,

the same method as described in Section 6.1.1.5 is needed.

Tables 6.1 and 6.2 give the precise measurements calculated, which are represented

in Figure 6.18.

44

Chapter 6 Results and Analysis 6.1 Region of Interest

Figure 6.18: Total number of events across all ROI experiments

45

Chapter 7

Conclusion

A native host installation of the software applications Vivado and PetaLinux is the

best solution for this projects work environment, as discussed in Chapter 4. The com-

plexity of a virtualisation solution is unrealistic and too complicated when considering

the purpose of the project.

The results in Chapter 6 demonstrate that the three latency measurements behave

as described in Section 6.1, specifically Equations 6.1 and 6.3. The three latency meas-

urements are: the time between events, the time between buffers and buffer delay from

the perspective of the FPGA. This was expected as the event camera iterates through

the pixel array, regardless of the ROI, as the ROI is implemented at the FPGA level.

As the FPGA discards events from pixels outside the ROI, it is expected that gaps in

timestamps appear. This is due to the camera taking a finite amount of time to assign

timestamps to pixels, as described in Section 6.1.

The event rate and total number of events captured during the experiments were ex-

pected to have a relationship inversely related to the latency measurements, which is

given in Equation 6.2, but were found to deviate. This is most likely due to either

the event camera or the FPGA deleting events based on the amount of events being

registered. The expectation was that as the latency measurements are inversely re-

lated to the ROI pixel row height, and for event rate and the number of events to be

proportional to the ROI area. The total number of events is easy to understand as a

decrease in pixels that events can come from would decrease the number of events at

the same rate.

Lastly, the buffer sizes were found to decrease slightly with the ROI area, but stay

largely constant. This clearly shows that the default buffer is adaptive, influenced by

the ROI. The scale at which the buffer sizes change however is very small, demonstrat-

ing that the size was finely tuned, further discussed in Section 6.1.1.1.

The experiments explained in Chapter 5 each contained 100 individual runs, minim-

ising sampling error. While the measurements found for each experiment had low error,

as there were only 10 ROI experiments conducted, this project was limited to this data.

Discussed in Section 3.2 and shown with the total number of events in Section 6.1.1.6,

reducing the FPGA ROI in the RDK decreases the amount of data that needs to be

46

Chapter 7 Conclusion 7.1 Future Developments

processed by the user. The latency measurements show that the performance of the

system decreases across an almost constant length of time, as shown by the buffer size

discussed in Section 6.1.1.1.

However, from the perspective of the user, the performance metrics from the perspect-

ive of the FPGA do not affect the performance metrics of the user. Latency variables

such as the time between events values are internal values to the FPGA time axis

shown in Figure 3.4. As described in Equation 3.2, the overall latency performance as

seen by the user is only affected by the buffer duration (the time between buffers) from

the FPGA.

The results presented in Chapter 6 describe the effect of decreasing the camera ROI.

It also shows that the output data similarly decreases. The time between buffers is

directly affected by the size of the buffer, which was found to stay constant. The overall

latency from the user’s perspective can be decreased by implementing an ROI filter

and configuring a smaller USB buffer size. This will decrease the time between buffers

and user’s latency, thus decreasing the FPGA latency and the amount of data the user

would need to process.

The research presented in this thesis contributes to the event camera research field

by describing a more effective way to use event cameras for object tracking purposes.

Real-time object tracking will benefit from a decreased amount of data as the processing

time will decrease and the response rate of the tracker will increase.

7.1 Future Developments

This section will discuss further areas of study that were not pursued in this thesis.

This will include the next step for furthering the study conducted in Section 7.1.1.

Section 7.1.2 discusses alternative possibilities to altering the Region of Interest (ROI).

Lastly, Section 7.1.3 discusses the importance of the findings of this thesis, and the

possible applications for this research and any advances that could come from it.

7.1.1 The Next Step

The next logical step would be to look at the influence of an adaptable event buffer size

on performance, as mentioned in Chapter 7. As discussed in Sections 6.1.1 and 6.1.1.1,

the event buffer output from the RDK stays constant, despite the ROI. The buffer size

had a direct impact on the time span of a buffer from in Section 6.1.1.4, and the event

rate from Section 6.1.1.5. These measurements may benefit from the alteration of the

buffer size.

The buffer size is a value configured for the USB, and is most likely defined in multiple

47

Chapter 7 Conclusion 7.1 Future Developments

places, namely within the USB driver and within a memory register the FPGA can

access. It is possible that this value is defined only once, such as in a memory register,

and is accessed by both the USB driver and the FPGA. Reducing this value is expected

to reduce the latency of the user, leading to improved performance.

7.1.2 An Alternative

It is possible that an ROI based solution may not meet the performance requirements

of the user, even with improved performance through an adaptive buffer, as discussed

in Section 7.1.1. This thesis suggests 2 possible alternatives to the current USB transfer

method, namely a direct wire connection with General-Purpose Input/Output (GPIO)

pins, and bit banging.

USB is a general purpose technology, making it quite complex due to its standards

and procedures. Due to the time requirements involved in real-time object tracking,

this thesis suggests that the best alternative to the USB connection is a direct pin con-

nection between the RDK and the user. This bypasses the USB driver stack, greatly

reducing transfer complexity and the transfer delay from the FPGA, given as ∆t̃ in

Equation 3.2.

Bit banging is primarily done using GPIO’s, but it is also possible to bit bang the

USB protocol using the existing hardware [44]. The main advantage gained through

bit banging compared to the current USB connection is that a bit banging algorithm

could be configured to send events individually. This would reduce the buffer accumu-

lation time, given as ∆T in Equation 3.2, to the processing delay of a single event.

7.1.3 Applications

The decrease in the amount of processing that occurs, both within the FPGA and in

any algorithms run by the user, decreases power consumption of the overall system.

One benefit to a decreased amount of data that needs to be processed is that any

processing algorithms become faster. Decreased data could be used to either speed up

existing systems or subsystems, or to integrate multiple systems that were previously

not efficient enough to operate together. For example, multiple event camera systems

could be used together for fast object tracking from different angles, improving state

estimation algorithm accuracy. The benefits extend beyond object tracking, for ex-

ample, multiple cameras could also be used in real-time three-dimensional modelling

or reconstruction of objects.

The main benefits of an ROI filter is evident when there is a single object to be

48

Chapter 7 Conclusion 7.1 Future Developments

tracked, and that object has a slow relative motion to the sensor, as discussed in Sec-

tion 1. The ROI can be set the smallest size in this situation. However, in a multiple

object tracking algorithm, an ROI cannot be set this small, even if the targets are slow

moving and small. This depends on the position of the targets as a single ROI must

include all the targets. If the targets are spread across the full sensor resolution, the

ROI must be the same size as the full resolution, leading to unused pixels and data. As

most systems do not have one target, this reduces the benefits shown of a single ROI

filter. Implementing a system with multiple ROI’s would eliminate any unused pixels,

so that complex object tracking algorithms would also benefit.

49

Appendix A

Experimental Setup

Figures A.1, A.2, and A.3 show the stage used in the experiments discussed in Section

5.

Figures A.4 and A.5 show the position of the event camera in relation to the stage

for the polarity flip experiment, discussed in Section 4.4, and the ROI experiments,

discussed in Section 5, respectively.

Figure A.1: Experimental stage setup

50

Appendix A: Experimental Setup

Figure A.2: Side view of experimental stage setup

Figure A.3: Black and white target of experimental stage setup

51

Appendix A: Experimental Setup

Figure A.4: Experimental setup showing the placement of the RDK within the stage

during the polarity experiment

Figure A.5: Experimental setup showing the placement of the RDK within the stage

during the ROI experiments

52

Appendix B

RDK System

Figure B.1 is a detailed block diagram of the entire RDK2 system.

Figure B.2 is a detailed block diagram of the huahine block within the Prophesee li-

censed FPGA bitstream.

Figure B.3 is a basic block diagram of the entire system that includes the RDK2 and

the device user.

53

Appendix B: RDK System

Figure B.1: System block diagram for the Prophesee RDK showing the CCAM5 mod-

ule, the FPGA and its sub-modules and the Trenz board representing the RDK system

after the FPGA [5]

Figure B.2: Block diagram for the main processing block inside the FPGA [5]

54

Appendix B: RDK System

Figure B.3: High level system view of the RDK, broadly showing the path events take

from detecting to output [3]

55

Appendix C

Scripts

The GitHub repository that contains these scripts is found here [45].

C.1 Region of Interest C++ script

This script collects event data from the RDK over a set number of runs for set dura-

tions. C++ was chosen to reduce any possible processing delays that could come from

a non-compiled language such as Python. This script makes use of Prophesee API’s to

initialise the event camera and access the events.

The general flow of the script is best shown in Figure C.1.

Firstly the script is started, initialising the camera using Prophesee API’s. Two threads

are then started, one that reads the incoming event buffers and creates a csv file

containing timestamp information for each event. The second thread acts as a stop-

watch, monitoring the run duration. Until the timer exceeds the specified duration of

6.5 seconds, the analysis thread continues. Once the duration is exceeded, a sample

counter is incremented by one and the camera is reinitialised, and the process starts

again. Once the sample counter reaches 100 samples, the script ends.

56

Appendix C: Scripts C.2 Region of Interest Python analysis script

Figure C.1: State diagram for C++ sample collection script

C.2 Region of Interest Python analysis script

This script reads csv files generated by the C++ ROI script (Section C.1), analyses the

data and generates tables, plots and histograms of various measurements. This script

calculates six measurements from the data, each of which are talked about in detail in

Section 6.1.1.

The process is described in Algorithm 1. This is pseudocode describing the flow of

the python analysis script.

The script writes a json file that contains the calculations for readability and ease

of use.

57

Appendix C: Scripts C.3 Python table generation and experiment trend plots

Algorithm 1 Python analysis procedure

1: procedure main()

2: number of runs← 100

3: dictionary of results← {}
4: runs← [Baseline, ROI]

5: for experiment in runs :

6: measurements← calculate measurements().

7: dictionary of results← measurements.

8: generate plots(measurements);

9: write json(dictionary of results);

C.3 Python table generation and experiment trend

plots

This uses the json file output from the script in Section C.2 to generate plots to visualise

trends over experiments, as well as Latex specific tables for use in this thesis. Tables

and plots were generated for each measurement described in List 6.1.1.

The process is described in Algorithm 2. This is pseudocode describing the flow of

this script.

Algorithm 2 Python table and plot generator procedure

1: procedure main()

2: results← read json file()

3: generate main latex table(results);

4: ratios← ratios of results(results)

5: generate latex table from ratios(ratios);

6: for measurement in results :

7: generate plot from ratio(measurement ratio);

C.4 Python image magnify procedure

This magnifies a certain area in an image for readability.

The process is described in Algorithm 3. This is pseudocode describing the flow of

this script.

58

Appendix C: Scripts C.4 Python image magnify procedure

Algorithm 3 Python image magnify procedure

1: procedure main()

2: for image in list of images :

3: open image(image);

4: magnify area(image);

5: save image(image);

59

Appendix D

Additional Results

Table D.1 shows the Pearson correlation coefficients between the measured data and

estimated and second order line of best fit models.

Table D.1: Table of Pearson correlation coefficient values

Pearson correlation coefficient (r)

Measurement Expected Best fit

∆Tevent 0.998 0.995

∆Tbuffer 0.998 0.995

Buffer delay 0.996 0.994

Table D.2 shows the root mean squared error between the measured data and

estimated and second order line of best fit models.

60

Appendix D: Additional Results

Table D.2: Table of RMSE values

RMSE

Measurement Expected Best fit

Buffer size 0.645 0.407

∆Tevent 0.068 0.085

∆Tbuffer 24.004 25.273

Buffer delay 0.057 0.107

Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8 and D.9 show the different measure-

ments take at 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% ROI respectively.

Subplots a, b, c and d in each figure shows the experiment histograms of the time

between consecutive events, time between consecutive buffers, the time span of a single

buffer and the event rates respectively. Subplots e and f show typical spreads of events

and buffers within the experiment respectively.

61

Appendix D: Additional Results

Figure D.1: 20% ROI measurements

Figure D.2: 30% ROI measurements

62

Appendix D: Additional Results

Figure D.3: 40% ROI measurements

Figure D.4: 50% ROI measurements

63

Appendix D: Additional Results

Figure D.5: 60% ROI measurements

Figure D.6: 70% ROI measurements

64

Appendix D: Additional Results

Figure D.7: 80% ROI measurements

Figure D.8: 90% ROI measurements

65

Appendix D: Additional Results

Figure D.9: 100% ROI measurements

66

Bibliography

[1] Sony-Semicon. Event-based vision sensor (evs). https://www.sony-semicon.

com/en/products/is/industry/evs.html, n.d.

[2] Sony-Semicon. Event-based vision sensor (evs). https://www.sony-semicon.

com/en/technology/industry/evs.html, n.d.

[3] Prophesee. Transfer latency, 2024.

[4] BaslerWeb. Image roi. https://docs.baslerweb.com/image-roi, 2024.

[5] Prophesee. RDK2 Technical Reference Manual, July 2023.

[6] IBM. What are containers? https://www.ibm.com/topics/containers, 2023.

[7] Cisco. What are containers? https://www.cisco.com/c/en/us/solutions/

cloud/what-are-containers.html, 2019.

[8] Donald Firesmith. Virtualization via containers. https://insights.sei.cmu.

edu/blog/virtualization-via-containers/, 2017.

[9] IBM. What are virtual machines? https://www.ibm.com/topics/

virtual-machines, 2023.

[10] Oracle. What is a virtual machine? https://www.oracle.com/au/cloud/

compute/virtual-machines/what-is-virtual-machine/, 2023.

[11] Donald Firesmith. Virtualization via virtual machines. https://insights.sei.

cmu.edu/blog/virtualization-via-virtual-machines/, 2017.

[12] Prophesee. What is event based vision? https://www.prophesee.ai/2019/07/

28/event-based-vision-2/, 2024.

[13] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. ACM

computing surveys, 38(2006-12), 2006.

[14] Zhe Chen, Zhibin Hong, and Dacheng Tao. An experimental survey on correlation

filter-based tracking, 2015.

[15] Ziyuan Huang, Changhong Fu, Yiming Li, Fuling Lin, and Peng Lu. Learning ab-

errance repressed correlation filters for real-time uav tracking. In 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), pages 2891–2900, 2019.

67

https://www.sony-semicon.com/en/products/is/industry/evs.html
https://www.sony-semicon.com/en/products/is/industry/evs.html
https://www.sony-semicon.com/en/technology/industry/evs.html
https://www.sony-semicon.com/en/technology/industry/evs.html
https://docs.baslerweb.com/image-roi
https://www.ibm.com/topics/containers
https://www.cisco.com/c/en/us/solutions/cloud/what-are-containers.html
https://www.cisco.com/c/en/us/solutions/cloud/what-are-containers.html
https://insights.sei.cmu.edu/blog/virtualization-via-containers/
https://insights.sei.cmu.edu/blog/virtualization-via-containers/
https://www.ibm.com/topics/virtual-machines
https://www.ibm.com/topics/virtual-machines
https://www.oracle.com/au/cloud/compute/virtual-machines/what-is-virtual-machine/
https://www.oracle.com/au/cloud/compute/virtual-machines/what-is-virtual-machine/
https://insights.sei.cmu.edu/blog/virtualization-via-virtual-machines/
https://insights.sei.cmu.edu/blog/virtualization-via-virtual-machines/
https://www.prophesee.ai/2019/07/28/event-based-vision-2/
https://www.prophesee.ai/2019/07/28/event-based-vision-2/

Appendix D: Additional Results

[16] David S. Bolme, J. Ross Beveridge, Bruce A. Draper, and Yui Man Lui. Visual

object tracking using adaptive correlation filters. In 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 2544–2550, 2010.

[17] Xianfang Sun, Paul L. Rosin, Ralph R. Martin, and Frank C. Langbein. Bas-

relief generation using adaptive histogram equalization. IEEE Transactions on

Visualization and Computer Graphics, 15(4):642–653, 2009.

[18] Liyuan Li, Weimin Huang, Irene Yu-Hua Gu, and Qi Tian. Statistical modeling

of complex backgrounds for foreground object detection. IEEE Transactions on

Image Processing, 13(11):1459–1472, 2004.

[19] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian

Taba, Andrea Censi, Stefan Leutenegger, Andrew J. Davison, Jorg Conradt, Kos-

tas Daniilidis, and Davide Scaramuzza. Event-based vision: A survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 44(1):154–180, Janu-

ary 2022.

[20] Qinyi Wang, Yexin Zhang, Junsong Yuan, and Yilong Lu. Space-time event clouds

for gesture recognition: From rgb cameras to event cameras. In 2019 IEEE Winter

Conference on Applications of Computer Vision (WACV), pages 1826–1835, 2019.

[21] Cian Ryan, Brian O’Sullivan, Amr Elrasad, Aisling Cahill, Joe Lemley, Paul

Kielty, Christoph Posch, and Etienne Perot. Real-time face & eye tracking and

blink detection using event cameras. Neural Networks, 141:87–97, 2021.

[22] Iffatur Ridwan. Looming Object Detection with Event-Based Cameras. PhD thesis,

2018. Copyright - Database copyright ProQuest LLC; ProQuest does not claim

copyright in the individual underlying works; Last updated - 2023-03-04.

[23] Yijun Liu, Yuehai Chen, Wujian Ye, and Yu Gui. Fpga-nhap: A general fpga-based

neuromorphic hardware acceleration platform with high speed and low power.

IEEE Transactions on Circuits and Systems I: Regular Papers, 69:1–14, 06 2022.

[24] Amine Saddik, Rachid Latif, and Abdelhafid E. Ouardi. Low-power fpga architec-

ture based monitoring applications in precision agriculture. Journal of Low Power

Electronics and Applications, 11(4):39, 2021. Name - NVidia Corp; Copyright - ©
2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open

access article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Notwithstanding the ProQuest Terms and Conditions, you may use this content

in accordance with the terms of the License; Last updated - 2023-11-28; Subject-

sTermNotLitGenreText - Morocco.

68

Appendix D: Additional Results

[25] DigiKey. Cyclone v fpga family. https://www.digikey.com.au/en/

product-highlight/a/altera/cyclone-v-fpga-family, 2014.

[26] buildcomputers.net. Typical power consumption of pc compon-

ents - power draw in watts. https://www.buildcomputers.net/

power-consumption-of-pc-components.html, n.d.

[27] Julien Lamoureux and Steven J. E. Wilton. On the trade-off between power and

flexibility of fpga clock networks. ACM Trans. Reconfigurable Technol. Syst., 1(3),

sep 2008.

[28] Yizhao Gao, Song Wang, and Hayden Kwok-Hay So. A reconfigurable architec-

ture for real-time event-based multi-object tracking. ACM Trans. Reconfigurable

Technol. Syst., 16(4), sep 2023.

[29] Juan Barrios-Avilés, Taras Iakymchuk, Jorge Samaniego, Leandro D. Medus, and

Alfredo Rosado-Muñoz. Movement detection with event-based cameras: Com-

parison with frame-based cameras in robot object tracking using powerlink com-

munication. Electronics, 7(11):304, 2018. Copyright - © 2018 by the authors.

Licensee MDPI, Basel, Switzerland. This article is an open access article distrib-

uted under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the

ProQuest Terms and Conditions, you may use this content in accordance with the

terms of the License; Last updated - 2023-11-23.

[30] Juan Barrios-Avilés, Alfredo Rosado-Muñoz, Leandro D. Medus, Manuel Bataller-

Mompeán, and Juan F. Guerrero-Mart́ınez. Less data same information for event-

based sensors: A bioinspired filtering and data reduction algorithm. Sensors,

18(12), 2018.

[31] Gregory Kevin Cohen. Event-Based Feature Detection, Recognition and Classific-

ation. PhD thesis, The MARCS Institute Western Sydney University, 2015.

[32] Cedric Sheerlinck. How to See with an Event Camera. PhD thesis, The Australian

National University, 2021.

[33] Prophesee. Prophesee and sony develop a stacked event-based

vision sensor with the industry’s smallest*1 pixels and highest*1

hdr performance. https://www.prophesee.ai/2020/02/19/

prophesee-sony-stacked-event-based-vision-sensor/, 2020.

[34] Prophesee. CCAM5 IMX636 TECHNICAL REFERENCE MANUAL, April 2023.

69

https://www.digikey.com.au/en/product-highlight/a/altera/cyclone-v-fpga-family
https://www.digikey.com.au/en/product-highlight/a/altera/cyclone-v-fpga-family
https://www.buildcomputers.net/power-consumption-of-pc-components.html
https://www.buildcomputers.net/power-consumption-of-pc-components.html
https://www.prophesee.ai/2020/02/19/prophesee-sony-stacked-event-based-vision-sensor/
https://www.prophesee.ai/2020/02/19/prophesee-sony-stacked-event-based-vision-sensor/

Appendix D: Additional Results

[35] Sean Simmons. Latency in embedded systems. https://cs.uwaterloo.ca/

~mkarsten/cs856-W10/lec06.pdf, 2009.

[36] ANSYS. What is an integrated circuit (ic)? https://www.ansys.com/blog/

what-is-an-integrated-circuit, 2023.

[37] AMD. Downloads. https://www.xilinx.com/support/download/index.html/

content/xilinx/en/downloadNav/vivado-design-tools/archive.html, n.d.

[38] Frank Vasquez and Chris Simmonds. Mastering Embedded Linux Programming.

Packt Publishing, third edition, 2021.

[39] AMD. Downloads. https://www.xilinx.com/support/download/index.html/

content/xilinx/en/downloadNav/embedded-design-tools/archive.html,

n.d.

[40] AMD. Yocto kria support. https://xilinx.github.io/kria-apps-docs/

yocto/build/html/docs/yocto_kria_support.html, 2024.

[41] Xilinx. Build the petalinux image. https://xilinx.github.io/vmk180-trd/

2020.2/platform1/html/build-plnx.html, 2020.

[42] Devsena Mishra. What is ‘dependency hell’? https://medium.com/

@devsenamishra/what-is-dependency-hell-b700fc937091, 2023.

[43] PROPHESEE Metavision Technologies. Metavision training videos — intro-

duction to event-based vision sensor. https://www.youtube.com/watch?v=

SPrdvhuAISk&ab_channel=PROPHESEEMetavisionTechnologies, 2023.

[44] Brian Benchoff. Bitbanging usb on low power arms. https://hackaday.com/

2014/03/22/bitbanging-usb-on-low-power-arms/, 2014.

[45] Lachlan Spencer. honours thesis roi data collection and plotting. https:

//github.com/lachlanspencer/honours_thesis_roi_data_collection_and_

plotting, 2024.

70

https://cs.uwaterloo.ca/~mkarsten/cs856-W10/lec06.pdf
https://cs.uwaterloo.ca/~mkarsten/cs856-W10/lec06.pdf
https://www.ansys.com/blog/what-is-an-integrated-circuit
https://www.ansys.com/blog/what-is-an-integrated-circuit
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/archive.html
https://xilinx.github.io/kria-apps-docs/yocto/build/html/docs/yocto_kria_support.html
https://xilinx.github.io/kria-apps-docs/yocto/build/html/docs/yocto_kria_support.html
https://xilinx.github.io/vmk180-trd/2020.2/platform1/html/build-plnx.html
https://xilinx.github.io/vmk180-trd/2020.2/platform1/html/build-plnx.html
https://medium.com/@devsenamishra/what-is-dependency-hell-b700fc937091
https://medium.com/@devsenamishra/what-is-dependency-hell-b700fc937091
https://www.youtube.com/watch?v=SPrdvhuAISk&ab_channel=PROPHESEEMetavisionTechnologies
https://www.youtube.com/watch?v=SPrdvhuAISk&ab_channel=PROPHESEEMetavisionTechnologies
https://hackaday.com/2014/03/22/bitbanging-usb-on-low-power-arms/
https://hackaday.com/2014/03/22/bitbanging-usb-on-low-power-arms/
https://github.com/lachlanspencer/honours_thesis_roi_data_collection_and_plotting
https://github.com/lachlanspencer/honours_thesis_roi_data_collection_and_plotting
https://github.com/lachlanspencer/honours_thesis_roi_data_collection_and_plotting

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Thesis contributions

	Literature Review
	Object tracking
	Event Cameras
	Field Programmable Gate Arrays
	Object tracking using Field Programmable Gate Array's with Event-based Cameras

	Background
	Event Cameras
	Latency
	Region of Interest filter
	Field Programmable Gate Array (FPGA)
	Embedded Linux with the Yocto Project and PetaLinux
	Robust work environment

	Work Environment Design
	Containers
	Virtual Machines
	Decision
	Result

	Methodology
	Experiment

	Results and Analysis
	Region of Interest
	Measurements
	Buffer size
	Time between events
	Time between buffers of events (Buffer delay)
	Buffer time span
	Event rate
	Total number of events in the experiment

	Conclusion
	Future Developments
	The Next Step
	An Alternative
	Applications

	Experimental Setup
	RDK System
	Scripts
	Region of Interest C++ script
	Region of Interest Python analysis script
	Python table generation and experiment trend plots
	Python image magnify procedure

	Additional Results
	Bibliography

