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Chapter 1

Abstract

Attitude estimation is a core problem in many robotic systems that perform auto-
mated or semi automated navigation. The configuration space of the attitude mo-
tion is naturally modelled on the Lie group of special orthogonal matrices SO(3).
Many current attitude estimation methods are based on non-matrix parameteriza-
tion of attitude. Non-matrix parameterization schemes sometimes lead to modelling
issues such as the singularities in the parameterization space, non-uniqueness of
the attitude estimates and the undesired conversion errors such as the projection or
normalization errors. Moreover, often attitude filters are designed by linearizing or
approximating the nonlinear attitude kinematics followed by applying the Kalman
filtering based methods that are primarily only suitable for linear Gaussian systems.

In this thesis, the attitude estimation problem is considered directly on SO(3)
along with nonlinear vectorial measurement models. Minimum-energy filtering is
adapted to respect the geometry of the problem and in order to solve the problem
avoiding linearization or Gaussian assumptions. This approach allows for obtain-
ing a geometric approximate minimum-energy (GAME) filter whose performance is
tested by means of Monte Carlo simulations. Many of the major attitude filtering
methods in the literature are surveyed and included in the simulation study. The
GAME filter outperforms all of the state of the art attitude filters studied, including
the multiplicative extended Kalman filter (MEKF), the unscented quaternion estima-
tor (USQUE), the right-invariant extended Kalman filter (RIEKF) and the nonlinear
constant gain attitude observer, in the asymptotic estimation error. Furthermore, the
proposed GAME filter is shown to be near-optimal by deriving a bound on the opti-
mality error of the filter that is proven to be small in simulations. Moreover, similar
GAME filters are derived for pose filtering on the special Euclidean group SE(3), atti-
tude and bias filtering on the unit circle and attitude and bias filtering on the special
orthogonal group. The approximation order of the proposed method can potentially
be extended to arbitrary higher orders. For instance, for the case angle estimation on
the unit circle an eighth-order approximate minimum-energy filter is provided.
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Chapter 2

Introduction

This thesis concerns the problem of estimating the attitude state of a rigid-body mov-
ing in the 3D space. Attitude estimation is an important subtask of many automated
or semi-automated robotic vehicles. The control process of such vehicle relies on the
knowledge of the attitude state of the system that is provided via an attitude estima-
tion algorithm. Such information is for example required to be used in a feedback
control loop to attain a certain automated navigational task. When dealing with fast
attitude dynamics such as in unmanned aerial vehicle (UAV) manoeuvres, any degra-
dation of the attitude estimate can quickly cause the overall system to go unstable.
Therefore, a robust, accurate and preferably ‘optimal’ attitude filtering algorithm is
required to minimize the attitude estimation error and to ensure that the system’s
overall performance remains within the desirable bounds. The kinematics model of
the rigid-body motion is naturally modelled on the Lie group of special orthogonal
matrices SO(3). However, this problem is traditionally tackled using the conven-
tional vector space methods. In this thesis the Lie group structure of the system is
exploited to improve the estimation quality.

The main focus of the thesis is to provide theoretical results on geometric deter-
ministic minimum-energy (optimal) filtering treatment of this problem. Note that al-
though the problem considered is purely theoretical it is strongly motivated by many
applications in automated control systems and robotics. The following sections are
to further explain the problem considered and the results of this thesis.

2.1 Problem Considered

Attitude and pose filtering are two challenging problems that are widely studied in
the systems and control literature. Attitude encodes the rotation (a 3 by 3 orthogonal
matrix whose determinant equals 1) that indicates the orientation of the body-fixed
frame attached to a moving object relative to a reference frame. In fact, a rotation
acts as a linear transformation of the set of axes of a coordinate frame (represented
by a matrix of three orthogonal unit vectors) yielding the set of axes of the rotated
coordinate frame. Pose encodes the rotation as well as the linear translation of the
body-fixed frame relative to the reference frame.

In this thesis, multiple filtering problems are considered including attitude filter-

13

Draft Copy – 20 May 2013



14 Introduction

ing in two dimensions, attitude filtering (in the 3D space) and pose filtering. In all of
these problems the state space model is chosen as the nonlinear kinematics modelled
on Lie groups, the special orthogonal group in two dimensions SO(2) (or the unit
circle S1), the special orthogonal group SO(3) and the special Euclidean group SE(3).
The attitude kinematics on SO(3) however is selected to explain the main ideas of
this thesis and full algebraic derivations are provided for this particular system.

This work considers a deterministic optimal filtering approach (also known as
minimum-energy filtering) to produce the attitude estimates using vectorial measure-
ments. Vectorial measurements obtained from sensors are often contaminated with
measurement errors and time-varying bias terms that need to be rejected through
the filtering algorithm to produce a smooth and accurate attitude estimate. In the
deterministic optimal filtering approach, the error signals are modelled as determin-
istic unknown functions of time. The filtering objective is to provide a state estimate
by minimizing a cost function on the collective energy of the unknown signals of the
system. These unknowns include the initial state conditions along with the unknown
measurement errors.

2.2 Applications

Attitude estimation is a critical component of many automated control systems in
aerial vehicles. The very fast dynamics of attitude in flight manoeuvres requires a
very reliable attitude estimate so that the overall control task be successfully exe-
cuted. Historically, this issue was tackled by using high quality measurement units.
These high-end gadgets are either expensive or very large in size restricting their
application. In some cases these sensors are only available to military research that
further limits their adoption. Recent technological developments in micro electro-
mechanical systems (MEMS)s have driven the emergence of a range of inertial mea-
surement units that are small, inexpensive and light-weight. However, the challenge
is with the larger errors and the existence of time-varying bias in the measurements
obtained. Following this line of reasoning further, better attitude estimation algo-
rithms are required to compensate for the less expensive sensors used in small au-
tomated flight systems . Other potential control and robotics applications include
but are not limited to the unmanned aerial vehicles (UAVs), mini UAVs, quadrotors,
spacecrafts and satellites.

It is also interesting to consider applications in power systems where the three
phase components of an element of the grid needs to be estimated with similar mea-
surements. Another potentially interesting case is in communications where the atti-
tude of a rotating radar needs to be estimated using similar measurements. Quantum
spin systems involve systems that evolve on Lie groups other than the ones consider
in this thesis. Nevertheless, the theory developed in this thesis could potentially
motivate similar results in that area.
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§2.3 Desired Attributes of an Attitude or Pose Filter 15

2.3 Desired Attributes of an Attitude or Pose Filter

This section contains some desirable attributes that are expected from an attitude or
pose filter. Having these qualities in mind will further elucidate the various aspects
of the attitude filtering problem. The principles outlined in this list provide qualita-
tive criteria against which the various filters proposed in this thesis can be compared
with the state of the art filters in the literature.

Rigorous Modelling
An attitude filter should be based on a well conditioned attitude representation and
accurate system model. In particular, other than the estimation errors there should
be minimal errors introduced in the process of interpreting the attitude estimates or
modelling the system response.

Although attitude is naturally modelled as a rotation matrix, conventional filter-
ing methods have considered vectorial parameterizations of rotations to represent
attitude in order to exploit the natural vector formulation of the majority of filter
design algorithms. These parameterization are either Euclidean such as the Euler
angles or non-Euclidean such as the unit quaternions. Using these parameterizations
allows an engineer to use familiar designing methodologies such as extended Kalman
filtering and simplifies the algebra. However, these parameterizations have critical
weaknesses such as singularities in the attitude representation, non-uniqueness of
the representation and the numerical errors introduced in the process of translating
estimates back to rotations. In particular, the Euclidean parameterizations are not
well defined for certain rotations and continuous control algorithms cannot globally
operate on these systems.

Sometimes the result of an algebraic operation on a parameterized rotation needs
to be projected such that it yields a meaningful rotation. The projection process it-
self can introduce secondary errors in the algorithms. For example, straightforward
integration of the kinematics model of attitude when represented in vectors is an
obvious operation that can involve projection errors. The kinematics of the attitude
represented with a rotation matrix is naturally modelled on the Lie group SO(3). Us-
ing the exponential map to integrate the kinematics equation preserves the structure
of the attitude rotation matrix and avoids any projection error. Another well-known
issue with unit quaternions is the non-uniqueness of quaternions, in other words the
fact that any rotation is associated with two different unit quaternions. This causes
issues such as the well-known unwinding phenomenon in control algorithms [11].
Using rotations instead of parameterizations is beneficial to avoid the abovemen-
tioned issues. Of course, this way of modelling leads to more a complicated algebra.
However, Lie groups and their associated algebraic methods are well studied in other
literatures and recently there has been more theory [3, 39] available to facilitate their
application in systems and control. For an excellent and thorough review of rotations
and their parameterizations in rigid-body motion control see [11].

Robustness
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16 Introduction

An attitude filter should be robust with respect to any initialization errors and mea-
surement errors with large deviations. In particular regarding initialization errors,
an attitude filter should converge to the desired solution for almost any initial condi-
tion. If for some reason the characteristics of the errors in the measurements change,
an ideal method should adaptively continue generating estimates close to the true
solution.

Implementability
There are various aspects to the implementability of an attitude filter. Many attitude
filtering applications are subject to fast deviations of attitude with respect to time and
must run on small scale embedded computer architectures. Consequently, a suitable
filtering algorithm should be computationally inexpensive in order to deal with the
high data rates and limited computational resources. Recursiveness often makes an
algorithm computationally efficient and also allows for real-time and on-line imple-
mentability. Recursive methods do not require all the past measurements but rather
only the latest measurements in order to update the solution obtained in the previous
iteration, in an optimal fashion. Another important factor in the implementability of
a filtering algorithm is the practicality of the tuning process. Tuning should not be
an lengthy offline process but rather a filtering method should be easily tunable ac-
cording to the expected level of initialization and measurement errors in a particular
situation.

Quantifiable Performance
Trying to quantify and measure how well attitude filters are performing is a daunt-
ing task. Sometimes attitude filters are based on different philosophies or are con-
structed upon different optimization problems with different cost functionals. Even
if the standard cost functionals are considered, there is no true optimal attitude fil-
ter yet known in the literature and consequently even the available methods that
are based on optimality principles involve an approximation that usually has little
or no connection to the underlying optimality criteria making a characterization of
the resulting loss in performance almost impossible. Therefore, it is very interest-
ing to be able to determine how well a filtering algorithm works. In other words,
an attitude filter should in some sense have a justifiable performance measure that
is preferably experimentally quantifiable. There is significant value to undertake a
simulation study that provides quantitative evidence of the relative performance of
various filter design methodologies.

2.4 Attitude Filtering Methods

Many attitude estimation algorithms have been proposed in the literature. The earli-
est methods are based on the famous Kalman filter [30], an optimal stochastic filtering
approach for linear systems. In this method the measurement errors are regarded as
white noise and a filter is derived using the noisy measurements by minimizing the

Draft Copy – 20 May 2013



§2.4 Attitude Filtering Methods 17

expected value of the square norm difference between the estimated and the true
state. For nonlinear systems, due to the lack of finite dimensional parameterizations
of general stochastic processes, it is in general impossible to find a finite dimensional
optimal stochastic filter [23]. Linearized system equations are usually considered for
nonlinear systems to derive the extended Kalman filter (EKF) [6]. According to a rela-
tively recent survey by Crassidis et. al [18], EKF is the most adopted method in space
flight attitude estimation applications. While, early implementations of EKF were
mainly based on singular attitude parameterizations, later trends use non-singular
representations (mostly unit quaternions) to achieve better results. A particularly
novel approach by Choukroun et. al [13] modifies the unit quaternions kinemat-
ics and measurements models to obtain an equivalent linear set of equations with
measurement errors depending on the quaternion state. A modified Kalman filter
is derived for the resulting linear equations and is shown to outperform the EKF.
However, a brute force normalization is required to preserve the unit norm property
of the resulting quaternion estimate.

The multiplicative extended Kalman filter [24] is the state of the art EKF-based
attitude filter that is widely used in spacecraft applications. The idea behind the
MEKF is to consider the true attitude state as the product of a reference quaternion
and an error quaternion that represents the difference between the reference and
the true attitudes. The error quaternion is parameterized by a three dimensional
representation of attitude and is estimated using an EKF. The MEKF estimates the
true attitude by multiplying the estimated error quaternion (converted back to a
unit quaternion) and the reference quaternion. In order to avoid the redundancy
of having to estimate both the reference quaternion and the error quaternion, the
reference quaternion is chosen in a way that the error quaternion is the identity
quaternion. Therefore, the MEKF directly calculates the reference quaternion as a
unit quaternion estimate of the true attitude by implicitly running an EKF in the
vector space of its angular velocity input.

Motivated by robotics applications, Bonnabel et. al [8, 10] proposed the invariant
extented Kalman filters (IEKFs) that were based on unit quaternion attitude kinemat-
ics and were derived by modifying the EKF equations to be invariant with respect
to the group operation in the group of unit quaternions. The left-invariant extended
Kalman filter (LIEKF) coincides with the MEKF for a basic attitude filtering problem.
The right-invariant EKF [8, 10] or the generalized MEKF (GMEKF) [27] considers
measurement errors to be modelled in the reference frame different to the usual
body-fixed frame modelling of errors. The gains of the RIEKF/GMEKF stabilize on a
wider range of trajectories and are expected to result in better convergence properties
of the filter than the MEKF.

Considering the EKF-based methods against the desired attributes of an attitude
filter mentioned before, the biggest downfall of these methods is that they are based
on first order linearization of the system equations and hence are not robust to large
second-order error components. These filters are fairly simple to implement and re-
quire little computational power. However, precise tuning of the filter parameters is
necessary to attain the best possible performance depending on the experiment. Un-
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18 Introduction

fortunately, there is no clear performance measure to show how the approximations
employed will affect the optimality condition of EKF filters except in some special
cases [7].

The unscented Kalman filter (UF) [34] takes a different approach by using the
Kalman filtering equations to propagates a carefully chosen set of sigma points to
approximate the probability distribution. In this manner it is expected that it can
better model the nonlinear propagation of the probability distribution of state ex-
pectation as opposed to the EKF that uses a linearization of the nonlinear equations.
This method has the potential to achieves a better estimation error lower than the
error of the EKF and avoid calculating the Jacobian. Furthermore, UF-based meth-
ods have the potential of using higher order moments to approximate the unknown
probability distribution. The unscented quaternion estimator (USQUE [15]) is a rel-
atively new adaptation of the UF to attitude filtering that uses unit quaternions to
represent the attitude. The unit norm condition of quaternions is claimed to be pre-
served in the USQUE method where a three-component attitude error is used to
derive an unscented filter and the resulting estimated error is converted back to unit
quaternions and multiplied with the previously estimated quaternion to produce the
attitude estimate. The hope is that the singularities would not occur since a singular
parameterization of attitude is only used for the quaternion error that is supposed
to be small. The USQUE is shown to outperform the EKF in simulations though
with the cost of more computations and complicated tuning process. In a very recent
paper [38], by simulations it was shown that the USQUE achieves slightly higher or
similar estimation error compared to the MEKF although with a faster convergence
rate.

The UF-based methods score similar to EKF-based methods with regards to the
desired attributes of an attitude filter. Again there is no clear measure to know
how close to optimal a UF-based filter is performing. However, in contrast to the
EKF-based methods the UF-based methods have the potential to achieve lower error
bounds by using higher order approximations to a general probability distribution.
The parameters introduced in the sigma point calculations can potentially complicate
the implementation and tuning process.

The stochastic methods introduced so far are based on a Gaussian assumption on
the error signals of the attitude filtering problem. Particle filtering includes a wide
range of filters that do not have the Gaussian assumption. Rather, Monte-Carlo simu-
lations are performed in order to approximate the general nonlinear distribution us-
ing weighted particles. Particle filters have proven to have better error characteristics
compared to the EKF however with the cost of significantly increasing the computa-
tions. An straightforward implementation of a particle filter is not suitable for small
scale embedded architectures due to computational load. In a recent work [12], a unit
quaternion boot-strap particle filter was shown to achieve comparable performance
to the USQUE with higher computational cost. Particle filters also do not come with
clear performance measures to indicate how optimal their solution is.

The MEKF, LIEKF, RIEKF, the USQUE and similar methods that are based on
unit quaternions do not have the issue of singularity in their attitude parameteriza-
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§2.4 Attitude Filtering Methods 19

tion. Unit quaternions have the disadvantage of not being a unique representation
for rotations, although using quaternion vectors reduces the computational power
compared to using orthogonal rotation matrices. However, any filter that is derived
in terms of rotation matrices can be implemented using unit quaternions (but not
vice versa).

Aside from the stochastic filtering methods that are mentioned above, attitude
estimation algorithms are also proposed based on deterministic modelling schemes.
In a deterministic approach the errors of the system are treated as unknown signals
of time with no a priori stochastic assumptions on them. The filter is usually ob-
tained by minimizing a cost on the size of the errors. Therefore, normally a square
norm integrability assumption is needed on the error signals. For linear systems,
deterministic filtering leads to the exact same Kalman filter’s equations as has been
shown in many references, cf. [1, 16, 17]. For nonlinear systems, Mortensen [31]
introduced a systematic approach to deriving filtering algorithms based on the prop-
erties of the value function of the optimal filtering problem. This approach known
as minimum energy filtering, was further explored by Hijab [28]. In this approach
the optimal filtering problem is broken down into an optimal control part, assuming
a constant initial state, followed by a further optimization over the initial state value.
Mortensen’s approach [31] proposes an inductive Taylor’s expansion of the optimal
value function to compute the trajectory of the optimal filter estimate. Convergence
of minimum-energy filters was studied by Krener [21] who proved that under some
conditions including the uniform observability of the system, a minimum-energy
estimate converges exponentially fast to the true state.

In a nonlinear application Aguiar et al. [4] applied Mortensen’s minimum-energy
filtering approach to systems with perspective outputs by embedding the nonlinear
geometry in an overarching Euclidean space. Under suitable assumptions, the filter is
shown to be asymptotically convergent. The resulting estimates however, need to be
projected back to the group SE(3) which arguably affects the optimality of the filter
in an untraceable fashion. Coote et al. [29] proposed a near-optimal deterministic
filter on the unit circle using a geometric state representation on S1. This method
was then generalized by Zamani et al. [42] to attitude filtering on the Lie group
SO(3) using full state measurements. The distance to optimality of these methods
are mathematically shown with an upper bound on the difference between the cost
these filters achieve and an optimal cost.

Other deterministic methods include attitude determination methods and H-
infinity filtering methods. Attitude determination started with what is known as the
Wahba’s problem [40] in the 1965s. An attitude determination algorithm does not
require integrating the attitude kinematics and yields the attitude estimate by opti-
mizing a cost on partial attitude measurement errors. Filtering versions of attitude
determination methods on the other hand use the kinematics or dynamics models
of attitude to propagate the estimates followed by a measurement update using the
attitude determination algorithm. Early attitude determination methods relied on
non-SO(3) parameterizations of attitude while more recently there are methods di-
rectly based on SO(3) [36, 37]. The last two mentioned methods are based on the
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20 Introduction

dynamics of attitude modelled on the tangent bundle TSO(3) and rely on an implicit
QR decomposition in order to provide an optimal attitude and angular velocity es-
timate by minimizing the attitude and velocity measurements errors. The downside
with the attitude determination methods is that they are not robust to state initializa-
tion errors that is sometimes compensated for by introducing secondary estimation
processes that takes away the simplicity of the original method.

There are also deterministic attitude filters that are based on H-infinity control
theory that are designed to minimize the worst case errors rather than minimizing
the average error (cf. [26]) . The point with the H-infinity methods is that they are
independent of any a priori information on the size of initialization and measurement
errors. However, lack of incorporating any such information when available leads to
reduced performance of these filters compared to the EKF-like methods [18].

Another important class of attitude estimation methods that are not based on
optimization methods are drawn from the nonlinear observers family [9, 19, 20, 22,
32, 33, 35]. Nonlinear attitude observers are usually based on nonsingular repre-
sentations of attitude including unit quaternions and rotation matrices. The distinct
feature of these methods is their mathematically guaranteed stability and conver-
gence properties. The limiting fact with these methods is the constant gain of these
observers as opposed to filters that have adaptively changing gains, usually obtained
using a Riccati equation. In fact, the gains of the nonlinear observers need to be pre-
tuned precisely according to the attitude motion trajectory and hence are less robust
to initialization errors.

2.5 Thesis Contributions

In this thesis a novel attitude filtering solution is proposed based on Mortensen’s
deterministic minimum-energy filtering approach. The following are the main con-
tributions of the thesis. Some of these contributions have already been published in
the form of papers.

• In this work the problem of rigid body attitude estimation is tackled by mod-
elling the kinematics of rotations directly on the Lie group SO(3) along with
using nonlinear vectorial models of the angular velocity and attitude sensor
measurements, see Chapter 4.

• Tools from differential geometry are utilized to generalize Mortensen’s minimum-
energy filtering to the space of rotations on SO(3).

• A comprehensive simulation study is provided to study some of the main atti-
tude filters. In Chapter 7 some of the prominent attitude filters are surveyed.
In particular, the main ideas behind each method are summarized and imple-
mentation details of each are provided. The GAME filter is then compared
against these attitude filters in different situations including scenarios simulat-
ing a UAV experiment as well as another scenario simulating a spacecraft ex-
periment. Monte Carlo simulation experiments show that the proposed GAME
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filter outperforms all of the competing attitude filters in asymptotic estimation
error. Analysis also shows that the GAME filter has the best balanced transient
and asymptotic performance in all the situations tested.

• The proposed GAME filter is mathematically analyzed using a least square
argument similar to the author’s previous work [42]. This is the subject of
Chapter 5 where it is shown that the GAME filter is near-optimal. It is proven
that the difference between the cost incurred by the proposed GAME filter and
a minimum-energy cost is less than or equal to a bound that is decreasing with
the estimation error. This bound is numerically quantifiable and is useful for
monitoring the GAME filter’s performance. In simulations in Chapter 5 it has
been shown that this bound is small relative to the optimal cost demonstrating
the near-optimality of the GAME filter.

• The filtering approach in this work can systematically yield nonlinear filters
with arbitrary order of approximation to an ideal minimum-energy filter. For
the case of filtering on the unit circle S1, an eighth-order approximate minimum-
energy filter is provided in Chapter 6. Previous work on this system [29] had
only demonstrated a second-order approximate minimum-energy filter that
was developed without a general design methodology. For the case of atti-
tude filtering on SO(3) a second-order approximate minimum-energy filter on
SO(3) (called the GAME filter) using vectorial measurements is proposed in
Chapter 4. Previous filtering work on SO(3) by Zamani et al. [42] relied on
guessing the correct geometric form of the filter equations based on a least
squares analysis of the cost functional. However, only the case with full state
measurements was tackled using that method.

• The systematic nature of the approach taken in this thesis facilitates deriv-
ing similar filters on other Lie groups. For instance, in Chapter 6 geometric
minimum-energy based filters are given for angle kinematics on the unit cir-
cle S1, angle kinematics on SO(2) with bias in angular velocity measurements,
rotation kinematics on SO(3) with biased angular velocity measurements, and
pose kinematics on SE(3). The latter filter is obtained by geometrically adapt-
ing Mortensen’s minimum-energy filtering to the problem of rigid-body pose
filtering on the group SE(3) with vectorial measurements.

In summary the proposed attitude filter, called the GAME filter complies with
the desired attributes of an attitude filter that were mentioned before. In particular,
the GAME filter and its derivation are based on rigorous modelling and truly respect
the natural configuration space of the attitude motion being posed on the Lie group
SO(3). The minimum-energy filtering method makes the GAME filter robust with
respect to initialization and measurement errors. Another advantage of the proposed
geometric minimum-energy filtering approach is that a meaningful cost function is
used to derive the filter. The cost function can be modified to incorporate a priori
knowledge on the expected size of initialization and measurement errors. These a
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priori information translate vividly into the proposed filtering equations and thus
no extra tuning effort is needed for the proposed algorithms. On the other hand the
equations of the GAME filter are slightly more complicated than the main competing
method, the MEKF. As a matter of fact the GAME filter, when it is cast in unit quater-
nions form for the ease of implementability, has the same observer equation as the
MEKF with a couple of additional terms in the Riccati equations. Nevertheless, as it
is mentioned in Chapter 7, the extra terms have minimal increase of computational
load in the GAME filter and overall the implementability of the GAME filter is fairly
straightforward. The last but not the least desired attribute of the proposed GAME
filter is due to it’s quantifiable performance. This is due to the numerically quantifi-
able optimality gap of the GAME filter that is introduced in Chapter 5 and also due
to the meaningful cost function introduced in Chapter 4 that yields the GAME filter.

Draft Copy – 20 May 2013



Chapter 3

Notation

This Chapter contains a brief review of the notation and the identities that are used
throughout this thesis .

3.1 Notation

The rotation group is denoted by SO(3).

SO(3) = {X ∈ R3×3 |X>X = I, det(X) = 1},

where I is the 3 by 3 identity matrix. The associated Lie algebra so(3) is the set of
skew-symmetric matrices,

so(3) = {A ∈ R3×3 | A = −A>}.

For Ω = [a, b, c]> ∈ R3, the lower index operator (.)× : R3 −→ so(3) yields the
skew-symmetric matrix

Ω× =

 0 −c b
c 0 −a
−b a 0

 .

Inversely, the operator vex : so(3) −→ R3 extracts the skew coordinates, vex(Ω×) =
Ω. The cost ‖.‖R : R3×3 −→ R+

0 is given by

‖M‖R :=

√
1
2

trace(M>RM),

where R ∈ R3×3 is symmetric positive definite. Note that ‖M‖R coincides with the
Frobenius norm of R1/2M. The symmetric projector Ps is defined by

Ps(M) := 1/2(M + M>). (3.1)

The skew-symmetric projector Pa is defined by

Pa(M) := 1/2(M−M>). (3.2)

23
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24 Notation

It is easily verified that the vector product of the two vectors γ, ψ ∈ R3 satisfies

(ψ× γ) = vex(2Pa(ψγ>)) = 2 vex(Pa(ψ×γ×)). (3.3)

Let LX : SO(3) −→ SO(3), LXS = XS, be the left translation and let TLX : T SO(3) −→
T SO(3) denote the associated tangent map for Γ ∈ so(3) and X, S ∈ SO(3). Let
D1F(X, Y) ◦ TLX Γ denotes the derivative of the function F with respect to the first
argument X ∈ SO(3) in the tangent direction TLX Γ = XΓ ∈ TX SO(3). Recall that
the relationship between a directional derivative D and a gradient ∇ with respect to
a Riemannian metric 〈., .〉X : TX SO(3)× TX SO(3) −→ R is as follows.

D1F(X, Y) ◦ TLX Γ = 〈∇1F(X, Y), TLX Γ〉X = 〈TL∗X∇1F(X, Y), Γ〉I . (3.4)

The asterisk denotes the adjoint with respect to the given Riemannian metric. We
use the standard left-invariant Riemannian metric on SO(3). That is, for Γ, Ω ∈ so(3)
and X ∈ SO(3)

〈TLX Γ, TLX Ω〉X = 〈Γ, Ω〉I :=
1
2

trace(Γ>Ω). (3.5)

One has
〈TLX Γ, TLX Ω〉X = 〈vex(Γ), vex(Ω)〉 = vex(Γ)> vex(Ω). (3.6)

For the sake of simplicity, in the reminder of the chapter we will omit the subscript
notation from the Riemannian metrics.

3.2 Identities

Consider a symmetric matrix Z ∈ R3×3 and the vectors a, b, c ∈ R3. The following
identity is used to vectorize a skew-symmetric projection of a product between a
symmetric and an skew-symmetric matrix.

vex(Za× + a×Z) = (trace(Z)I − Z)a. (3.7)

The following identity is used to vectorize a product between two skew-symmetric
matrices.

vex(a×b×) = a×b = −a×b. (3.8)
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Chapter 4

Minimum-Energy Filtering on the
Lie group SO(3)

This chapter begins with a formal formulation of the proposed deterministic minimum-
energy filtering problem. The problem formulation involves the kinematics of atti-
tude modelled on the special orthogonal group SO(3) along with vectorial sensor
measurements.

The solution to this problem is sought for along the lines of Hamilton-Jacobi-
Bellman theory [5]. A cost functional is defined that depends on the unknown state
and the unknown measurement error signals. A value function is defined for the
cost function similarly to optimal filtering and optimal control theory.

A detailed derivation of minimum-energy filtering is provided using Mortensen’s
method [31], adapted to the Lie group structure of our problem. It will be shown
that the optimal solution is potentially infinite dimensional as it requires the second-
order derivative as well as all the higher order derivatives of the value function to be
computed on-line. Every order derivative of the value function depends on the lower
order derivatives as well as a one step higher order derivative of the value function.

An approximate solution is computed by neglecting the third order derivative of
the value function and by proposing a matrix representation of the Hessian of the
value function that respects the underlying geometric structure of the system. The
resulting filter, namely the geometric approximate minimum-energy (GAME) filter
is a second-order nonlinear attitude filter that is posed directly on SO(3).

The remainder of the chapter is organized as follows. Section 4.1 contains the
details of the attitude filtering problem and the equations governing the attitude
kinematics, measurements and cost functional. In Section 4.2 a detailed derivation
of the filtering solutions i provided. Finally Section 4.3 provides a summary of the
results and the main theorem of the this chapter.

4.1 Attitude Filtering Using Vectorial Measurements

Consider the aircraft shown in Figure 4.1, as an example of a rigid-body moving in
the 3D space. Two coordinate frames are shown in this figure. The inertial frame
or the reference frame is a known frame that is fixed at some reference point and is

25
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26 Minimum-Energy Filtering on the Lie group SO(3)

denoted by {I}. The body-fixed frame is a moving coordinate frame that is fixed to
the aircraft and is denoted by {B}. The attitude matrix X transforms the coordinates
of the inertial frame to the the coordinates of the body-fixed frame. Recall the attitude

Figure 4.1: Rigid-body motion frames.

kinematics given by
Ẋ = XΩ×, X(0) = X0. (4.1)

The matrix X is an SO(3)-valued state signal with the unknown initial value X0 and
Ω ∈ R3 represents the angular velocity of the moving body expressed in the body-
fixed frame.

A rate-gyro sensor measures the angular velocity through the following equation

u = Ω + Bv. (4.2)

The signals u ∈ R3 and v ∈ R3 denote the body-fixed frame measured angular veloc-
ity and the input measurement error, respectively. The coefficient matrix B ∈ R3×3

allows for different weightings for the components of the unknown input measure-
ment error v. We assume that B is full rank and hence that Q := BB> is positive
definite.

Consider the vectors ẙi ∈ R3 as known vector directions in the reference frame.
Measuring these vectors in the body-fixed frame provides partial information about
the attitude X. Typically, magnetometer, visual sensors, sun sensor and star tracker
are deployed for this purpose. The following model yields the measurements of
theses sensors.

yi = X>ẙi + Diwi, i = 1, · · · , n (4.3)

The measurements yi ∈ R3 are measurements of the ẙi in the body-fixed frame and
the signals wi ∈ R3 are the unknown output measurement errors. The coefficient
matrix Di ∈ R3×3 allows for different weightings of the components of the output
measurement error wi. The usual assumption is that the matrix Di is full rank and
Ri := DiD>i is positive definite.
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§4.1 Attitude Filtering Using Vectorial Measurements 27

Consider the cost

J(t; X0, v|[0, t], {wi|[0, t]}) =
1
2

trace
[
(I − X0)KX0(I − X0)

>
]
+

1
2

∫ >
0

(
v>v + ∑

i
w>i wi

)
dτ,

(4.4)

in which KX0 ∈ R3×3 is symmetric positive definite. The cost (4.4) can be thought
of as a measure of the aggregate energy stored in the unknown initialization and
measurement signals of (4.1), (4.2) and (4.3).

The principle of minimum-energy filtering is as follows. At each time t, given
the measurements {yi|[0, t]} and u|[0, t], the goal is to obtain an estimate X̂(t) of the
true state X(t) by minimizing the cost (4.4). In order to obtain X̂(t), one seeks a
combination of the unknowns (X0, v|[0, t], {wi|[0, t]}) that is compatible with the
measurements {yi|[0, t]} and u|[0, t] in fulfilling the system equations (4.1). Note that
in general, infinitely many combinations of these unknowns are compatible with
the measurements. By minimizing the cost (4.4) a triplet (X∗0 , v∗|[0, t], {w∗i |[0, t]}) is
chosen that contains minimum collective energy.

The minimizing unknowns (X∗0 , v∗|[0, t], {w∗i |[0, t]}) replaced in the system equa-
tion (4.1) yield the optimal state trajectory X∗[0, t]. The subscript [0, t] indicates that
the optimization takes place on the interval [0, t]. We pick the final optimal state
X∗[0, t](t) as our minimum-energy estimate at time t, X̂(t) := X∗[0, t](t).

A naive approach to the minimum energy filtering problem leads to an infinite
dimensional optimization problem at each time interval [0, t]. To obtain a practical
algorithm a recursive filter is desired that at each time t yields the minimum-energy
estimate as its state value.

Note that the cost (4.4) depends on the unknowns X0, v|[0, t] and {wi|[0, t]}, but
given X0, v|[0, t], the known {ẙi}, and the measurements u|[0, t] and {yi|[0, t]}, the
wi|[0, t] are uniquely determined by (4.3). Hence, the cost (4.4) is equivalent to

J(t; X0, v|[0, t]) =
1
2

trace
[
(I − X0)KX0(I − X0)

>
]
+

1
2

∫ >
0

(
v>v + ∑

i
(X>ẙi − yi)

>R−1
i (X>ẙi − yi)

)
dτ,

(4.5)

which depends only on the signals X0 and v|[0, t]. Minimizing (4.5) over these four
arguments is simplified by first assuming that X0 is known and minimizing over
v|[0, t], then later optimizing over X0. The problem of minimizing (4.5) subject to (4.1)
can be seen as an optimal control problem where the signal v|[0, t] is considered as a
control input.
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As in the maximum-principle [5] a pre-Hamiltonian is defined as

H−(X, µ, v, t) :=
1
2
[v>v+

∑
i
(X>ẙi − yi)

>R−1
i (X>ẙi − yi)]− µ>(u− Bv),

(4.6)

where µ ∈ R3 represents a costate variable Θ ∈ so∗(3) for system (4.1) via 〈(µ)×, Γ〉 =
Θ(Γ) for all Γ ∈ so(3). In the following the identification of Θ ∈ so∗(3) with
µ× ∈ so(3) will be used without further reference. Since the pre-Hamiltonian (4.6) is
quadratic in v, its minimum is given by the differential condition

DvH− ◦ γ = 0, ∀γ ∈ R3. (4.7)

Solving for v yields the optimal input v∗ = −B>µ. Substituting v∗ in (4.6) yields the
optimal Hamiltonian

H(X, µ, t) =
1
2
[−µ>Qµ + ∑

i
(X>ẙi − yi)

>R−1
i (X>ẙi − yi)]− µ>u. (4.8)

Consider a value function depending on the state signal X and time t defined as

V(X, t) := min
v|[0, t]

J(t; X0, v|[0, t]), (4.9)

where J is the cost (4.5) and the minimization is constrained by the system equa-
tions (4.1), (4.2) and (4.3). From (4.5) the initial time boundary condition is

V(X0, 0) =
1
2

trace
[
(I − X0)KX0(I − X0)

>
]

. (4.10)

Performing the dynamic programming principle [5] using (4.5), (4.8) and (4.9) yields
the Hamilton-Jacobi-Bellman equation

H(X, TL∗X∇1V(X, t), t)− ∂V
∂t

(X, t) = 0. (4.11)

Up to here the dynamic programming principle was utilized to address the op-
timal control part of the problem (by minimizing (4.5) over v). To complete the
optimal filtering problem, the value function V is required to depend on the opti-
mal state X∗[0,t]. This can be posed as an optimization over the initial condition X0

or equivalently as an optimization over the final condition X(t) since the initial and
final conditions are deterministically coupled by the optimal input v∗|[0 , t]. In other
words, given the input v∗ and any value of the trajectory X∗[0,t], one can integrate
Equation (4.1) forward or backwards to obtain any other value of the trajectory X∗[0,t].
Assuming that the value function is strictly convex, its minimum is characterized by
the condition

∇1V(X, t)|X=X∗
[0,t](t)

= 0. (4.12)
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§4.2 Filter Derivation Using Mortensen’s Method 29

Recall that the minimum-energy estimate X̂(t) is defined as the final value of the
minimizing argument X∗[0,t](t). Hence,

∇1V(X, t)|X=X̂(t) = 0. (4.13)

Note that solving the HJB Equation (4.11) for V(X, t) and then finding the solution
to the final condition equation (4.13) characterizes the estimate X̂(t). However, this
still requires an explicit solution to a potentially infinite dimensional optimization
problem and must be repeated at every time t. To overcome this issue Mortensen’s
approach [31] is utilized to derive a recursive solution to this problem.

4.2 Filter Derivation Using Mortensen’s Method

In this section goal is to obtain a dynamical equation for ˙̂X that will recursively
update the minimum-energy filtering solution X̂(t). As in Mortensen’s approach [31]
this problem is tackled by deriving a total time derivative of the final condition (4.13),
however by modifying the method with respect to the geometric structure of SO(3).

First rewrite the final condition (4.13) using the directional derivative (3.4) defined
in Chapter 3. For all Γ ∈ so(3)

〈∇1V(X, t), XΓ〉|X=X̂(t) = 0. (4.14)

Define GΓ(X, t) := 〈∇1V(X, t), XΓ〉. Therefore the final condition (4.14) yields

{GΓ(X, t)}X=X̂(t) = 0. (4.15)

The total time derivative of (4.15) is computed in order to obtain a dynamical equa-
tion for X̂.

For all Γ ∈ so(3)
d
dt
{GΓ(X, t)}X=X̂(t) = 0. (4.16)

Applying the chain rule to Equation (4.16) yields

{D1GΓ(X, t) ◦ ˙̂X(t) +
∂GΓ

∂t
(X, t)}X=X̂(t) = 0. (4.17)

Note that the first derivative is calculated in the tangent direction ˙̂X(t) since the final
condition (4.15) is evaluated at X = X̂(t) first, and then the total time derivative is
calculated.

Now it is clear that solving this equation for ˙̂X will yield a recursive update
equation for the minimum energy estimate X̂(t). In order to solve this equation, one
needs to calculate the derivatives of the function GΓ(X, t) first.

The second term in (4.17) equals 〈∇1F(X, t), XΓ〉 where

F(X, t) :=
∂V
∂t

(X, t) = H(X, TL∗X∇1V(X, t), t). (4.18)
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The last equality follows from (4.11). Denote µ×(X, t) := TL∗X∇1V(X, t) and observe
that

F(X, t) = H(X, µ×(X, t), t),

GΓ(X, t) = 〈µ×(X, t), Γ〉.
(4.19)

The second identity in (4.19) follows from (3.5). Hence Equation (4.17) yields

{〈D1µ×(X, t) ◦ ˙̂X(t), Γ〉+ 〈∇1F(X, t), XΓ〉}X=X̂(t) = 0. (4.20)

The first term in (4.20) is calculated next. For all Ψ ∈ so(3)

〈µ×(X, t), Ψ〉 = 〈TL∗X∇1V(X, t), Ψ〉 =
〈∇1V(X, t), TLX Ψ〉 = D1V(X, t) ◦ XΨ.

(4.21)

Therefore

〈D1µ×(X, t) ◦ XΓ, Ψ〉 = D2
1V(X, t) ◦ (XΨ, XΓ) +D1V(X, t) ◦ DX(XΨ) ◦ XΓ

= 〈Hess1 V(X, t) ◦ XΓ, XΨ〉+ 〈∇1V(X, t), XPa(ΓΨ)〉
= 〈TL∗X Hess1 V(X, t) ◦ XΓ, Ψ〉+ 〈Pa(TL∗X∇1V(X, t)Γ), Ψ)〉,

(4.22)

which yields

D1µ×(X, t) ◦ XΓ = TL∗X Hess1 V(X, t) ◦ XΓ + Pa(TL∗X∇1V(X, t)Γ). (4.23)

Given that {∇1V(X, t)}X=X̂(t) = 0 from the final condition (4.13), the second term
in (4.23) is zero when evaluated at X = X̂(t).

In order to obtain an algebraic solution for the Hessian operator in (4.23), consider
the matrix representation for D1µ×(X̂, t) ◦ X̂Γ defined as follows.

D1µ×(X̂, t) ◦ X̂Γ =: K vex(Γ), (4.24)

where K ∈ R3×3 is a symmetric matrix. Note that K is defined to be symmetric since
the Hessian is a symmetric operator.

Now consider the second term in (4.20). The identities (4.19) yield

〈∇1F(X, t), XΓ〉 = D1H(X, µ×(X, t), t) ◦ XΓ

+D2H(X, µ×(X, t), t) ◦ D1µ×(X, t) ◦ XΓ.
(4.25)

Evaluate this equation at X = X̂(t).

〈∇1F(X, t), XΓ〉|X=X̂(t) = 〈TL∗X∇1H(X, µ×(X, t), t), Γ〉|X=X̂(t)

+ 〈∇2H(X, µ×(X, t), t),D1µ×(X, t) ◦ XΓ〉|X=X̂(t)

(4.26)

Next, the derivatives of the optimal Hamiltonian H are calculated to be replaced
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into (4.26). From (4.8),

∇2H(X, µ×(X, t), t) = −(u + Qµ(X, t))×. (4.27)

Also (4.8) yields that for all Γ ∈ so(3)

〈TL∗X∇1H(X, µ×, t), Γ〉
= trace[∑

i
R−1

i (X>ẙi − yi)(Γ>X>ẙi)
>]

= − trace[∑
i

Pa(R−1
i (X>ẙi − yi)ẙ>i X)Γ>]

= −2〈∑
i

Pa(R−1
i (X>ẙi − yi)ẙ>i X), Γ〉

= −〈∑
i
((X>ẙi)× (R−1

i (X>ẙi − yi))×, Γ〉

(4.28)

The last equality is due the identity (3.3). By evaluating at X = X̂(t) and by denoting
ŷi := X̂>ẙi one obtains

TL∗X̂(t)∇1H(X̂(t), µ×, t) = ∑
i
((R−1

i (ŷi − yi))× ŷi)×. (4.29)

Replacing (4.27) and (4.29) back in Equation (4.26), using (4.24) and observing
that µ×(X̂, t) is zero from the final condition (4.13) yield

〈∇1F(X, t), XΓ〉|X=X̂(t) = 〈∑
i
(R−1

i (ŷi − yi))× ŷi, vex(Γ)〉 − 〈K vex(Γ), u〉

= 〈∑
i
(R−1

i (ŷi − yi))× ŷi − Ku, vex(Γ)〉.
(4.30)

Note that the last line follows from the fact that P is a symmetric matrix.
Recall Equation (4.20). Using (4.24) for the first term of (4.20) and replacing (4.30)

for the second term yield

K vex(TL∗X̂
˙̂X) = −∑

i
((R−1

i (ŷi − yi))× ŷi) + Ku. (4.31)

Now by rearranging the previous equation the ˙̂X equation is

˙̂X = X̂

(
u− K−1 ∑

i
(R−1

i (ŷi − yi))× ŷi

)
×

, (4.32)

where ŷi = X̂>ẙi and X̂(0) = I is obtained by evaluating the final condition (4.13) at
time 0 using the boundary condition (4.10) .

Note that Equation (4.32) is the exact form of a minimum-energy observer for
system (4.1) where energy is measured by the cost (4.4). The observer contains the
innovation term K−1 ∑i(R−1

i (ŷi − yi))× ŷi which is a weighted sum proportional to
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the information contained in the error ŷi − yi. The matrix K−1 acts as the gain for
this innovation term.

To fully solve (4.32), the matrix P needs to be updated on-line. Therefore, in the
following the goal is to find a differential equation that dynamically updates K. This
is done, following the previous observer calculations, by computing the total time
derivative d

dt 〈Kγ, ψ〉.

Recall from (4.24) and (4.22) that for all γ, ψ ∈ R3

〈Kγ, ψ〉 = 〈D1µ×(X̂, t) ◦ X̂Γ, Ψ〉
=
{
D2

1V(X, t) ◦ (XΓ, XΨ) +D1V(X, t) ◦ DX(XΓ) ◦ XΨ
}

X=X̂(t) ,
(4.33)

where Ψ := ψ× and Γ := γ×. The total time derivative of (4.33) is calculated as

d
dt
〈Kγ, ψ〉 =

{D3
1V(X, t) ◦ (XΓ, XΨ, ˙̂X) +D2

1V(X, t) ◦ (DX(XΓ) ◦ ˙̂X, XΨ)

+D2
1V(X, t) ◦ (XΓ,DX(XΨ) ◦ ˙̂X) +D2

1 F(X, t) ◦ (XΓ, XΨ)

+D2
1V(X, t) ◦ (DX(XΓ) ◦ XΨ, ˙̂X) +D1V(X, t) ◦ D2

X(XΓ) ◦ (XΨ, ˙̂X)

+D1V(X, t) ◦ DX(XΓ) ◦ DX(XΨ) ◦ ˙̂X +D1F(X, t) ◦ DX(XΓ) ◦ XΨ}X=X̂(t).
(4.34)

Note that in (4.34) the terms involving a first order derivative of V are zero from the
final condition (4.13). Also the last and the fourth to last terms in (4.34) cancel each
other from (4.20) and (4.22). We will neglect the first term in (4.34) since it is a third
order term. The fourth term of (4.34) involves the second order derivative of F(X, t)
that is calculated next.

D2
1 F(X, t) ◦ (XΓ, XΨ) = D2

1H(X, µ×(X, t), t) ◦ (XΓ, XΨ)

+D1(D2H(X, µ×(X, t), t) ◦ D1µ×(X, t) ◦ XΓ) ◦ XΨ

+D2(D1H(X, µ×(X, t), t) ◦ XΓ) ◦ D1µ×(X, t) ◦ XΨ

+D2
2H(X, µ×(X, t), t)) ◦ (D1µ×(X, t) ◦ XΓ,D1µ×(X, t) ◦ XΨ)

+D2H(X, µ×(X, t), t) ◦ D2
1µ×(X, t) ◦ (XΓ, XΨ).

(4.35)

Observe that from (4.8), the second and the third lines of (4.35) yield zero. To further
simplify Equation (4.35), the terms D2

1H, D2
2H and D2

1µ× are computed first. Recall
from our previous calculations (4.28) that

{D1H(X, µ×(X, t), t) ◦ XΓ}X=X̂(t) = −2〈∑
i

XPa(R−1
i (X>ẙi − yi)ẙ>i X), XΓ〉X=X̂(t).

(4.36)
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Therefore the second order derivative of H yields

{D2
1H(X, µ×(X, t), t) ◦ (XΓ, XΨ)}X=X̂(t) =

− 2〈X ∑
i

Pa(ΨPa(R−1
i (ŷi − yi)ŷ>i )), XΓ〉|X=X̂(t)

− 2〈X ∑
i

Pa(R−1
i Ψ>ŷiŷ>i ), XΓ〉|X=X̂(t)

− 2〈X ∑
i

Pa(R−1
i (ŷi − yi)ŷ>i Ψ), XΓ〉|X=X̂(t) =

− 2〈X ∑
i

Pa(ΨPs(R−1
i (ŷi − yi)ŷ>i )), XΓ〉|X=X̂(t)

− 2〈X ∑
i

Pa(R−1
i Ψ>ŷiŷ>i ), XΓ〉|X=X̂(t).

(4.37)

Identities (3.7) and (3.8) yield the vector form of Equation (4.37). Denote Z :=
∑i Ps(R−1

i (ŷ− yi)ŷ>i ), hence

D2
1H(X̂(t), µ×(X̂(t), t), t) ◦ (X̂(t)Γ, X̂(t)Ψ) =

〈−(trace(Z)I − Z)γ, ψ〉+ 〈(ŷi)
>
×R−1

i (ŷi)×γ, ψ〉.
(4.38)

In order to compute D2
2H, from (4.24) recall that D1µ×(X̂, t) ◦ X̂Ψ = Kψ. Hence

{D2
2H(X, µ×(X, t), t) ◦ (D1µ×(X, t) ◦ XΓ,D1µ×(X, t) ◦ XΨ)}X=X̂(t)

= −〈QKψ, Kγ〉 = −〈KQKγ, ψ〉.
(4.39)

Now in order to compute the last term in (4.35) one needs to compute D2
1µ×(X, t) ◦

(XΓ, XΨ). Recall from (4.22) that for all Ξ ∈ so(3)

〈D1µ×(X, t) ◦ XΓ, Ξ〉 = D2
1V(X, t) ◦ (XΞ, XΓ) +D1V(X, t) ◦ DX(XΞ) ◦ XΓ. (4.40)

Therefore the following equation is obtained.

〈D2
1µ×(X, t) ◦ (XΓ, XΨ), Ξ〉 =
D3

1V(X, t) ◦ (XΞ, XΓ, XΨ) +D2
1V(X, t) ◦ (XPa(ΨΞ), XΓ)

+D2
1V(X, t) ◦ (XPa(ΓΞ), XΨ) +D1V(X, t) ◦ D2

X(XΞ) ◦ (XΓ, XΨ).

(4.41)

Here, the first term is a third order term and will be neglected. The last term is
zero from the final condition (4.13) at X = X̂(t). The remaining two terms can be
rewritten using (3.8), (4.22) and (4.24). We get for all ξ := vex(Ξ)

〈D2
1µ×(X, t) ◦ (XΓ, XΨ), Ξ〉|X=X̂(t) = −

1
2
(〈Kγ, ξ × ψ〉+ 〈Kψ, ξ × γ〉) =

1
2
〈Kγ× ψ + Kψ× γ, ξ〉.

(4.42)
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The last line in (4.42) follows from the fact that for all a, b, c ∈ R3

〈a, b× c〉 = 〈c, a× b〉. (4.43)

Recall Equation (4.35). Using equation (4.42) and (4.27) and the fact that µ×(X̂, t)
is zero from the final condition (4.13), the final term in (4.35) is

{D2H(X, µ×(X, t), t) ◦ D2
1µ×(X, t) ◦ (XΓ, XΨ)}X=X̂(t) =

1
2
〈ψ× Kγ〉+ γ× Kψ, u〉 = 1

2
〈−u×Kγ + Ku×γ, ψ〉 = 〈Ps(Ku×)γ, ψ〉.

(4.44)

Going back to the derivative of K (4.34), the second and the third lines are com-
puted similar to the last equation.

{D2
1V(X, t) ◦ (DX(XΓ) ◦ ˙̂X, XΨ) +D2

1V(X, t) ◦ (XΓ,DX(XΨ) ◦ ˙̂X)}X=X̂(t) =

〈Kψ,
1
2

vex(TL∗X̂
˙̂X)× γ〉+ 〈Kγ,

1
2

vex(TL∗X̂
˙̂X)× ψ〉 = 〈Ps(K TL∗X̂

˙̂X)γ, ψ〉.
(4.45)

Finally, all the terms in Equation (4.34) are calculated. Replacing (4.44), (4.39)
and (4.38) into Equation (4.35) followed by replacing (4.35) and (4.45) into Equa-
tion (4.34) and cancelling the directions γ and ψ yield the following Riccati equation.

K̇ = −KQK + Ps(K(2u− K−1 ∑
i
(R−1

i (ŷi − yi))× ŷi)×)

− trace(∑
i

Ps(R−1
i (ŷ− yi)ŷ>i ))I + ∑

i
Ps(R−1

i (ŷ− yi)ŷ>i ) + ∑
i
(ŷi)

>
×R−1

i (ŷi)×,

(4.46)

where the initial condition K(0) = trace(KX0)I − KX0 is given by evaluating (4.33)
using the boundary condition (4.10) at time 0. Note that KX0 is known from the
cost (4.4).

The Riccati equation (4.46) recursively updates the gain K of the minimum-energy
observer (4.32). Therefore, the two interconnected equations (4.32) and (4.46) form a
filter that recursively updates the estimate X̂(t) of the system trajectory X(t) using
the measurements u(t) and {yi(t)}. In the rest of this thesis, this filter is referred to
as the geometric approximate minimum-energy (GAME) filter.

The approximation is due to neglecting the third order derivatives of the value
function (4.9). One could go on with similar calculations to to obtain differential
equations of the higher order derivatives of the value function. Later on in the Special
Cases, Chapter 6, derivatives up to the order eight of the value function are derived
for the case of rotations in a plane SO(2) ≡ S1 where the Hessian and all higher
order derivatives of the value function are scalars.
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4.3 The GAME Filter

In summary, the geometric approximate minimum-energy (GAME) filter proposed
in Section 4.2 is given by

˙̂X(t) = X̂

(
u− K−1 ∑

i
(R−1

i (ŷi − yi))× ŷi

)
×

, (4.47a)

K̇ = −KQK + Ps(K(2u− K−1 ∑
i
(R−1

i (ŷi − yi))× ŷi)×)

− trace(∑
i

Ps(R−1
i (ŷ− yi)ŷ>i ))I + ∑

i
Ps(R−1

i (ŷ− yi)ŷ>i ) + ∑
i
(ŷi)

>
×R−1

i (ŷi)×,

(4.47b)

where X̂(0) = I, K(0) = trace(KX0)I − KX0 and ŷi = X̂>ẙi. The signals u and {yi}
are measured from the models (4.2) and (4.3).

The filter (4.47) consists of two interconnected parts. Equation (4.47a) evolves on
SO(3) and consists of a copy of system (4.1) plus an innovation term. The innovation
term is a weighted difference between the (past) estimated signal and the noisy mea-
sured signal. Note that (R−1

i (ŷi − yi))× ŷi encodes the axis of rotation required to
take R−1

i (ŷi− yi) to be collinear to ŷi in Riemannian normal coordinates. The weight-
ing K−1 is a scaling or gain applied to this tangent direction in the R3 representation
of so(3). The (inverse) weighting matrix K, dynamically generated by the Riccati
equation (4.47b), depends on the past estimates and the past measurements.

In order to improve the numerical robustness of the filter (4.47), a gain matrix
P := K−1 is defined and Equation (4.47) is rewritten using K̇ = −PṖP. This will
improve the numerics of the filter by leaving out all the matrix inverse operations.

˙̂X(t) = X̂

(
u− P ∑

i
(R−1

i (ŷi − yi))× ŷi

)
×

, (4.48a)

Ṗ = Q + Ps(P(2u− P ∑
i
(R−1

i (ŷi − yi))× ŷi)×)+

P

(
trace(∑

i
Ps(R−1

i (ŷ− yi)ŷ>i ))I −∑
i

Ps(R−1
i (ŷ− yi)ŷ>i )−∑

i
(ŷi)

>
×R−1

i (ŷi)×

)
P,

(4.48b)

where X̂(0) = I and P(0) = (trace(KX0)I − KX0)
−1.

Consider the system (4.1), the measurements equations (4.2) and (4.3) and the
cost (4.4). Given some measurements {yi|[0, t]} and u|[0, t], assume that unique solu-
tions X̂(t) and K(t) to (4.48a) and (4.48b) exist on the interval [0 , t].

Theorem 1. Assume that V(X, t) from (4.9) is twice differentiable and that the Hessian of
V(X, t) (see (4.23)) is invertible. Denote by K the inverse of the matrix representation of the
Hessian (see (4.24)). Then X̂(t) given from (4.48a) is a minimum-energy (optimal) estimate.
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Proof. From our previous calculations in Section 4.2 it is evident that Equation (4.48a)
is derived only using the optimality conditions (4.8) and (4.13).

Remark 1. The observer (4.48a) is a gradient-like observer [22]. The innovation term in this
equation is a gradient of the cost function f (X̂, {yi}) = 1

2 ∑
i

trace(ŷi − yi)R−1
i (ŷi − yi)

>

with respect to X̂ and the right invariant metric given by 〈X̂A, X̂B〉 := trace[ASB>] for all
A, B ∈ so(3) and X ∈ SO(3), where S = 1

2 trace(P−1)I − P−1 is a positive definite matrix
given in terms of P in (4.48b).

Although (4.48a) yields the exact form of a minimum-energy observer (4.48a), one
would need to obtain the true Hessian to be able to compute this minimum-energy
filter. The next proposition states that K in Equation (4.48b) is an approximation to
the dynamics of the (inverse) true Hessian operator.

Proposition 1. Assuming that V(X, t) is three times differentiable and that Hess1 V(X, t)
is invertible, Ṗ in (4.47b) approximates the derivative of the inverse true Hessian of V(X, t)
to the order O(∇3

1V(X, t)).

Proof. In Section 4.2, deriving Equation (4.48b) was derived by using the optimal
equation (4.48a), the final value condition (4.13) and by neglecting the third order
derivatives of the value function. Hence, the dynamics of the Hessian operator was
approximated up to the second order derivative of the value function. .

A similar approach to that proposed in Section 4.2 could be used to derive a
higher order filter by differentiating the third order derivative terms of the value
function. However, such a derivation would require tensor algebra. Note that due
to the natural convexity of the value function at a minimum the odd derivatives
of the value function are unlikely to contain much information and to obtain any
significant improvement in the filter performance by including addition derivative
approximations one would need to go to the fourth order term. Chapter 6 contains
higher order derivatives of the value function for the case of rotations in a plane
SO(2) ≡ S1 where the Hessian and all higher order derivatives of the value function
are scalars.
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Chapter 5

Least Squares Analysis of the
GAME Filter

This chapter contains a least squares analysis of the geometric approximate minimum-
energy (GAME) filter proposed in Chapter 4. A mathematical expression of an up-
per bound on the (optimality) distance between the solution of the GAME filter and
a minimum-energy solution is provided, although a minimum-energy filter is not
expressed explicitly. This distance is quantifiable in simulations and is shown to
be small in all the experiments considered, hence indicating that the GAME filter
asymptotically acts like a minimum-energy filter. The term ‘near-optimal’ is some-
times used for filters with such performance characteristics [29, 42].

The remainder of the chapter is organized as follows. Section 5.1 includes a re-
view of the equations of the attitude kinematics, measurements, the cost functional
and the GAME filter proposed in Chapter 4. A least squares analysis of the GAME
filter is provided in Section 5.2. In particular a detailed derivation of an upper bound
(Gap) on the optimality performance of the GAME filter is provided. Section 5.3 con-
tains an assumption on the positivity of the ‘Gap’ that leads to the main theorem of
this chapter and some remarks on the results of this chapter. Finally, Section 5.4 pro-
vides a simulation study that further justifies the assumption made and the results.

5.1 A Review of the GAME Filter

Recall the attitude kinematics and measurements considered in Chapter 4


Ẋ(t) = X(t)Ω×(t), X(0) = X0,
u(t) = Ω(t) + Bv(t),
yi(t) = X(t)>ẙi + Diwi(t), i = 1, · · · , n ,

(5.1)

where X is a rotation matrix representing the attitude and Ω represents the angular
velocity. The signals u and v denote the body-fixed frame measured angular veloc-
ity input and the input measurement error, respectively. The vectors ẙi are known
reference vectors with yi as their measurements and wi as the measurement errors.
The matrices B and D are known coefficients for the measurement errors with their

37
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38 Least Squares Analysis of the GAME Filter

associated metrics Q := BB> and Ri := DiD>i .
The cost functional considered in Chapter 4 was

Jt(t; X0, v|[0, t], {wi|[0, t]}) =
1
2

∫ t

0

(
v>v + ∑

i
w>i wi

)
dτ

+
1
2

trace
[
(I − X0)K−1

0 (I − X0)
>
]

,

(5.2)

in which K0 ∈ R3×3 is positive definite.
Recall the GAME filter given in Chapter 4

Attitude
Observer

˙̂X = X̂(u− Pl)×, X̂(0) = I

l = 2 vex(∑
i

Pa(ŷi(ŷi − yi)
>R−1

i ), ŷ := X̂>ẙ

Riccati Ṗ = Q + Ps(P(2u− Pl)×)− PSP + PAP, P(0) = (trace(K−1
0 )I − K−1

0 )−1,

Equation S := ∑i(ŷi)
>
×R−1

i (ŷi)×,

A := trace(C)I − C, C := ∑i Ps(R−1
i (ŷ− yi)ŷ>i ).

Table 5.1: GAME Filter

5.2 Optimality Gap of the GAME Filter

This section contains three lemmas that lead to the main result of this chapter (The-
orem 2). Lemma 2 introduces the optimality distance W(t) and contains the detailed
derivation of W(t). The positivity of W(t) is considered in Lemma 3 and Assump-
tion 1.

Before deriving the optimality Gap (distance) W(t), let us introduce some auxil-
iary variables. Denote K := P−1. The time derivative of K is given by

K̇ = −KQK + Ps(K(2u− Pl)×) + S− A, (5.3)

where the initial condition K(0) = trace(K−1
0 )I−K−1

0 and the variables l, S and A are
given from Table 5.1. This easily follows from K̇ = P−1ṖP−1. The following lemma
is used later to rewrite the cost (5.2).
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§5.2 Optimality Gap of the GAME Filter 39

Lemma 1. Denote G := 1
2 trace(K)I − K, then the following identities hold.

trace(G) =
1
2

trace(K),

K = trace(G)I − G,

Ġ = −1
2

trace(KQK)I + KQK + Ps(G(2u− Pl)×) +
1
2

trace(S)I − S− C.

(5.4)

Proof. Using the definition of G and using Table 5.1 the proof follows.

The following lemma shows that the cost Jt (5.2) satisfies an equation that is
comprised of a term depending on the difference between the current-time value of
the state X(t) and its estimated value X̂(t), as well as on an integral term which is
an ‘unavoidable optimal cost’ and a remaining term W(t) that is called the ’gap’ of
the GAME filter. This separation will help to show, later in Section 5.3, that an upper
bound for the cost associated to the GAME filter is greater than an ‘unavoidable
optimal cost’ by the value of W(t), thus providing a bound on the GAME filter’s
distance to optimality.

Lemma 2. The cost (5.2) satisfies the equation

Jt =
1
2

trace
[
(X(t)− X̂(t))G(t)(X(t)− X̂(t))>

]
− 1

2

∫ t

0
∑

i

(
‖v− 2B> vex Pa(X̂>XG)‖2 + ∑

i
‖yi − ŷi‖2

R−1
i

)
dτ −W(t),

(5.5)

where,

W(t) :=
∫ t

0
∑

i

(
−2‖B> vex Pa(EG)‖2 +

1
2
‖(X̂− X)>ẙi‖2

R−1
i

+ trace
[
(I −Ps(E))

(
1
2

trace(KQK)I − KQK +
1
2

trace(S)I − S
)])

dτ,

(5.6)

and the term S is given in Table 5.1.

Proof. Consider the function

L =
1
2

trace
[
(X− X̂)G(X− X̂)>

]
= trace

[
(I − X̂>X)G

]
. (5.7)

The time derivative of Equation (5.7) is given by

L̇ = trace
[
−( ˙̂X>X)G− (X̂>Ẋ)G + (I − X̂>X)Ġ

]
. (5.8)

Substituting from Equations (5.1) and (??) yields

L̇ = trace
[
−(u− Pl)>×X̂>XG− X̂>X(u− Bv)×G + (I − X̂>X)Ġ

]
. (5.9)
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Denote the estimation error X̂>X by

E := X̂>X, (5.10)

and recall the following identities. For all A, F ∈ R3×3

trace(Pa(A)F) = trace(Pa(A)Pa(F)) = trace(APa(F)),

trace(Ps(A)F) = trace(Ps(A)Ps(F)) = trace(APs(F)).
(5.11)

These identities follow from the fact that a trace of a product between a skew-
symmetric matrix and a symmetric matrix is zero. Using these identities and group-
ing the terms with u in Equation (5.9) yield

L̇ = trace [−2Ps(u×G)Ps(E)−Pa(E)Pa(G(Pl)×)−Ps(E)Ps(G(Pl)×)

+(Bv)>×Pa(EG) + (I −Ps(E))Ġ
]

.
(5.12)

Next rewrite the term with v in a vector form and add and subtract square terms in
order to complete a square norm of v.

L̇ = +2v>B> vex Pa(EG)± 1
2

v>v± 2 vex P>a (EG)BB> vex Pa(EG)+

trace
[
−2Ps(u×G)Ps(E)−Pa(E)Pa(G(Pl)×)−Ps(E)Ps(G(Pl)×) + (I −Ps(E))Ġ

]
.

(5.13)

Completing the square yields

L̇ = −1
2
‖v− 2B> vex Pa(EG)‖2 +

1
2
‖v‖2 + 2‖B> vex Pa(EG)‖2+

trace
[
−2Ps(u×G)Ps(E)−Pa(E)Pa(G(Pl)×)−Ps(E)Ps(G(Pl)×) + (I −Ps(E))Ġ

]
.

(5.14)

Replace Ġ from (1).

L̇ = −1
2
‖v− 2B> vex Pa(EG)‖2 +

1
2
‖v‖2 + 2‖B> vex Pa(EG)‖2+

trace
[
− 2Ps(u×G)Ps(E)−Pa(E)Pa(G(Pl)×)−Ps(E)Ps(G(Pl)×)+

(I −Ps(E))(−1
2

trace(KQK)I + KQK + Ps(G(2u− Pl)×) +
1
2

trace(S)I − S− C)
]

.

(5.15)

Note that the first two terms in the trace part of the previous equation cancel the third
term that replaced Ġ multiplied by Ps(E). The third term that replaced Ġ multiplied
by I yields zero under the trace operator. This is due the fact that for all F symmetric
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and Γ skew-symmetric it holds that

trace[Ps(FΓ)] =
1
2

trace[FΓ + Γ>F>] =
1
2

trace[FΓ− ΓF] = 0. (5.16)

Hence Equation (5.15) yields

L̇ = −1
2
‖v− 2B> vex Pa(EG)‖2 +

1
2
‖v‖2 + 2‖B> vex Pa(EG)‖2 + trace

[
−

Ps(E)Ps(G(Pl)×) + (I −Ps(E))(−1
2

trace(KQK)I + KQK +
1
2

trace(S)I − S− C)
]

.

(5.17)

Recall the following identity. For all γ ∈ R3 and all symmetric F ∈ R3×3

Pa(Fγ×) =
1
2
((trace(F)I − F)γ)×. (5.18)

Using this identity for the first term in the trace part of Equation (5.17) and recalling
from (5.4) that P−1 = K = trace(G)I − G yield

Pa(G(Pl)×) =
1
2
((trace(G)I − G)Pl)× =

1
2

l×, (5.19)

that from (??) is equal to

Pa(G(Pl)×) = ∑
i

Pa(ŷi(ŷi − yi)
>R−1

i ) = −∑
i

Pa(R−1
i (ŷi − yi)ŷ>i ). (5.20)

Replace this identity and also the equivalence of C from Table 5.1 into Equation (5.17).
Rearranging the order of these terms yields

L̇ = −1
2
‖v− 2B> vex Pa(EG)‖2 + 2‖B> vex Pa(EG)‖2 +

1
2
‖v‖2

+ trace

[
Pa(E)∑

i
Pa(R−1

i (ŷi − yi)ŷ>i ) + Ps(E)∑
i

Ps(R−1
i (ŷi − yi)ŷ>i )−

∑
i

Ps(R−1
i (ŷi − yi)ŷ>i ) + (I −Ps(E))(−1

2
trace(KQK)I + KQK +

1
2

trace(S)I − S)

]
.

(5.21)

Note that the third term in the trace is equal to −∑i R−1
i (ŷi − yi)ŷ>i as the symmetric

projection is redundant under the trace operator. Recalling the definitions E = X̂>X
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and ŷi = X̂>ẙ, the first two terms of the trace can be rewritten in the following form.

trace[Pa(E)∑
i

Pa(R−1
i (ŷi − yi)ŷ>i ) + Ps(E)∑

i
Ps(R−1

i (ŷi − yi)ŷ>i )] =

trace[E ∑
i

R−1
i (ŷi − yi)ŷ>i ] = trace[X̂>X ∑

i
R−1

i (ŷi − yi)ẙ>i X̂] =

trace[∑
i

R−1
i (ŷi − yi)ẙ>i X].

(5.22)

This expression substituted into (5.21) is grouped with the third term in the trace and
the result is written in a vector inner product form. Also adding and subtracting the
square norm of wi yield

L̇ =
1
2
‖v‖2 − 1

2
‖v− 2B> vex Pa(EG)‖2 + 2‖B> vex Pa(EG)‖2

+ ∑
i

(
±1

2
‖wi‖2 − (ŷi − X>ẙi)

>R−1
i (ŷi − yi)

)

+ trace

[
(I −Ps(E))(−1

2
trace(KQK)I + KQK +

1
2

trace(S)I − S)

]
.

(5.23)

Rewrite this equation using the definitions y = X>ẙ + Diwi and Ri = DiD>i to

L̇ =
1
2
‖v‖2 − 1

2
‖v− 2B> vex Pa(EG)‖2 + 2‖B> vex Pa(EG)‖2 +

1
2 ∑

i
‖wi‖2

−∑
i

(
1
2
‖wi‖2 + (ŷi − X>ẙi)

>R−1
i (ŷi − X>ẙi)− (ŷi − X>ẙi)

>D−>i wi

)

+ trace

[
(I −Ps(E))(−1

2
trace(KQK)I + KQK +

1
2

trace(S)I − S)

]
.

(5.24)

Completing the square in the second line of the previous equation yields

L̇ =
1
2
‖v‖2 − 1

2
‖v− 2B> vex Pa(EG)‖2 + 2‖B> vex Pa(EG)‖2 +

1
2 ∑

i
‖wi‖2

− 1
2 ∑

i

(
(yi − ŷi)

>R−1
i (yi − ŷi) + (ŷi − X>ẙi)

>R−1
i (ŷi − X>ẙi)

)
+ trace

[
(I −Ps(E))(−1

2
trace(KQK)I + KQK +

1
2

trace(S)I − S)

]
.

(5.25)
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Integrating L̇ to obtain L(t)−L(0) =
∫ t

0
L̇dτ, and replacing X̂(0) = I results in

1
2

trace
[
(X(t)− X̂(t))G(t)(X(t)− X̂(t))>

]
=

1
2

trace
[
(X(0)− I)G(0)(X(0)− I)>

]
+∫ t

0

(
1
2
‖v‖2 +

1
2 ∑

i
‖wi‖2 − 1

2
‖v− 2B> vex Pa(EG)‖2+

2‖B> vex Pa(EG)‖2 − 1
2 ∑

i

(
‖yi − ŷi‖2

R−1
i
+ ‖ŷi − X>ẙi‖2

R−1
i

)
+

trace

[
(I −Ps(E))(−1

2
trace(KQK)I + KQK +

1
2

trace(S)I − S)

])
dτ.

(5.26)

By definition and from Lemma 1, G(0) = K−1
0 and hence the first three terms on the

right hand side of the previous equation form the cost Jt (5.2). Therefore,

Jt =
1
2

trace
[
(X(t)− X̂(t))G(t)(X(t)− X̂(t))>

]
− 1

2

∫ t

0
∑

i

(
‖v− 2B> vex Pa(EG)‖2 + ∑

i
‖yi − ŷi‖2

R−1
i

)
dτ −W(t),

(5.27)

where Jt is the cost (5.2) and

W(t) =
∫ t

0
∑

i

(
−2‖B> vex Pa(EG)‖2 +

1
2
‖(X̂− X)>ẙi‖2

R−1
i

+ trace
[
(I −Ps(E))

(
1
2

trace(KQK)I − KQK +
1
2

trace(S)I − S
)])

dτ.

(5.28)

This completes the proof.

5.3 Near-Optimality of the GAME Filter

In Section 5.2 it was shown that the cost (5.2) satisfies an equation that involves an
’unavoidable optimal cost’ and a ’gap’ W(t). One needs to prove that W(t) is positive
to be able to show that it acts as an upper bound (Gap) for the optimality perfor-
mance of the GAME filter. The following lemma indicates that in fact, apart from an
obvious negative squared norm in W(t) (5.6), every other term in the mathematical
expression for W(t) has a positive value.

Lemma 3. The trace part of the mathematical expression for W(t) is nonnegative for all t.

Proof. Note that E = X̂>X is a rotation matrix. The eigenvalues of a rotation matrix
occur in one of the forms
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• Three eigenvalues equal to 1 (the rotation E equals the identity matrix I in this
case).

• One eigenvalue equals to 1 and the other two are −1 (rotation by 180 degrees).

• One eigenvalue equals to 1 but the rest are complex conjugates of the form
cos(θ)± i sin(θ) (rotation through an angle of θ).

Therefore, it is straightforward to see that the symmetric projection Ps(E) yields real
eigenvalues less than or equal to 1. Thus the matrix I − Ps(E) has eigenvalues all
nonnegative and hence is a positive semidefinite matrix.

Note that if trace(A) ≥ 0 then the operator 1
2 (A)I − A yields a positive semidef-

inite matrix. This can be shown by noting that A ≤ 1
3 trace(A)I. Therefore the

operator 1
2 (A)I − A is greater than or equal to 1

6 trace(A)I and hence is positive
semidefinite.

Observe that trace(KQK) also yields a nonnegative value. This is due to the fact
that the matrix K is symmetric and the matrix Q = BB> is positive definite and hence
the term trace(KQK) can be rewritten as a squared matrix norm.

trace(KQK) = trace[(B>K)>(B>K)] = ‖B>K‖2 ≥ 0. (5.29)

Therefore, according to what was shown in the previous paragraph, 1
2 trace(KQK)I−

KQK is positive semidefinite.
Similarly the term trace(S) = trace(∑i(ŷi)

>
×R−1

i (ŷi)×) is positive. This can be
shown by recalling that Ri = DiD>i is positive definite, ŷi is a unit vector and hence

trace(∑
i
(ŷi)

>
×R−1

i (ŷi)×) = ∑
i
‖Di(ŷi)×‖2 ≥ 0. (5.30)

Hence similar to our previous argument the term trace(S)I − S is positive semidefi-
nite.

In summary, the two terms I−Ps(E) and 1
2 trace(KQK)I−KQK + 1

2 trace(S)I− S
are positive semidefinite and the proof is complete by recalling that a trace of a
product between two positive semidefinite matrices is nonnegative.

Up to here, the positivity of the trace part of the gap W(t) was proven via
Lemma 3. However, a proof of positivity of the overall gap W(t) is not straight-
forward due to a negative squared norm that also exists in the expression for W(t).
Nevertheless, our intuition, which is the subject of the following assumption, is that
the negative term in W(t) will be dominated by the nonnegative terms and overall
the gap W(t) will be positive for all t. This intuition comes from the fact that the term
−2‖B> vex Pa(EG)‖2 is second-order in the estimation error E and gets dominated
by the other nonnegative terms if the estimation error is small enough. Note that the
trace part of the mathematical expression for W(t) has a component that is linear in
E. Therefore, W(t) stays positive if initially the filter is tuned in a way that the gap
W(t) is positive until the estimation error E(t) converges to a small enough value.
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Also note that if initially W(t) is positive it is likely to stay positive since W(t) is an
accumulative integral term.

Assumption 1. Assume that the gap W(t) is positive for all t.

A proof for Assumption 1 would require a result on filter error convergence,
however, the proposition that W(t) stays positive in all the situations is tested in the
Monte-Carlo experiments Section 5.4.

Theorem 2. Consider the system (5.1) and the cost (5.2). Given some measurements {yi|[0, t]}
and their associated inputs u|[0, t] , assume that unique solutions X̂ and P(t) to 5.1 exist on
[0, t]. Assuming further that Assumption 1 holds then the filter 5.1 yields a near-optimal
estimate X̂(t) of the state X(t) in the sense that for each time t there exists a hypothesized
trajectory Xht with the final value Xht(t) = X̂(t) and Jt ≤ J∗t + W(t), where Jt is the func-
tional cost for Xht, J∗t denotes the minimum-energy value for the cost (5.2) and W(t) is a
bound on the optimality distance between the two trajectories Xht and X∗t , the latter denoting
a minimum-energy trajectory corresponding to J∗t .

Proof. Lemma 2 states that

1
2

trace
[
(X(t)− X̂(t))G(t)(X(t)− X̂(t))>

]
= Jt

− 1
2

∫ t

0
∑

i

(
‖v− 2B> vex Pa(EG)‖2 + ∑

i
‖yi − ŷi‖2

R−1
i

)
dτ −W(t),

(5.31)

Thus, the cost function Jt fulfils the inequality

Jt ≥
1
2

∫ t

0
∑

i
‖yi − ŷi‖2

R−1
i

dτ. (5.32)

The right hand side of Equation (5.32) is independent of any specific choice of the
unknown arguments of the cost (5.2), X0, v|[0, t] and {wi|[0, t]}, and depends only on
the measured data {yi|[0, t]} and the filter estimates. Thus, the right hand side of
Equation (5.32) is also a lower bound for the minimum J∗t of the cost (5.2), i.e.

J∗t ≥
1
2

∫ t

0
∑

i
‖yi − ŷi‖2

R−1
i

dτ. (5.33)

Consider a hypothesis Xht : [0, t] −→ SO(3) for the true trajectory of the system
generated by

Ẋht = Xht(u− 2Q vex Pa(X̂>XhtG))×, (5.34)

with fixed final condition Xht(t) := X̂(t) where X̂ and G are solutions of the proposed
filter 5.1 through (5.4). It is straightforward to show (by integrating in reverse time)
that (5.34) has a unique initial state Xht(0) that produces the final condition Xht(t) =
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X̂(t). Define the signals (wi)ht : [0, t] −→ R3 by

(wi)ht := D−1
i (yi − ŷi), (5.35)

and the signal vht : [0, t] −→ R3 by

vht := 2B> vex Pa(X̂>XG) (5.36)

Equations (5.34) and (5.35) show that Xht(0), vht|[0, t] and {(wi)ht|[0, t]} together with
u|[0, t] and {yi}|[0, t] satisfy the system equations (5.1).

Recalling Lemma 2 the functional cost Jt of Xht is

Jt =
1
2

∫ t

0
∑

i
‖yi − ŷi‖2

R−1
i

dτ + W(t) ≤ J∗t + W(t). (5.37)

This completes the proof.

A key contribution of Theorem 2 lies in providing a bound W(t) given by (5.6)
for evaluating the performance of the filter. This bound is numerically quantifiable
and is decreasing with the tracking error X̂>X. Thus, once the initial transient of the
filter is complete, and for moderate modeling error, it is to be expected that the filter
will perform qualitatively as well as an optimal filter. This is further investigated in
the following simulations.

5.4 Simulations

The following three cases are simulated with Monte-Carlo experiments with 100 re-
peats in each case. In all the cases, the GAME filter 5.1 is simulated using the identity
matrix as both the initial rotation estimate and the initial gain. A sinusoidal input
Ω = [0.2 sin(π

3 t) − cos(π
3 t) 2 cos(π

3 t)] drives the true trajectory X. We further as-
sume that two orthogonal unit reference vectors are available.
Case 1
This case is a simulation setup with relatively low levels of initialization and mea-
surement errors. The input measurement error v is a Gaussian zero mean random
process with a unit standard deviation. The coefficient matrix B is chosen so that the
signal Bv has a standard deviation of 3 degrees per ‘second’. The system is initialized
with a rotation of 47 degrees. We also consider Gaussian zero mean measurement
noise signals wi with unit standard deviations. The coefficient matrices Di are cho-
sen so that the signals Diwi have standard deviations of 9 degrees. Although the
filter does not have access to the noise signals v and wi, it has access to the matrices
Q = BB> and Ri = DiD>i .

Case 2
This case is a simulation setup with relatively high levels of initialization and mea-
surement errors. The coefficient matrix B is chosen so that the signal Bv has a stan-
dard deviation of 60 degrees per ‘second’. The system is initialized with a rotation of
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Figure 5.1: Case 1: The average of the bound on the optimality performance of the GAME
filter (W(t)) over 100 repeats plotted against time.

120 degrees. Gaussian zero mean measurement noise signals wi with unit standard
deviations are considered for which the coefficient matrices Di are chosen so that
the signals Diwi have standard deviations of 90 degrees. Figure 5.1 is the plot of
W(t) for the Case 1 experiment. As can be seen the average of W(t) stays positive
throughout the 100 experiments. Note that after a short transient period the average
value of W(t) reaches a plateau that indicates that once the Game filter converges
it acts like a minimum-energy filter apart from the initially accumulated optimality
error bound. This is more clear in Figure 5.2 where the average of the integrant of
W(t) throughout the 100 experiments is plotted against time. As can be seen in Fig-
ure 5.2 after a short transient period the average of the integrant of W(t) converges
to a very small value. This further supports the near-optimality claim of the pro-
posed filter. Also note that the average of the integrant part of W(t) is positive at
all times which further supports Assumption 1. These conclusions are also valid for
Figures 5.3 and 5.4. Note the larger errors considered in Case 2 have even increased
the positivity margin of W(t) that indicates that Assumption 1 is also valid for a large
initial estimation error and a long convergence period. Note that in Figure 5.3, the
average of the optimality gap W(t) takes longer to converge than the time taken in
Figure 5.1. This was expected due to the large errors considered in Case 2.

Figures 5.3 and 5.4 show that also in the higher noise Case 2 the optimality gap
W(t) stays positive. The only difference is that for this case the transient period is
longer. However the integrant of the optimality cost will converge to a small value
close to what was seen for Case 1.
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Figure 5.2: Case 1: The average of the integrant of W(t) over 100 repeats plotted against time.
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Figure 5.3: Case 2: The average of the bound on the optimality performance of the GAME
filter (W(t)) over 100 repeats plotted against time.
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Figure 5.4: Case 2: The average of the integrant of W(t) over 100 repeats plotted against time.
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Chapter 6

Minimum-Energy Filtering on
other Lie Groups

This chapter contains three special cases of the geometric approximate minimum-
energy (GAME) filter developed in Chapter 4. Section 6.1 involves the case of esti-
mating a rotation restricted to a single axis modelled on the two dimensional special
orthogonal group SO(2). The kinematics on SO(2) is equivalent to the kinematics of
an angle evolving on the unit circle S1. Furthermore, the angular velocity measure-
ments of the model are assumed to be contaminated with bias that is estimated and
the overall filter is posed on SO(2) ×R. Next, this bias estimation result is gener-
alized to three dimensional rotations and a generalized GAME filter is provided on
SO(3) ×R3. Lastly, minimum-energy filtering on the kinematics of pose (i.e. atti-
tude and position) modeled on the special Euclidean group SE(3) is considered in
Section 6.3.

6.1 Minimum-energy Filtering on the Unit Circle S1

In this section, filtering on the kinematics of the special orthogonal group in two
dimensions SO(2) is considered using angular velocity measurements with bias and
vectorial measurements. The group SO(2) is an special case of the group SO(3) and
filtering on SO(2) is a special case of the problem considered in Chapter 4. The
system on SO(2) has many applications in robotics when rotations around a single
axis are of interest. Example applications include determining the heading angle of
a rigid-body moving in the 2D space and determining the rotation angle of a robotic
joint with one degree of freedom. Other applications of the group SO(2) exist in
communication radar systems where the angle of a rotating radar is sought or in
power systems where the phase of an element of the grid is to be estimated. The
system on SO(2) is also of interest since is often considered as a training ground for
higher dimensional groups such as the group SO(3) and the group SE(3).

Consider a moving frame on the unit circle as shown in Figure 6.1. Let ω ∈ R be
the instantaneous angular velocity. The rotation X represents the angle theta and

51
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Figure 6.1: A rotating frame on the unit circle

satisfies the following kinematics equation

Ẋ = Xω×, X(0) = X0, (6.1)

where

X =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2). (6.2)

The initial rotation X0 is unknown. The cross notation (·)× : R −→ so(2) is
defined as

ω× :=
[

0 −ω

ω 0

]
. (6.3)

Conversely the notation vex(·) : so(2) −→ R extracts the scalar part, vex(ω×) = ω.

Lemma 4. The system (6.1) can be equivalently written in terms of the angle θ with kine-
matics

θ̇ = ω, θ(0) = θ0. (6.4)

Proof. Note that from (6.1)

X−1Ẋ =

[
0 −1
1 0

]
ω, (6.5)

Also from (6.1) and (6.2)

X−1Ẋ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
− sin(θ) − cos(θ)

cos(θ) − sin(θ)

]
θ̇ =

[
0 −1
1 0

]
θ̇ (6.6)

and the result (6.4) follows.
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The angular velocity ω is measured as

u = ω + Bωvω + b, (6.7)

where vω ∈ R is the measurement error signal and Bω ∈ R is a scaling known
from the model. The signal b ∈ R is a constant or slowly time varying bias in the
measurement u ∈ R that is modelled as

ḃ = Bbvb, b(0) = b0, (6.8)

where b0 is unknown, vb ∈ R is an unknown rate of change of the bias b and Bb ∈
R is a scaling known from the model. Note that in measurement model (6.7) the
measurement error vω and the bias b are modeled separately although a general
deterministic measurement model is considered. This is due to the fact that the filter
is going to be derived by minimizing a cost (6.12) in the size of the measurement
error vω. The assumption behind this is that the measurement error should not,
in general, be large. However, bias, in general, needs not to be small but rather
slowly time-varying. Therefore, an independent bias model (6.8) is considered with
vb modeling a small unknown rate of change for b.

Assume a vector measurement obtained from

y = X>ẙ + Dw, (6.9)

where ẙ = (1 , 0)>, w ∈ R2 is an unknown measurement error signal and D ∈ R2×2

is a full rank scaling matrix known from the model.

Remark 2. Depending on the application one might have a different state measurement model
such as

y′ = (WX)>ẙ, (6.10)

where y′ ∈ S1 is a vector measurement of the state X and W ∈ SO(2) represents the
measurement error. In case the full angle measurement is available the following output map
is suitable.

y′′ = θ + w′, (6.11)

where y′′ ∈ S1 is the measured state angle θ ∈ S1 and w′ ∈ S1 is the measurement error.

Consider the cost functional

J(t; X0, b0, vω|[0 , t], vb|[0 , t], w|[0 , t]) =

trace(I − X0)

K1
+

b2
0

2K2
+

1
2

∫ t

0

(
v2

ω + v2
b + ‖w‖2) dτ,

(6.12)

where K1, K2 ∈ R+ are given. Later on, these parameters will appear in the initial
conditions of the proposed filter. If available, a priori information on the expected
size of the initial state and the initial bias can be used to tune K1 and K2 relative to
each other and the other unknowns in the cost function. The trace function is used
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to measure the size of the initial state X0 relative to the identity matrix I ∈ R2×2 (that
is the identity element for the group SO(2)).

Remark 3. In case the measurement model (6.11) is used, the cost function (6.12) is modified
to allow for measuring the measurement error w′ as an angle.

J′(t; X0, b0, vω|[0 , t], vb|[0 , t], w′|[0 , t]) =

trace(I − X0)

K1
+

b2
0

2K2
+
∫ t

0

(
1
2
(v2

ω + v2
b) + 1− cos(w′)

)
dτ.

(6.13)

The following is the formal statement of the minimum-energy filtering problem
for the system (6.1).

Problem 1. Given the system (6.1), the measurement models (6.7), (6.9), the bias model (6.8)
and the past measurements u|[0 , t] and y|[0 , t] find the state estimate X̂(t) for the current state
X(t) and the bias estimate b̂(t) for the current bias b(t) such that the cost (6.12) is minimized
over the unknowns X0, b0, vω|[0 , t], vb|[0 , t] and w|[0 , t].

Note that the cost (6.12) encodes the total energy associated with the unknowns
X0, b0, vω|[0 , t], vb|[0 , t] and w|[0 , t]. In a sense, by minimizing (6.12) the goal is to
find unknowns of minimum energy that together with the measurements u|[0 , t] and
y|[0 , t] satisfy the model equations (6.1), (6.7), (6.8) and (6.9). Note that in general one
might find infinitely many possible combinations of these unknowns that together
with the measurements satisfy the model equations. However, by minimizing the
cost (6.12) a set of minimizing unknowns is singled out that collectively has minimal
energy. Substituting the minimizing unknowns and the measurements into equa-
tions (6.1), (6.7), (6.8) and (6.9) yields the minimum-energy state trajectory X∗[0 , t]
and the minimum-energy bias b∗[0 , t]. The subscript [0 , t] indicates that the opti-
mization takes place on the interval [0 , t]. The final values X∗[0 , t](t) and b∗[0 , t](t)
are then assigned as the minimum-energy estimates at time t, X̂(t) := X∗[0 , t](t) and

b̂(t) := b∗[0 , t](t). In the following, rather than resolving this infinite dimensional op-
timization problem at each time instance t, a recursive filter is derived that updates
the estimates incorporating only the measurements at the current time t.

Problem 1 can be simplified by making the measurements constraint (6.9) explicit
in the cost. Hence, substituting w in (6.12) from (6.9) yields the simplified cost

J(t; X0, b0, vω|[0 , t], vb|[0 , t]) =

trace(I − X0)

K1
+

1
2

b2
0

K2
+

1
2

∫ t

0

(
v2

ω + v2
b + ‖y− X>ẙ‖2

R−1

)
dτ,

(6.14)

where R := DD> is positive definite and

‖y− X>ẙ‖2
R−1 := (y− X>ẙ)>R−1(y− X>ẙ). (6.15)

Now, similar to optimal control problems, the cost (6.14) is to be minimized over
vω|[0 , t], vb|[0 , t]. For now consider X0 and b0 as fixed but later to fully solve the
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problem a further optimization over these two initial values are needed. In order
to apply Hamilton Jacobi Bellman theory [5], define the following pre-Hamiltonian
function,

H−(X, b, µω, µb, vω, vb, t) :=
1
2

(
v2

ω + v2
b + ‖y− X>ẙ‖2

R−1

)
− µω(u− b− Bωvω)− µbBbvb,

(6.16)

where µω ∈ R represents the costate variable Θ ∈ so∗(2) via 〈(µω)×, Γ〉 = Θ(Γ) for
all Γ ∈ so(2). This algebraic representation will be used in the following without
further reference. The variable µb ∈ R is the costate variable associated with the bias
b. The optimal Hamiltonian H is obtained by minimizing the pre-Hamiltonian H−
over the signals vω and vb that yields v∗ω = −Bωµω and v∗b = Bbµb.

H(X, b, µω, µb, t) =
1
2

(
−µ2

ωQω − µ2
bQb + ‖y− X>ẙ‖2

R−1

)
− µω(u− b), (6.17)

where Qω := B2
ω and Qb := B2

b are positive definite. Define the value function

V(X, b, t) := min
vω |[0 , t],vb|[0 , t]

J(t; X0, b0, vω|[0 , t], vb|[0 , t], w|[0 , t]), (6.18)

where J is the cost (6.14) and the minimization is subject to the equations (6.1)
and (6.8). The initial boundary condition for the value function (6.18) is obtained
from (6.14)

V(X(0), b(0), 0) =
trace(I − X0)

K1
+

1
2

b2
0

K2
. (6.19)

In the following, a Hamilton-Jacobi-Bellman equation [5] is considered that relates
the optimal Hamiltonian (6.17) and the value function (6.18).

H(X, b,∇XV(X, b, t),∇bV(X, b, t), t)−∇tV(X, b, t) = 0. (6.20)

Up to here only optimized over the signals vω|[0 , t] and vb|[0 , t] were considered.
To complete the optimal filtering problem, one also needs to optimize V over the ini-
tial values X0 and b0. This is equivalent to further optimizations over X(t) and b(t)
since (the minimizing) X(t) and b(t) are uniquely determined given the measure-
ments u|[0 , t], the equations (6.1), (6.7) and (6.8), the (minimizing) signals vω|[0 , t] and
vb|[0 , t] and the (minimizing) initial values X0 and b0. Hence, similar to Mortensen’s
approach [31], the minimum-energy estimates X̂(t) and b̂(t) are characterized by the
criticality conditions

∇XV(X, b, t)|X=X̂(t), b=b̂(t) = 0,

∇bV(X, b, t)|X=X̂(t), b=b̂(t) = 0.
(6.21)

Solving Equations (6.21) is clearly a way to obtain the minimum-energy estimates
X̂(t) and b̂(t), minimizing the cost (6.14) at every time t. However, in the following,
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rather than solving this optimization problem for each time t, the goal is to find
differential equations (filters) that dynamically update these estimates when new
measurements are obtained as time evolves.

Consider the following definitions in order to rewrite (6.21) in terms of directional
derivatives.

For all α, γ ∈ R

DXV(X, b, t) ◦ Xα× = 〈∇XV(X, b, t), Xα×〉,
DbV(X, b, t)γ = 〈∇bV(X, b, t), γ〉,

(6.22)

where the cross notation was defined in (6.3). The scalar inner product 〈·, ·〉 : R×
R −→ R is defined as

〈α, γ〉 := αγ, (6.23)

and the left invariant inner product 〈·, ·〉 : T SO(2)× T SO(2) −→ R is defined as

〈Xα×, Xγ×〉 = 〈α×, γ×〉 := trace(
1
2

α>×γ×) = 〈α, γ〉. (6.24)

Similarly the following second order directional derivatives are defined.

D2
XV(X, b, t) ◦ (Xα×, Xγ×) = 〈∇2

XV(X, b, t) ◦ Xα×, Xγ×〉
= 〈Xα×,∇2

XV(X, b, t) ◦ Xγ×〉,
D2

bV(X, b, t) ◦ (α, γ) = 〈∇2
bV(X, b, t) ◦ α, γ〉

= 〈α,∇2
bV(X, b, t) ◦ γ〉,

Db(DXV(X, b, t) ◦ Xα×)γ = DX(DbV(X, b, t) ◦ α) ◦ Xγ× =

〈∇b∇XV(X, b, t) ◦ α, γ〉 = 〈Xα×,∇X∇bV(X, b, t) ◦ Xγ×〉.

(6.25)

Note that (6.25) shows that the second order derivatives are symmetric bi-linear map-
pings to R, in the directions α and γ. Therefore, the following parametric represen-
tations are considered to serve as their values.

D2
XV(X, b, t) ◦ (Xα×, Xγ×) := P′1αγ,

D2
bV(X, b, t) ◦ (α, γ) := P′2αγ,

Db(DXV(X, b, t) ◦ Xα×)γ := P′12αγ,

DX(DbV(X, b, t)γ) ◦ Xα× := P′12αγ,

(6.26)

where P′1, P′2, P′12 ∈ R.

Now one can rewrite the final conditions (6.21) in terms of directional derivatives.
For all α, γ ∈ R,

DXV(X, b, t) ◦ Xα×|X=X̂(t), b=b̂(t) = 0,

DbV(X, b, t)γ|X=X̂(t), b=b̂(t) = 0.
(6.27)
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Condition (6.27) holds for every time t and therefore the total time derivative of (6.27)
satisfies

d
dt
{DXV(X, b, t) ◦ Xα×}|X=X̂(t), b=b̂(t) = 0,

d
dt
{DbV(X, b, t)γ}|X=X̂(t), b=b̂(t) = 0.

(6.28)

Applying the chain rule and changing the order of the derivatives gives

{D2
XV(X, b, t) ◦ ( ˙̂X, Xα×) +DX(DbV(X, b, t) ˙̂b) ◦ Xα×+

DX(∇tV(X, b, t)) ◦ Xα×}|X=X̂(t), b=b̂(t) = 0,

{D2
bV(X, b, t) ˙̂bγ +Db(DXV(X, b, t) ◦ ˙̂X)γ+

Db(∇tV(X, b, t))γ}|X=X̂(t), b=b̂(t) = 0.

(6.29)

Next, the derivatives DX(∇tV(X, b, t)) ◦Xα× and Db(∇tV(X, b, t))γ are calculated by
first replacing the time gradient∇tV(X, b, t) withH(X, b,∇XV(X, b, t),∇bV(X, b, t), t)
using (6.53). First, using (6.17) and (6.22) yields

H(X, b,∇XV(X, b, t),∇bV(X, b, t), t) =
1
2

(
−QωDXV(X, b, t) ◦ ∇XV(X, b, t)

−QbDbV(X, b, t)∇bV(X, b, t) + ‖y− X>ẙ‖2
R−1

)
−DXV(X, b, t) ◦ X(u− b)×.

(6.30)

Therefore,

DX(H(X, b,∇XV(X, b, t),∇bV(X, b, t), t)) ◦ Xα× =

−QωD2
XV(X, b, t) ◦ (∇XV(X, b, t), Xα×)−QbDb(DXV(X, b, t) ◦ Xα×)∇bV(X, b, t)

+ 2α vex Pa(R−1(y− X>ẙ)ẙ>X)−D2
XV(X, b, t) ◦ (X(u− b)×, Xα×)

−DXV(X, b, t) ◦ XPa(α×(u− b)×),

Db(H(X, b,∇XV(X, b, t),∇bV(X, b, t), t))γ =

−QωDX(DbV(X, b, t)γ) ◦ ∇XV(X, b, t)−QbD2
bV(X, b, t)∇bV(X, b, t)γ

−DX(DbV(X, b, t)γ) ◦ X(u− b)× +DXV(X, b, t) ◦ Xγ×,
(6.31)

where the anti-symmetric projection operator Pa(·) : R2×2 −→ so(2) for all M ∈
R2×2 is defined as

Pa(M) :=
1
2
(M−M>). (6.32)

Next, substitute (6.31) in (6.29). Note that the first order derivatives, that appear
in (6.31), evaluated at X = X̂(t), b = b̂(t), yield zero. This is due to the final
conditions (6.21) and (6.27). Replacing the second order derivatives from (6.26) and
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canceling the arbitrary directions α and γ from both sides of (6.29) yields

P1 vex(X̂> ˙̂X) + P12
˙̂b + 2 vex Pa(R−1(y− ŷ)ŷ>)− P1(u− b̂) = 0,

P2
˙̂b + P12 vex(X̂> ˙̂X)− P12(u− b̂) = 0,

(6.33)

where

ŷ := X̂>ẙ,

P1 := P′1|X=X̂(t), b=b̂(t),

P2 := P′2|X=X̂(t), b=b̂(t),

P12 := P′12|X=X̂(t), b=b̂(t).

(6.34)

Rearranging (6.33) yields the observer equations

˙̂X = X̂
(

u− b̂− P−1
1

(
l + P12

˙̂b
))
×

,

˙̂b = −P12

P2

(
−u + b̂ + vex(X̂> ˙̂X)

)
,

(6.35)

where l := 2 vex Pa(R−1(y− ŷ)ŷ>). The initial conditions X̂(0) = I and b̂(0) = 0, are
obtained using (6.19) and (6.27).

The proposed observers (6.35) yield the exact dynamical equations that will up-
date the value of the minimum-energy estimates X̂(t) and b̂(t) (that are the solutions
to Problem 1), for every time t. Note that the two observers (6.35) are interconnected
and use the current measurements u(t) and y(t) to update their estimates. The mea-
surements are weighted by dynamic gains P1, P2 and P12 that are related to the value
function defined in (6.18) through (6.26).

In order to implement these observers one also needs dynamical equations that
concurrently update the gains P1, P2 and P12. This can be done using the defini-
tions (6.26) and by calculating the total time derivatives

Ṗ1αγ =
d
dt
{D2

XV(X, b, t) ◦ (Xα×, Xγ×)}X=X̂(t), b=b̂(t),

Ṗ2αγ =
d
dt
{D2

bV(X, b, t) ◦ (α, γ)}X=X̂(t), b=b̂(t),

Ṗ12αγ =
d
dt
{Db(DXV(X, b, t) ◦ Xα×)γ}X=X̂(t), b=b̂(t).

(6.36)

The calculation details for (6.36) similarly follow from our observer derivations. It is
worth noting that the right hand sides of (6.36) are going to depend on the third order
derivatives of the value function. However, assuming that the third order derivatives
of the value function are negligible, the following Riccati equations are obtained that
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update the gains of the observers on-line.

Ṗ1 = −QωP2
1 −QbP2

12 − ŷ>SR−1Sŷ + (y− ŷ)>R−1ŷ,

Ṗ2 = −QbP2
2 −QωP2

12 + 2P12,

Ṗ12 = −QωP12P1 −QbP2P1 + P1,

(6.37)

where

S :=
[

0 −1
1 0

]
. (6.38)

The initial conditions P1(0) = K−1
1 , P2(0) = K−1

2 and P12(0) = 0 are obtained us-
ing (6.19) and (6.26).

Note that these Riccati equations (6.61b) provide a second-order approximation
of the minimum-energy dynamics of the observer gains. However, as was suggested
by simulations in previous work [41], the third order derivatives of the value function
are going to be small and there is little advantage in increasing the dimension of the
filter by considering the higher order derivatives of the value function. Therefore,
the proposed filter’s formulation is restricted to a second-order approximation of the
minimum-energy filter.

Remark 4. One can continue deriving dynamics of the higher order derivatives of the value
function using our previous calculations. In fact, for a case that there is no bias in angular
velocity measurements and where full state measurements (6.11) is used, it is straightforward
to derive dynamics of the higher order derivatives of the value function up to arbitrary higher
orders. Consider the following system.

θ̇ = ω, θ(0) = θ0,
u = ω + gδ,
y′′ = θ + ε,

(6.39)

where θ ∈ S1 is the state, the signal ω ∈ R is the angular velocity input that is measured as
u ∈ R with measurement error δ ∈ R and a known scaling g ∈ R. Full state measurement
is given by y′′ ∈ S1 with measurement error ε ∈ S1. An eight-order approximate minimum-
energy filter for this system is given in Table 6.1.
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Observer ˙̂θ = u + P−1
1 sin(y′′ − θ̂), θ̂(0) = 0,

Gains

ṗ1 = cos(y′′ − θ̂)− g2 p2
1 + p2 p−1

1 sin(y′′ − θ̂), p1(0) = K−1
1 ,

ṗ2 = sin(y′′ − θ̂)− 3g2 p1 p2 + p3 p−1
1 sin(y′′ − θ̂), p2(0) = 0,

ṗ3 = − cos(y′′ − θ̂)− 4g2 p3 p1 − 3g2 p2
2 + p4 p−1

1 sin(y′′ − θ̂), p3(0) = −K−1
1 ,

ṗ4 = − sin(y′′ − θ̂)− 5g2 p4 p1 − 10g2 p3 p2 + p5 p−1
1 sin(y′′ − θ̂), p4(0) = 0,

ṗ5 = cos(y′′− θ̂)− 6g2 p5 p1− 10g2 p2
3− 15g2 p2 p4 + p5 p−1

1 sin(y′′− θ̂), p5(0) = K−1
1 ,

ṗ6 = sin(y′′ − θ̂)− 7g2 p6 p1 − 21g2 p5 p2 − 35g2 p4 p3 + p7 p−1
1 sin(y′′ − θ̂), p6(0) = 0,

ṗ7 = − cos(y′′ − θ̂)− 8g2 p7 p1 − 28g2 p6 p2 − 56g2 p5 p3, p7(0) = −K−1
1 .

Table 6.1: The 8th-order approximate minimum-energy filter on S1 using full state measure-
ments.

In summary the following filter is proposed.

Observer
˙̂X = X̂

(
u− b̂− P2

P1P2 − P2
12

l
)
×

, X̂(0) = I,

˙̂b =
P12

P1P2 − P2
12

l, b̂(0) = 0,

l := 2 vex Pa(R−1(y− ŷ)ŷ>),

Gains
Ṗ1 = −QωP2

1 −QbP2
12 − ŷ>SR−1Sŷ + (y− ŷ)>R−1ŷ, P1(0) = K−1

1 ,

Ṗ2 = −QbP2
2 −QωP2

12 + 2P12, P2(0) = K−1
2 ,

Ṗ12 = −QωP12P1 −QbP2P1 + P1, P12(0) = 0.

Table 6.2: The approximate minimum-energy filter on SO(2)×R.

Note that the equations (6.35) have been rearranged into a new form in which the
kinematics of the state and the bias estimates are in cascade form. This form is more
useful for implementing the filter by discretization.

Lemma 5. If the measurement model (6.11) along with the cost (6.13) is considered instead
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of (6.9) and (6.12), the resulting filer equations are

˙̂θ = u− b̂− P2

P1P2 − P2
12

sin(y′′ − θ̂), θ̂(0) = 0,

˙̂b =
P12

P1P2 − P2
12

sin(y′′ − θ̂), b̂(0) = 0,

ṗ1 = −Qω p2
1 −Qb p2

12 + cos(y′′ − θ̂), p1(0) = K−1
1 ,

ṗ2 = −Qb p2
2 −Qω p2

12 + 2p12, p2(0) = K−1
2 ,

ṗ12 = −Qω p12 p1 −Qb p2 p1 + p1, p12(0) = 0.

(6.40)

Moreover, equations (6.40) are equivalent to the proposed filter 6.2 if the matrices D and R
are equal to the identity matrix.

The proof of Lemma 5 involves an argument, similar to the proof of Lemma 4,
to show the first equation in (6.40). Furthermore, all the calculations that involve the
measurements y need to be done using y′′ instead.

6.2 The GAME Filter with Bias Estimation

In Chapter 4, the attitude system considered did not include bias in the angular
velocity measurements. Here, that result is generalized similar to Section 6.1 by
adding bias to the angular velocity measurements. Recall the attitude kinematics
given by

Ẋ(t) = X(t)Ω×(t), X(0) = X0. (6.41)

The matrix X is an SO(3)-valued state signal with the unknown initial value X0 and
Ω ∈ R3 represents the angular velocity of the moving body expressed in the body-
fixed frame.

A rate-gyro sensor measures the angular velocity through the following equation

u(t) = Ω(t) + BΩvΩ(t) + b(t). (6.42)

The signals u ∈ R3 and vΩ ∈ R3 denote the body-fixed frame measured angu-
lar velocity and the input measurement error, respectively. The coefficient matrix
BΩ ∈ R3×3 allows for different weightings for the components of the unknown input
measurement error v. We assume that BΩ is full rank and hence that QΩ := BΩB>Ω
is positive definite. The signal b(t) ∈ R3 is an unknown slowly time-varying bias
signal generated from

ḃ(t) = Bbvb(t), b(0) = b0, (6.43)

where Bb ∈ R3×3 is a full rank weighting matrix known from the model with Qb :=
BbB>b positive definite. The signal vb ∈ R3 is a small unknown perturbation and
b0 ∈ R3 is an unknown initial bias.

Consider the vectors ẙi ∈ R3 as known vector directions in the reference frame.
Measuring these vectors in body-fixed frame provides partial information about the
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attitude X. Typically, magnetometer, visual sensors, sun sensor and star tracker are
deployed for this purpose. The following model yields the measurements of theses
sensors.

yi(t) = X(t)>ẙi + Diwi(t), i = 1, · · · , n (6.44)

The measurements yi ∈ R3 are measurements of the ẙi in the body-fixed frame and
the signals wi ∈ R3 are the unknown output measurement errors. The coefficient
matrix Di ∈ R3×3 allows for different weightings of the components of the output
measurement error wi. Again, assume that Di is full rank and Ri := DiD>i is positive
definite.

Consider the cost

J(t; X0, b0, vΩ|[0, t], vb|[0, t], {wi|[0, t]}) =
1
2

trace
[
(I − X0)K−1

X0
(I − X0)

>
]
+

+
1
2

b>0 K−1
b0

b0 +
1
2

∫ >
0

(
v>ΩvΩ + v>b vb + ∑

i
w>i wi

)
dτ,

(6.45)

in which KX0 , Kb0 ∈ R3×3 are symmetric positive definite. The cost (6.45) can be
thought of as a measure of the aggregate energy stored in the unknown initialization
and measurement signals of (6.41), (6.42), (6.43) and (6.44).

Similar to the derivation presented in Section 6.1 the following filter is obtained.

Attitude ˙̂X = X̂(u− b̂− Pal)×, X(0) = I,,

Observer l = ∑
i

ŷi × (R−1
i (ŷi − yi)), ŷi = X̂>ẙi,

Bias ˙̂b = P>c l, b̂(0) = [0 0 0]>,

Observer

Gains

Ṗa = QΩ + 2Ps(Pa(2(u − b̂) − Pal)×) + Pa(E − S)Pa − P>c − Pc, Pa(0) =
KX0 ,

Ṗc = −(u− b̂− Pal)×Pc + Pa(E− S)Pc − Pb, Pc(0) = 03×3,

Ṗb = Qb + Pc(E− S)Pc, Pb(0) = Kb0 ,

S = ∑i(ŷi)
>
×R−1

i (ŷi)×,

E = trace(C)I − C, C = ∑i Ps(R−1
i (ŷi − yi)ŷ>i ).

Table 6.3: The GAME filter with bias estimation on SO(3)×R3
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6.3 Minimum-energy Pose Filtering on the Special Euclidean
Group SE(3)

The following is a model for the kinematics of the pose of a rigid body, and an
associated vectorial measurement model, for which the problem of minimum-energy
filtering is formulated here. Consider

Ẋ(t) = X(t)A(t), X(0) = X0,
U(t) = A(t) + (Bv(t))̂,
yi(t) = X(t)−1ẙi + [Diwi(t) , 1]>, i = 1, · · · , n ,

(6.46)

where X is an SE(3)-valued state signal representing the pose of a body-fixed frame,
i.e. a frame attached to a moving rigid body, relative to a reference frame, i.e. a frame
fixed at a reference point. We use the following matrix representation of pose that
is commonly known as homogeneous coordinates. This model preserves the group
structure of SE(3) ⊆ R4×4 with the GL(4) operation of matrix multiplication, i.e,
X1X2 ∈ SE(3), for all X1, X2 ∈ SE(3).

X =

[
R p
0 1

]
.

Here the rotation R is an element of the rotation group SO(3) = {R ∈ R3×3 | R>R =
I, det(R) = 1} where I is the 3 by 3 identity matrix and the translation p is an
element of R3. The signal A ∈ se(3) ⊆ R4×4 represents the twist of the moving body
expressed in the body-fixed frame and it comprises the angular velocity Ω× ∈ so(3)
and the translational velocity V ∈ R3 of the moving body in the following matrix
representation. Note that so(3) = {Ω× ∈ R3×3 |Ω× = −Ω>×}. Recall the cross
notation (·)× : R3 −→ so(3) defined as

[w1 w2 w3]
>
× :=

 0 −w1 w2

w1 0 −w3

−w2 w3 0

 , then A =

[
Ω× V
0 0

]
. (6.47)

Conversely, note that vex(·) : so(3) −→ R3 by vex(Ω×) = Ω. The signals U ∈ se(3)
and v ∈ R6 denote the body-fixed frame measured velocity input and the input
measurement error, respectively. The coefficient matrix B ∈ R6×6 allows for different
weightings for the components of the unknown input measurement error v. We
assume that B is full rank and hence that Q := BB> is positive definite. The lift-up
notation (·)̂ : R6 −→ se(3) is defined as

([z1 z2]
> )̂ :=

(
(z1)× z2

0 0

)
(6.48)

where z1, z2 ∈ R3. Conversely the lift-down notation (·)̌ : se(3) −→ R6 is defined
as (([z1 z2]> )̂)̌ = [z1 z2]>.The vectors ẙi ∈ R4 = [ẙ

i
, 1]> where ẙ

i
∈ R3 are known
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vector directions in the reference frame. The measurements yi ∈ R4 = [y
i

, 1]> where
y

i
are measurements of the ẙ

i
in the body-fixed frame and the signals wi ∈ R3 are the

unknown output measurement errors. The coefficient matrix Di ∈ R3×3 allows for
different weightings of the components of the output measurement error wi. Again
assume that Di is full rank and Mi := DiD>i is positive definite.

Consider the cost

J(t; X0, v|[0, t],{wi|[0, t]}) =

1
2

∫ >
0

(
‖Bv‖2

Q−1 + ∑
i
‖Diwi‖2

M−1
i

)
dτ +

1
2
‖I − X0‖2

K−1
0

.
(6.49)

in which K0 ∈ R3×3 is symmetric positive definite. The cost (6.49) can be thought of
as a measure of the aggregate energy stored in the unknown signals of system (6.46).

This section concerns generalizing Mortensen’s minimum-energy filtering [31] to
the invariant pose kinematics (6.46). In other words, the minimum-energy state es-
timate at the current time t (X̂(t)) is derived using the past measurements yi|[0 , t]
and U|[0 , t] such that the cost (6.49) is minimized. In principle this requires pos-
tulating a set of unknown signals (X0, v|[0, t], {wi|[0, t]}) that are compatible with
the measurements yi|[0 , t] and U|[0 , t] by fulfilling the system equations (6.46). One
can easily find an estimate for the state at time t using the postulated unknowns by
integrating the system (6.46). In general one might find infinitely many combina-
tions of such unknown signals that lead to many different state estimates. However,
minimizing (6.49) yields a triplet (X∗0 , v∗|[0, t], {w∗i |[0, t]}) that contains minimum
collective energy and yields an associated minimum-energy state trajectory X∗[0, t].
The subscript [0, t] indicates that the optimization takes place on the interval [0, t].
We pick the final optimal state X∗[0, t](t) as our minimum-energy estimate at time t,
X̂(t) := X∗[0, t](t). In the following, rather than repeating this optimization process for
every time interval [0, t] Mortensen’s approach is used to find an iterative dynamical
equation that updates the minimum-energy estimate X̂(t) as its state value. More
details are listed in Chapter 4.

Similar to optimal control theory [5], define a pre-Hamiltonian for this optimiza-
tion problem. Note that although the optimization problem is carried out over the
triplet (X0, v|[0, t], {wi|[0, t]}), one can skip optimizing over the {wi|[0, t]} by replacing
them using the measurements yi|[0 , t]. Also for now assume that the initial state X0

is fixed keeping in mind that later one, the solution needs to be optimized over X0.
Hence the problem becomes very similar to an optimal control problem where one
needs to optimize the following Hamiltonian over v which can be seen as the control
parameter.

H−(X, µ̂, v, t) :=
1
2
[v>v + ∑

i
(X>ẙi − yi)

>R−1
i (X>ẙi − yi)]− µ>(Ǔ − Bv), (6.50)

where µ ∈ R6 represents a costate variable Θ ∈ se∗(3) via 〈µ̂, Γ〉 = Θ(Γ) for all
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Γ ∈ se(3). In the following the identification of Θ ∈ se∗(3) with µ̂ ∈ se(3) will be
used without further reference. Minimizing the pre-Hamiltonian (6.50) over v yields
the optimal Hamiltonian

H(X, µ̂, t) =
1
2
[−µ>Qµ + ∑

i
(X>ẙi − yi)

>R−1
i (X>ẙi − yi)]− µ>Ǔ. (6.51)

In order to apply the Hamilton-Jacobi-Bellman principle [5] to this problem the fol-
lowing value function is defined

V(X, t) := min
v|[0, t]

J(t; X0, v|[0, t]), (6.52)

where J is the cost (6.49) and the minimization is constrained by the system equa-
tions (6.46). The Hamilton-Jacobi-Bellman equation is then

H(X, TL∗X∇1V(X, t), t)− ∂V
∂t

(X, t) = 0. (6.53)

From (6.49) the initial time boundary condition is

V(X0, 0) =
1
2

trace
[
(I − X0)

>K−1
0 (I − X0)

]
. (6.54)

Up to here, only the optimal control part of the problem has been addressed (by
minimizing (6.49) over v) assuming that X0 is fixed. To solve the original problem
one needs to optimize V over X0. This is equivalent to optimizating V over the final
condition X(t) since the initial and final conditions are deterministically coupled by
the optimal input v∗|[0 , t]. Assuming that the value function is strictly convex, its
minimum is characterized by the final condition

∇1V(X, t)|X=X̂(t) = 0. (6.55)

Solving Equation (6.55) characterizes X̂(t) as the final value of the minimizing argu-
ment X∗[0,t](t). However, this still requires an explicit solution to a potentially infinite
dimensional nonlinear control problem and must be repeated at every time t. To
overcome this issue Mortensen’s approach [31] is utilized to derive a recursive solu-
tion to this problem.

Note that the final condition (6.55) characterizes the solution X̂(t) at the final time
t. The final condition (6.55) is equivalent to

〈∇1V(X, t), XΓ〉|X=X̂(t) = (D1V(X, t) ◦ XΓ)|X=X̂(t) = 0, for all Γ ∈ se(3). (6.56)

In order to get the dynamics of this solution, the total time derivative of the final
condition (6.56) is calculated using the chain rule. Note that the nonlinear geometry
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is maintained by using geometric differentiations.

d
dt
(D1V(X, t) ◦ XΓ)|X=X̂(t) =

(D2
1V(X, t) ◦ (XΓ, ˙̂X) +D1

∂V(X, t)
∂t

◦ XΓ)|X=X̂(t) = 0,
(6.57)

The second order derivative of the value function is related to the Hessian of the
value function as an operator acting on a tangent direction. A matrix K ∈ R6×6

representation is chosen to obtain a matrix formulation such that

D2
1V(X̂, t) ◦ (X̂Γ, ˙̂X) = 〈Hess1 V(X̂, t) ◦ ˙̂X, X̂Γ〉 := 〈X̂

[
K( ˙̂X)̌

]
,̂ X̂Γ〉 (6.58)

The termD1
∂V(X,t)

∂t ◦XΓ can be calculated after replacing the partial derivative from (6.53).
Therefore, denoting P := K−1 yields the following minimum-energy observer equa-
tion.

˙̂X(t) = X̂

(
U −

[
P

(
P ∑

i
R−1

i (yi − X̂−1ẙi)ẙ>i X̂−>
) ]̌ )̂

, (6.59)

where X̂(0) = I is calculated from (6.54) and (6.55) and P : R4×4 → se(3) denote the
orthogonal projection with respect to the Euclidean inner product 〈·, ·〉, i.e., for all
A ∈ se(3), M ∈ R4×4, one has 〈A, M〉 = 〈A, P(M)〉 = 〈P(M), A〉 . One verifies that
for all M1 ∈ R3×3, m2,3 ∈ R3, m4 ∈ R,

P

([
M1 m2

m>3 m4

])
=

[
Pa(M1) m2

0 0

]
.

Here, the symmetric projector Ps is defined by Ps(M) := 1/2(M + M>) for all M ∈
Rn×n while the skew-symmetric projector Pa is defined by Pa(M) := 1/2(M−M>).

Equation (6.59) depends on the gain P and to implement the observer one needs
to calculate the dynamics of the gain K and it’s inverse P. According to the Mortensen’s
approach This is done by calculating the total time derivative of the following equa-
tion.

〈K̇γ, ω〉 = d
dt
(D2

1V(X̂, t) ◦ (X̂Γ, X̂Ω))̌, for all γ, ω ∈ R6, (6.60)

where Γ = γ̂ and Ω = ω̂. Calculating the right hand side using the chain rule and
then using the HJB equation (6.53), the final condition (6.56) and neglecting the third
order derivatives of the value function yields a Riccati equation for the dynamics of
P.

In summary the following filter is obtained.

˙̂X(t) = X̂ (U − (Pl) )̂ , (6.61a)

Ṗ = Q + 2Psym(PU)−Psym(P(Pl)̂) + PEP + PSP. (6.61b)
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where

l :=

(
P ∑

i
R−1

i (yi − X̂−1ẙi)ẙ>i X̂−>
)

,̌ (6.62a)

E :=

 trace(∆)I − ∆ ∑
i

M−1
i (ŷ

i
)×

−∑
i
(ŷ

i
)×M−1

i 0

 , (6.62b)

ŷ
i

:= R̂>(ẙ
i
− p̂), ∆ := ∑

i
Ps(M−1

i (ŷ
i
− y

i
)ŷ>

i
), (6.62c)

S :=

(
∑i(ŷi

)×M−1
i (ŷ

i
)× −∑i(M−1

i (ŷ
i
− y

i
))×

∑i(M−1
i (ŷ

i
− y

i
))× −∑i M−1

i

)
. (6.62d)

Here X̂(0) = I and P(0) = diag(trace(K−1
0 )I − K−1

0 , 0) are calculated using (6.54)
and (6.55). The projection Psym : S6×6 × se(3) −→ S6×6 where Sn×n is the space of

symmetric matrices in Rn×n is defined as follows. For P =

[
P1 P2

P>2 P3

]
and A =[

Ω× V
0 0

]
where P1, P3 ∈ S3×3, P2 ∈ R3×3, Ω× ∈ so(3) and V ∈ R3 the symmetric

projector yields

Psym(PA) :=
[

Ps(P1Ω×) 1
2 (P2Ω× −Ω×P2)

1
2 (P>2 Ω× −Ω×P>2 ) Ps(P3Ω×)

]
.
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Chapter 7

Simulations

In this chapter a comprehensive simulation study is carried out to compare the per-
formance of the proposed geometric approximate minimum-energy (GAME) filter
on SO(3) against some of the important attitude filtering methods in the literature.

There are many highly-regarded attitude estimation methods in the literature
although there are not many references to clear implementation blueprints for these
methods. As a result there is a lack of comparative studies in the literature that
can point out the relative advantages and disadvantages of these methods compared
against each other. In fact, many of the advanced attitude filtering methods are still
published showing their performance gain against the basic extended Kalman filter
(EKF) that is an outdated attitude filter with well known convergence issues (cf. [13]).
Therefore, to address these gaps, the following main contributions are provided in
this chapter.

• A short literature review highlights some of the mainstream attitude filtering
methods that are used in robotic applications. Some of these methods are al-
ready proven to be outperformed by other methods in cited references and
therefore are not included in our simulation experiments. An account of some
of the major attitude filtering methods is provided including all the filters con-
sidered in the simulation study. We don’t intend to produce a full survey of
all the numerous attitude estimation methods in the literature but rather to
provide a reference guide for some of the mainstream attitude filtering meth-
ods and the ideas behind them. For a relatively recent summary of attitude
estimation methods refer to the survey [18].

• Simple numerical unit quaternion implementation of attitude filters is explained.
Moreover, algorithm summaries are provided for each of the attitude filters that
are selected to be implemented in the simulation study.

• A comprehensive simulation study is provided that compares the selected ma-
jor attitude filters against the proposed GAME filter. The main comparison
study considers measurement errors and initialization errors that are normally
expected in attitude filtering for inexpensive commercial unmanned aerial ve-
hicles (UAVs). Moreover, a separate simulation study is provided considering
the initialization errors and measurement errors that are expected in a satel-
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Draft Copy – 20 May 2013



70 Simulations

lite attitude filtering problem as well as considering the tuning issues of the
attitude filters.

The methods included in the comparison study of this chapter consist of the
proposed GAME filter, the multiplicative extended Kalman filter (MEKF [24]), the
right-invariant extended Kalman filter (RIEKF that is also known as the generalized
multiplicative extended Kalman filter GMEKF [27]), the unscented quaternion esti-
mator (USQUE [15]) as well as the nonlinear complimentary attitude observer [32]
which is referred to as the constant gain observer (CGO).

The remainder of the chapter is organized as follows. In Section 7.1 a summary
of some of the important attitude filtering methods are provided that also explains
the choice of methods included in the simulation study. Section 7.2 is to explain the
numerical implementation of filters considered in simulation study. In particular,
the discretization details of each method are provided separately. In Section 7.3 a
UAV simulation setup is considered for which the performance of the GAME filter
is compared against the other attitude filters considered. Section 7.5 concludes this
chapter.

7.1 Attitude Filtering Methods

This section includes a brief review of some the most important attitude filtering
methods that are employed in aerial robotics. In particular, the main ideas be-
hind some attitude filters are explained and a number of these methods are selected
against which the performance of proposed GAME filter is evaluated in simulations.

There are numerously many attitude filtering methods employed for different
applications that make it impossible to provide a comprehensive account of all the
attitude filtering methods. The simulation study of this chapter does not include
the methods that have been shown to be outperformed by other methods in the lit-
erature. Some of these methods are included in Table 7.1. The simulation study is
restricted to recursive methods due to their limited computations as compared to the
static attitude determination methods. Attitude determination methods are based
on the Wahba’s problem [40] and sometimes involve repeated optimization for each
measurement received. Sequential methods based on attitude determination (cf. [37]
and [14]) have also been proposed. These methods are based on minimizing a cost
functional on the measurement errors only as opposed to the classical optimal filter-
ing cost that depends on the measurements errors as well as the initialization errors.
The simulation study mostly covers methods that are based on the classical optimal
filtering cost functional. The focus of the simulations is to only consider methods
that are based on nonsingular parameterizations of the attitude matrix. The only ex-
ception is the USQUE that only uses a singular parametrization to represent the error
quaternion and hence is hoped not encounter singularities when the error is small.
This chapter also not covers any methods that require normalization or projection of
the filter estimates to convert them to the correct attitude space. The rationale is that
these operations might affect the optimality of the filter in an unsystematic fashion
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that might be difficult to track and evaluate.
As was pointed out by the 2007 survey on nonlinear attitude filters [18], the Mul-

tiplicative Extended Kalman filter (MEKF) is the method of choice in many spacecraft
attitude filtering applications. Crassidis et. al [18] concluded that “Many nonlinear
filtering methods have been applied to the problem of spacecraft attitude determi-
nation in the past 25 years. This paper has provided a survey of the methods that
its authors consider to be most promising. It remains the case, however, that the
extended Kalman filter, especially in the form known as the multiplicative extended
Kalman filter, remains the method of choice for the great majority of applications.”.
Therefore, a unit quaternion MEKF is an obvious benchmark that is choosen for the
proposed GAME filter.

The continuous-time MEKF [24] comprises the same observer equations (9.9a)
and (9.9b) as the proposed GAME filter. However, in contrast to the GAME filter,
in the Riccati equations of the MEKF a curvature correction term and a geometric
second order derivate of the output function (denoted by E in (9.10)) are not present.
The idea behind the MEKF is to consider the true attitude state as the product of a
reference quaternion and an error quaternion that represents the difference between
the reference and the true attitudes. The error quaternion is parameterized by a three
dimensional representation of attitude and is estimated using an EKF. The MEKF es-
timates the true attitude by multiplying the estimated error quaternion (converted
back to a unit quaternion) and the reference quaternion. In order to avoid the redun-
dancy of having to estimate both the reference quaternion and the error quaternion,
the reference quaternion is chosen in a way that the error quaternion is the identity
quaternion. Therefore, the MEKF directly calculates the reference quaternion as a
unit quaternion estimate of the true attitude by implicitly running an EKF in the
vector space of its angular velocity input.

In the case of attitude filtering, the MEKF is in fact a special case of the left
invariant extended Kalam filter IEKF [8, 10]. The invariant extended Kalman filter
modifies the EKF equations by using an invariant output error rather than a linear
error and also by updating the gain using an invariant state error instead of a linear
state error. The right invariant EKF (RIEKF [27]) or generalized MEKF (GMEKF) is
the most favored invariant EKF and therefore is included in our simulations. The
gains of the RIEKF stabilize on a wide range of trajectories and are expected to result
in better convergence properties of the filter than the MEKF. The RIEKF is based on
the assumption that the state and the output errors are configured in the inertial
frame rather than configured in the body-fixed frame.

The unscented quaternion estimator (USQUE [15]) is an attitude filter based on
the unscented filter (UF [34]) that has proven to work well in many applications. The
UF uses a carefully chosen set of sigma points to approximate the probability distri-
bution as opposed to the EKF that uses a linearization of the nonlinear equations. In
a straightforward implementation of the UF the updated quaternion mean would be
obtained by an averaging process which would not maintain the unit norm condition
of the unit quaternion representing the attitude. This maybe avoided by USQUE [15]
where a three-component attitude error is used to derive an unscented filter and the
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resulting estimated error is converted back to unit quaternions and multiplied with
the previously estimated quaternion to produce the attitude estimate. The hope is
that the singularities would not occur since a parameterization of attitude is only
used for the quaternion error that is supposed to be small. The USQUE is shown to
outperform the EKF in simulations with the cost of more computations and tuning
needed. In a recent paper [38], it was shown in simulations that the USQUE has
similar estimation error compared to the MEKF although with a faster convergence
rate. Therefore, the USQUE is also included in the simulation study of this chapter.
There is a large class of nonlinear observers designed for attitude estimation (cf. [32])
that are also attractive methods to consider, as they are proven to produce asymp-
totically convergent estimates. The observer proposed in [32] is a special case of the
GAME or the MEKF filter that uses carefully tuned constant gains as opposed to a
filter that automatically updates the matrix gains using Riccati equations. In a special
case of our follow up simulations, a constant gain observer is also tested against the
proposed GAME filter.
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Attitude
Filters

state Ref.
Compared
Against

Comments

GAME

SO(3) (Unit
Quaternions
in Simula-
tions)

Chap.
4, 7

MEKF,
USQUE,
Constant
Gain
Observer

The GAME filter is a 2nd-order approx-
imation to a minimum-energy filter de-
rived directly on SO(3) that estimates the
gyro bias fast and is more robust to dif-
ferent noise levels with minimal tuning.

MEKF
Unit Quater-
nions

[24]
USQUE,
SR-
QCKF [38]

The MEKF estimates a unit quaternion
by implicitly running an EKF in the vec-
tor space of its angular velocity input.

RIEKF
(GMEKF)

Unit Quater-
nions

[27] MEKF

RIEKF is a right-invariant construction
of the EKF, by considering measure-
ment noise modeled in the inertial frame.
RIEKF has better convergence properties
than the MEKF.

USQUE
Unit Quater-
nions

[15]

MEKF,
SR-
QCKF [38],
EKF [15],
BAF [12]

A three-component attitude error is used
to derive an unscented filter and the re-
sulting estimated error is converted back
to unit quaternions and multiplied with
the previously estimated quaternion to
produce the filter’s estimate.

BAF
Unit Quater-
nions

[12] USQUE [12]
The BAF achieves comparable perfor-
mance to the USQUE, with the compu-
tational costs of particle filtering

SR-
QCKF

Normalized
Quaternions

[38]
USQUE,
MEKF
[38]

The USQUE requires more computation
than the SR-QCKF but outperforms it in
mean square Error.

AEKF
Normalized
Quaternions

[25] MEKF

AEKF is conceptually simpler than the
MEKF, but with higher computational
cost. The MEKF is also preferred as it
avoids the embedding errors.

CGO
Unit Quater-
nions

[32]

A carefully tuned constant gain is used
with the same observer equations as in
the MEKF or the GAME filter. It is
very robust and asymptotically conver-
gent with minimal computational load
but requires exact tuning.

EKF
Normalized
Quaternions

[6]
USQUE
[15]

The EKF in its standard form is outper-
formed by the USQUE. The AEKF and
the MEKF build up on the EKF to im-
prove the performance.

Table 7.1: GAME filter: Geometric Approximate Minimum-Energy Filter, MEKF: Multi-
plicative Extended Kalman Filter,RIEKF: Right-Invariant Extended Kalman Filter, GMEKF:
Generalized Multiplicative Extended Kalman Filter, SR-QCKF: Square-Root Quaternion
Kalman Filter, USQUE: Unscented Quaternion Kalman Filter, BAF:Bootstrap Attitude Fil-
ter, AEKF:Additive Extended Kalman Filter, CGO: Constant Gain Observer, EKF:Extended
Kalman Filter.
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7.2 Numerical Implementation

The unit quaternion representation of a rotation is employed in this chapter for nu-
merical implementation of the algorithms considered. Using unit quaternions rather
than rotation matrices in numerical analysis yields more efficient and more robust
numerical implementations due to the vector form of quaternions. Moreover, unit
quaternions do not have the singularity issue that is associated with many other ro-
tation representations. However, a unit quaternion is not a unique representation of
a rotation. Nevertheless, since our filter derivation is done using rotation matrices
non-uniqueness is not an issue for the proposed GAME filter.

A brief overview of unit quaternions and the algebra associated to them is pro-
vided in Appendix 9. In particular, a unit quaternion version of the attitude kine-
matics and the GAME filter are derived.

In order to numerically study and compare the filters in this chapter, discrete-
time derivations of these continues-time filters are required. Discretization is also
required for practical onboard implementations due to the discrete-time nature of the
readings obtained from the attitude and angular velocity sensors. This is not a trivial
task in attitude filtering ( and similar problems) as the Lie group configuration of the
underlying state space has to be preserved under any numerical calculation. Proper
treatments of the numerical implementation issue include deriving a discrete version
of the proposed GAME filter and the other competing methods or using Lie group
variational (symplectic) integrators [2] to discretize the continuous-time differential
state equations. Nevertheless, this thesis is to serve as a proof of concept of the
advantage of minimum-energy filtering done directly on Lie groups of SO(3) and
SE(3) as a systematic way of deriving approximate geometric filters. Therefore, the
simulation study is restricted to the use of a simple Lie group Euler method where
the time step is small enough, hence simulating a continuous time situation. The
choice of simple numerical implementation along with a small time step serves well
to the purpose of keeping the comparison simple without providing any numerical
advantage to any of the competing attitude filtering methods.

The numerical integration of (9.4) is approximated by assuming that the simula-
tion time step dt is small enough. Then, one can assume that Ω remains constant in
every period of time [kdt, (k + 1)dt] for all k ∈ N. Let us denote this value by Ωk.
Then the exact integration of (9.4) yields

qk+1 =
1
2

exp(dtA(Ωk))q. (7.1)

For the GAME filter, the numerical implementation of the quaternion equation (9.9a)
is similar to Equation (7.1). The bias observer (9.9b) as well as the Riccati equa-
tions (9.9d) and (9.9e) can be implemented with a simple Euler method.

Note that when the measurements {yi} are received at a different frequency than
the angular velocity measurements the continuous-discrete form of the EKF is usu-
ally employed for the numerical implementation of the MEKF [24]. However, obser-
vation with a different frequency are not considered in the following simulations and
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hence the continuous-discrete implementation is not used.

Detailed implementations of the attitude kinematics and measurements as well
as the methods compared in this chapter are given in the following tables.

Kinematics
q(k + 1) = 1

2 exp(dtA(Ω(k)))q(k), q(0) = q0,

A(Ω(k)) =
[

0 −Ω(k)>

Ω(k) −Ω(k)×

]

Gyro Measurements
u(k) = Ω(k) + b(k) + BΩvΩ(k),
QΩ = BΩB′Ω

Bias Model b(k + 1) = b(k) + dt[Bbvb(k)], Qb = BvB′v

Vector Measurements
yi(k) = p†(q(k)−1 ⊗ p(ẙi)⊗ q(k)) + Diwi(k),
Ri = DiD′i ,

p(ẙi) =

[
0
ẙi

]
, p†(p(ẙi)) = ẙi

Table 7.2: Discrete Attitude Kinematics and Measurements

Draft Copy – 20 May 2013



76 Simulations

Attitude Observer

q̂(k + 1) =
1
2

exp(dtA[u(k)− b̂(k) + Pa(k)l(k)])q̂(k),

l(k) = ∑
i

ŷi(k)× (R−1
i (ŷi(k)− yi(k))),

ŷi(k) = p†(q̂(k)−1 ⊗ p(ẙi)⊗ q̂(k)), q̂(0) = [1 0 0 0]>

Bias Observer b̂(k + 1) = b̂(k) + dt[Pc(k)>l(k)], b̂(0) = [0 0 0]>,

Riccati Gains

Pa(k + 1) = Pa(k) + dt[QΩ + 2Ps[Pa(k)(u(k) − b̂(k) −
1
2 Pa(k)l(k))× − Pc(k)] + Pa(k)(E(k)− S(k))Pa(k)],

Pc(k+ 1) = Pc(k)+ dt[−(u(k)− b̂(k)− 1
2 Pa(k)l(k))×Pc(k)+

Pa(k)(E(k)− S(k))Pc(k)− Pb(k)],

Pb(k + 1) = Pb(k) + dt[Qb + Pc(k)(E(k)− S(k))Pc(k)],

S(k) = ∑i(ŷi(k))>×R−1
i (ŷi(k))×,

E(k) = trace(C(k))I − C(k), C(k) = ∑i Ps(R−1
i (ŷi(k) −

yi(k))ŷ(k)>i ),

Table 7.3: GAME Filter
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Attitude Observer

q̂(k + 1) =
1
2

exp(dtA[u(k)− b̂(k) + Pa(k)l(k)])q̂(k),

l(k) = ∑
i

ŷi(k)× (R−1
i (ŷi(k)− yi(k))),

ŷi(k) = p†(q̂(k)−1 ⊗ p(ẙi)⊗ q̂(k)), q̂(0) = [1 0 0 0]>

Bias Observer b̂(k + 1) = b̂(k) + dt[Pc(k)>l(k)], b̂(0) = [0 0 0]>,

Riccati Gains

Pa(k + 1) = Pa(k) + dt[QΩ + 2Ps[Pa(k)(u(k) − b̂(k))× −
Pc(k)]− Pa(k)S(k)Pa(k)],

Pc(k + 1) = Pc(k) + dt[−(u(k) − b̂(k))×Pc(k) −
Pa(k)S(k)Pc(k)− Pb(k)],

Pb(k + 1) = Pb(k) + dt[Qb − Pc(k)S(k)Pc(k)],

S(k) = ∑i(ŷi(k))>×R−1
i (ŷi(k))×,

Table 7.4: MEKF
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Attitude Observer

q̂(k + 1) =
1
2

exp(dtA[u(k)− b̂(k) + Pa(k)l(k)])q̂(k),

l(k) = ∑
i

ẙi × (R−1
i (ẙi − ŷi(k))),

ŷi(k) = p†(q̂(k)⊗ p(yi(k))⊗ q̂−1(k)), q̂(0) = [1 0 0 0]>

Bias Observer b̂(k + 1) = b̂(k) + dt[q̂(k)−1⊗ p(Pc(k)>l(k))⊗ q̂(k)], b̂(0) =
[0 0 0]>,

Riccati Gains

Pa(k + 1) = Pa(k) + dt[QΩ − 2Ps[Pc(k)]− Pa(k)S(k)Pa(k)],

Pc(k + 1) = Pc(k) + dt[−Pc(k)q̂(k) ⊗ p((u(k) − b̂(k))×) ⊗
q̂−1(k)− Pa(k)S(k)Pc(k)− Pb(k)],

Pb(k + 1) = Pb(k) + dt[2Ps(q̂(k) ⊗ p((u(k) − b̂(k))×) ⊗
q̂−1(k)Pb(k) + Qb − Pc(k)S(k)Pc(k)],

S(k) = ∑i(ẙi(k))>×R−1
i (ẙi(k))×,

Table 7.5: RIEKF (GMEKF)

Note that the formulation provided here for the RIEKF is different to the one
given in the reference [27] in two aspects. First, the state error in [27] is modeled two
times larger, giving the filter formulation a factor of 2 higher gain. Although this re-
sults in a faster transient response, also causes the asymptotic response of the RIEKF
to be two times more noisy. In order to be consistent in our comparison this factor
difference has been removed from the RIEKF. We have included a simulation instance
that shows this effect in the original formulation of the RIEKF (see Figure 7.6). Sec-
ondly, there seems to be a factor of 1

2 inconsistency in the A matrix calculation of
the RIEKF [27] that leads to occasional singularities in the simulation results of the
RIEKF. This has also been corrected in our simulations. For further details, see the
proof in Section 9.12 of the Appendix. Also note that, the RIEKF is derived based on
considering the state and the output errors in the inertial frame that is different to
our formulation that models errors in the body-fixed frame. Nevertheless, the RIEKF
is claimed to have better convergence properties than the MEKF and is even named
the generalized MEKF (see [27]) and hence is compared against the rest of the filters
in our simulations with errors generated in the body-fixed frame as is the case for
the MEKF.
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Initial Conditions q̂(0) = q̂0, b̂(0) = b̂0, P(0) = P0 ∈ R6×6,
x̂+(0) = [0> b̂(0)>]>,

Tuning a = 1, f = 4, λ = 1,

Discrete Qk
Qk = dt

2

[
QΩ − dt2

6 Qb 03×3
03×3 Qb

]
,

Sigma Points
σk ← 2n columns from±

√
(n + λ)[P+

k + Qk],
Xk(0) = x̂+k , Xk(i) = σk(i) + x̂+k ,

Error Quaternions
δq+4k

(i) =
−a‖X δp

k (i)‖2+ f
√

f 2+(1−a2)‖X δp
k (i)‖2

f 2+‖X δp
k (i)‖2

,

δ$+k (i) = f−1[a + δq+4k
(i)]X δp

k (i),

δq+k (i) = [δq+4k
(i) δ$+

>

k (i)]>, i = 1, 2 · · · , 12

Sigma Quaternions
q̂+k (0) = q̂+k ,
q̂+k (i) = δq+k (i)⊗ q̂+k

Propagation

q̂−k+1(i) =
1
2

exp(dtA[u(k)−X b̂
k (i)])q̂

+
k (i), i = 0, 1, · · · , 12,

δq−k+1(i) = q̂−k+1(i)⊗ (q̂−k+1(0))
−1, δq−k+1(0) = [1 0 0 0]>

[δq−4k+1
(i) δ$−

>

k+1(i)]
> = δq−k+1(i)

X δp
k+1(i) = f δ$−k+1(i)

a+δq−4k+1
(i) , X δp

k+1(0) = 0,

X b̂
k+1(i) = X

b̂
k (i),

Prediction

x̂−k+1 = 1
n+λ

{
λXk+1(0) +

1
2 ∑2n

i=1 Xk+1(i)
}

,

P−k+1 = 1
n+λ

{
λ[Xk+1(0)− x̂−k+1][Xk+1(0)− x̂−k+1]

>

+ 1
2 ∑2n

i=1[Xk+1(i)− x̂−k+1][Xk+1(i)− x̂−k+1]
>
}
+ Qk

Mean Observations
γk+1(i) =


p†(q̂−k+1(i)

−1 ⊗ p(ẙ1)⊗ q̂−k+1(i))
p†(q̂−k+1(i)

−1 ⊗ p(ẙ2)⊗ q̂−k+1(i))
...


ŷ−k+1 = 1

n+λ

{
λγk+1(0) +

1
2 ∑2n

i=1 γk+1(i)
}

Covariance Update

Pyy
k+1 = 1

n+λ

{
λ[γk+1(0)− ŷ−k+1][γk+1(0)− ŷ−k+1]

>

+ 1
2 ∑2n

i=1[γk+1(i)− ŷ−k+1][γk+1(i)− ŷ−k+1]
>
}

,

Pνν
k+1 = Pyy

k+1 + Rk+1,

Pxy
k+1 = 1

n+λ

{
λ[Xk+1(0)− x̂−k+1][γk+1(0)− ŷ−k+1]

>

+ 1
2 ∑2n

i=1[Xk+1(i)− x̂−k+1][γk+1(i)− ŷ−k+1]
>
}

Update
x̂+k+1 = x̂−k+1 + Pxy

k+1(Pνν
k+1)

−1(yk+1 − ŷk+1),
P+

k+1 = P−k+1 − Pxy
k+1(Pνν

k+1)
−>Pxy

k+1

Quaternion Update

x̂+k+1 = [δp> b̂+
>
]>

δq+4k+1
=
−a‖δp‖2+ f

√
f 2+(1−a2)‖δp‖2

f 2+‖δp‖2 ,

δ$+k+1 = f−1[a + δq+4k+1
]δp,

δq+k+1 = [δq+4k+1
δ$+

>

k+1]
>,

q̂+k+1 = δq+k+1 ⊗ q̂−k+1

Table 7.6: USQUE
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Attitude Observer

q̂(k + 1) =
1
2

exp(dtA[u(k)− b̂(k) + kPl(k)])q̂(k),

l(k) = ∑
i

yi(k)× ŷi(k),

ŷi(k) = p†(q̂(k)−1 ⊗ p(ẙi)⊗ q̂(k)), q̂(0) = [1 0 0 0]>

Bias Observer b̂(k + 1) = b̂(k)− dt[k I l(k)], b̂(0) = [0 0 0]>

Table 7.7: CGO

7.3 Methodology

In this section, multiple simulated experiments are presented that compare the filter-
ing methods considered in Section 7.2.

7.3.1 Case 1: Measurement Errors Expected from Low-Cost UAV Sensors

The first experiment is simulating attitude filtering of a low cost unmanned aerial
vehicle (UAV) system for which the measurement errors are relatively large. It is
also assumed that the rotation and the bias initialization errors are large, as is the
case when using low cost MEMS gyros such as the popular InvenSense MPU-3000
family. The simulation parameters are summarized in Table 7.8. The GAME filter 7.3
is compared against the MEKF 7.4, the RIEKF 7.5, the USQUE 7.6 and the CGO 7.7
that are explained in detail in Section 7.2.

Simulated attitude kinematics and measurements (see Table 7.2) are considered
with the following parameters that are also summarized in Table 7.8. A sinusoidal
input Ω = [sin( 2π

15 t) − sin( 2π
18 t + π/20) cos( 2π

17 t)] drives the true trajectory q. The
input measurement errors v and vb are Gaussian zero mean random processes with
unit standard deviation. The coefficient matrix B is chosen so that the signal Bv has
a standard deviation of 25 degrees per ‘second’. The bias variation is adjusted by
Bb such that Bbvb has a standard deviation of 0.1 degrees per ‘second’ squared. The
system is initialized with a unit quaternion representing a rotation with standard
deviation of stdq0 = 60 degrees and an initial bias with standard deviation of stdb0 =
20 degrees per ‘second’. We assume that two orthogonal unit reference vectors are
available. We also consider Gaussian zero mean measurement noise signals wi with
unit standard deviations. The coefficient matrices Di are chosen so that the signals
Diwi have standard deviations of 30 degrees. Although the two filters do not have
access to the noise signals vΩ, vb and wi themselves, they have access to the matrices
QΩ = BB>, Qb = BbB>b and Ri = DiD>i . The filters are simulated using zero
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initial bias estimates and using the identity unit quaternion as their initial quaternion
estimate.

The following filter initializations are considered that are also summarized in
Table 7.9. The initial quaternion and bias gain matrices of the USQUE are chosen ac-
cording to the variance of the system’s initial quaternion in radians Pa(0) = std2

q0
I3×3

and the variance of the system’s initial bias in radians per ‘seconds’ Pb(0) = std2
b0

I3×3.
The initial quaternion and bias gain matrices of the GAME filter, the MEKF and the
RIEKF are chosen according to the inverse variance of the system’s initial quaternion
in radians Pa(0) = 1

std2
q0

I3×3 and the inverse variance of the system’s initial bias in

radians per ‘seconds’ Pb(0) = 1
std2

b0

I3×3 as these filters are in the information form.

The coupling initial gain is considered as the zero matrix Pc(0) = 03×3 for all the
filters. The CGO is initialized with kp = 1 and k I = 0.3 as in [32].

Time Step 0.001 (s)

Simulation Time 50 (s)

Angle of Rotation Initializa-
tion Error

N ∼ (0, 602)◦

Bias Initialization Error N ∼ (0, 202)
◦

s

Reference Directions ẙ1 = [1 0 0], ẙ2 = [0 1 0]

Input signal Ω = [sin( 2π
15 t) − sin( 2π

18 t + π/20) cos( 2π
17 t)] rad

s

Input error BΩvΩ N ∼ (0, 252)
◦

s

Bias Variation Bbvb N ∼ (0, 0.12)
◦

s2

Measurement error Diwi N ∼ (0, 302)◦

Table 7.8: Simulation Parameters for the UAV Situation Case 1

USQUE Pa(0) = std2
q0

I3×3, Pb(0) = std2
b0

I3×3, Pc(0) =
03×3

GAME, MEKF, RIEKF Pa(0) = 1
std2

q0
I3×3, Pb(0) = 1

std2
b0

I3×3, Pc(0) =

03×3

CGO kp = 1, k I = 0.3

Table 7.9: Initial Filter Gain Matrices for the UAV Situation Case 1
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7.3.2 Case 2: Measurement Errors Expected in a Satellite

In this experiment much smaller measurement error signals are considered as is
the case for a satellite attitude filtering problem. The simulation parameters are
according to the reference [14] and are described in Table 7.10. Note that the angular
velocity input of the attitude kinematics is also considered with a much smaller
frequency as the movement of a satellite is restricted to an earth orbit.

The initial gains of the filters are chosen according to Table 7.11. Note that these
values are not exactly according to the statistics of the initialization errors of the
system, as was the case in our previous experiment. This is to avoid singularities that
are due to the fact that the numerical values of some the parameters of the simulation
are too small and close to the computational limits of the MATLAB programming
platform.

Time Step 0.001 (s)

Simulation Time 50 (s)

Angle of Rotation Initializa-
tion Error

N ∼ (0, 602)◦

Bias Initialization Error N ∼ (0, 202)
◦

s

Reference Directions ẙ1 = [1 0 0], ẙ2 = [0 1 0]

Input signal Ω = sin( 2π
150 t)[1 − 1 1]

◦

s

Input error BΩvΩ N ∼ (0, 0.316232) µ rad
s

Bias Variation Bbvb N ∼ (0, 0.0316232) n rad
s

Measurement error Diwi N ∼ (0, 12)◦

Table 7.10: Simulation parameters for a satellite situation

USQUE Pa(0) = std2
q0

I3×3, Pb(0) = std2
b0

I3×3, Pc(0) =
03×3

GAME, MEKF, RIEKF Pa(0) = 10−1

std2
q0

I3×3, Pb(0) = 10−9

std2
b0

I3×3, Pc(0) =

03×3

CGO kp = 10, k I = 2

Table 7.11: Initial Filter Gain Matrices for the Satellite Case 2
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7.4 Results

Figures 7.1 and 7.3 show the performance of the GAME filter compared against the
MEKF, the RIEKF, the USQUE and the CGO in the Case 1 experiment. We have
performed a Monte-Carlo simulation and the RMS of the estimation errors of the
two filters are demonstrated for 100 repeats.

Figures 7.1 and the zoomed version 7.2 indicate that the RMS of the rotation angle
estimation error of the proposed GAME filter rapidly converges towards zero in the
transient and also maintains the lowest error compared to the rest of the filters in
the asymptotic response. Figure 7.3 shows that the GAME filter also has the lowest
asymptotic bias estimation error compared to the bias estimation error of all the other
filters.

Note that the initial pick in the angle error of the filters, GAME, MEKF and RIEKF
is associated to the period that the bias estimates of these filters are not accurate
enough yet. The adaptive nature of these filters is allowing a higher uncertainty
in the angle estimates until a reasonable bias estimate is obtained which is then
used to achieve an accurate asymptotic angle estimate. The bias error of these filters
in Figure 7.3 is showing the peaking phenomenon that is also seen in a high-gain
observer. This is not the case for the USQUE which has the fastest angle estimation
but the slowest bias estimation. This is due to the fact that the USQUE is setting a
high gain for its angle observer and a low gain for its bias observer that leads to the
amplified noise on the angle estimation error of the USQUE in Figure 7.1. The CGO
on the other hand is not an adaptive filter but it has an asymptotically convergent
estimation error that is a priori adjusted through the gains kp and k I .

Also note that the RIEKF is in fact outperforming the MEKF as was noted in [27]
too. It is interesting that the CGO has the second lowest estimation error with the
lowest computational cost. Of course the downside of the CGO is that it needs exact
tuning depending on the information about the true attitude trajectory that might
not always be available a priori. The USQUE has the fastest angle convergence to
a relatively low error. However, the noisy asymptotic performance (which might be
due to lack of complicated tuning in our experiments), very slow bias estimation and
the heavy computational cost of the USQUE compared to the other filters considered
makes USQUE not desirable for the UAV application considered. This argument is
further investigated in the following experiment.

7.4.1 Gain Scaling

One can choose different gain scalings for a particular filter. A higher scaled gain can
result in faster convergence of a filter with the disadvantage of increasing the asymp-
totic estimation error. Depending on the application, one has to trade-off between
the transient and the asymptotic performance of a filter. The following two examples
are demonstrations of this trade-off seen in the results above.

As was apparent in Figures 7.1 and 7.3, the USQUE is inherently using a higher
angle gain than the other filters. In fact, zooming into the asymptotic angle estima-
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Figure 7.1: Case 1: The RMS of the estimation error in angle of rotations for a UAV simulation
setup. Note that the angle axis is in logarithmic scale.

tion error graph of the USQUE, it is apparent that the estimation error is approxi-
mately 30 times lager than the estimation error of the other filters (See Figure 7.4).
Next, this hypothesis is put to experiment comparing the USQUE with a version
of the GAME filter that has a factor of 30 multiplying its gain Pa. As can be seen
in Figure 7.4 the estimation errors of the two filters are now almost identical, con-
firming that the USQUE algorithm is rendering an undesirable scaling in its angle
gain Pa that, although it results in a very fast angle estimation also results in a noisy
asymptotic estimation error. We have tried to account for this effect in the USQUE
algorithm by means of simple tuning. However, due to the involved nature of this
algorithm 7.6 it is unclear how to provide a fix. On the other hand note that the bias
estimation of the GAME filter is still much faster than that of the USQUE indicating
the advantage of the GAME filter over the USQUE even in this case.

As was mentioned in Section 7.2, the original formulation of the RIEKF [27] has
an inconsistency as well as a factor of 2 in the system model different to the model
considered in the GAME filter and the MEKF. As a result, the original RIEKF has a
larger gain than the considered RIEKF 7.5. This is investigated in the following sim-
ulation comparing the two formulations of the RIEKF. As can be seen in Figure 7.6,
the original RIEKF has a faster decaying convergence error. However the asymptotic
error of the original RIEKF is approximately two times more noisy than that of the
considered RIEKF 7.5, confirming the gain difference of the two filters.

7.4.2 Case 2

Figures 7.7 and 7.8 show the performance of the GAME filter compared against the
MEKF, the RIEKF, the USQUE and the CGO in the Case 2 experiment. Note that
the figures shown are due to a single repeat of an experiment that is typical to the
results seen in more repeats. In this case the small frequency of the angular velocity
input leads to a slow dynamics of the angle trajectory. Due to this slow dynamics
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Figure 7.2: Case 1: The RMS of the estimation error in angle of rotations for a UAV simulation
setup. Zoomed on the asymptotic error of the GAME filter, the MEKF and the RIEKF. Note
that the angle axis is in logarithmic scale.

and also due to the small measurement errors considered, the estimation errors of all
the filters converge towards zero rapidly. The GAME filter outperforms the rest of
the filters in achieving the lowest asymptotic estimation error. The USQUE converges
very fast although its asymptotic estimation error is noisy as was the case in the UAV
experiment.

7.5 Conclusions

In conclusion, the geometric approximate minimum-energy (GAME) filter proves to
be a very robust filter both in situations with large measurement errors and fast atti-
tude dynamics, such as the case of a low cost UAV, and also in a situation with small
measurement errors and slow attitude dynamics such as in the case of a satellite. In
fact in both cases, it was shown in the previous section that the GAME filter outper-
forms the state-of-the-art attitude filters such as the multiplicative extended Kalman
filter MEKF, the right-invariant extended Kalman filter RIEKF, the unscented quater-
nion estimator USQUE and the constant gain observer CGO.

The USQUE proves to be very fast in angle estimation but on the other hand
very slow in estimating the gyro bias. The asymptotic angle estimation error of the
USQUE is very noisy due the high gain of the angle error. Also the computational
cost of the USQUE proves to be much higher than the other filters considered.

The CGO yields desirable low estimation errors with minimal computational cost.
However, the gains of the CGO need to be tuned a priori. Also there is a trade-off
between the speed of convergence and the asymptotic performance of the CGO that
needs to be tuned using the constant gains. This could be a complicated process
for the CGO whereas the GAME filter automatically performs this trade-off for each
situation.
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Figure 7.3: Case 1: The RMS of the bias estimation error for a UAV simulation setup. Note
that the bias axis is in logarithmic scale.
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Figure 7.4: Case 1: The USQUE is compared against the GAME filter when the angle gain of
the GAME Pa is multiplied by 30. Note that the angle axis is in logarithmic scale.
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Figure 7.5: Case 1: The USQUE is compared against the GAME filter when the angle gain of
the GAME Pa is multiplied by 30. Note that the bias axis is in logarithmic scale.
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Figure 7.6: Case 1: The gain difference between the RIEKF in [27] and the RIEKF 7.5. Note
that the angle axis is in logarithmic scale.
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Figure 7.7: Case 2: The estimation error in angle of rotations for a satellite simulation setup.
Note that the angle axis is in logarithmic scale.
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Figure 7.8: Case 2: The bias estimation error for a satellite simulation setup. Note that the
bias axis is in logarithmic scale.
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Chapter 8

Conclusion

In this thesis the problem of attitude filtering was considered on the Lie group SO(3).
A nonlinear deterministic minimum-energy filtering approach was adapted to the
Lie group SO(3) to derive a geometric approximate minimum-energy (GAME) atti-
tude filter. This approach taken allowed systematic and complete derivation of the
GAME on SO(3) in contrast to many of the competing attitude filtering methods that
are based on un-systematic modifications to the well-known extended Kalman filter
(EKF) or the unscented Kalman filters.

In simulations, the proposed GAME filter was shown to outperform state-of-the-
art attitude filters such as the multiplicative extended Kalman filter (MEKF), the
right-invariant extended Kalman filter (RIEKF), the unscented quaternion estimator
(USQUE) and the constant gain nonlinear observer (CGO). Discretized unit quater-
nion versions of all the considered filters were provided and simulated in the sim-
ulations Chapter 7. There are certainly many more attitude filters in the literature
that either have been shown to be outperformed by the aforementioned methods or
are based on different design strategies. Some of these methods are reviewed in the
simulations Chapter.

The superior performance of the proposed GAME filter in simulations was further
supported with a least squares analysis in Chapter 5. It was shown that the distance
to optimality of the GAME filter is numerically quantified by an upper bound on
the difference between the cost that the GAME filter attains in comparison with a
minimum-energy cost 5. The upper bound is decreasing in the estimation error and
is shown to be small in simulations.

Furthermore, the method taken proved to be helpful for deriving minimum-
energy filtering based methods on other Lie groups in Chapter 6. In particular,
problems such as attitude filtering around one axis modelled on the unit circle S1

and the special orthogonal group SO(2), attitude and gyro bias filtering SO(2)×R

and SO(3)×R3 and pose filtering on the special Euclidean group SE(3) were tackled
in Chapter 6.

8.1 Future Work

Possible future directions of this research include but are not restricted to

89
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• Minimum-energy filtering on general Lie groups.

• Considering both the kinematic and the dynamic models on Lie groups.

• Attitude filtering using only one reference direction. As was observed in the
simulation studies of this work, the GAME filter needs to have access to at
least two vector direction in order to yield desirable low estimation errors. It
would be interesting to investigate this phenomenon using convergence and
observability analysis of the problem.

• Stability analysis of the proposed GAME filters using Lyapunov type approaches.

• Facilitating practical onboard implementation by providing discrete versions of
the proposed filters along with using variational numerical integration methods
that preserve the geometric properties of these filters.
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Chapter 9

Appendix

9.1 Unit Quaternion Representation

In this section the unit quaternion representation of rotations is introduced. Using
unit quaternions in numerical analysis yields more efficient and more robust numer-
ical implementations due to the vector form of quaternions.

A unit quaternion belongs to the set

Q =

{
q =

(
s ∈ R

v ∈ R3

)
∈ R4 : ‖q‖ = 1

}
. (9.1)

The set Q is a group under the operation

q1 ⊗ q2 =

(
s1s2 − v>1 v2

s1v2 + s2v1 + v1 × v2

)
, (9.2)

with identity element 1 = (1, 0, 0, 0)> and inverse q−1 = (s, −v)>. The quaternion
q = (s, v)> is given by a rotation X ∈ SO(3) through

X = I3 + 2sv× + 2v2
×. (9.3)

The attitude kinematics Ẋ = XΩ×, in the unit quaternions form is

q̇ =
1
2

A(Ω)q, (9.4)

where Ω ∈ R3 and for γ ∈ R3

A(γ) :=
[

0 −γ>

γ −γ×

]
. (9.5)

Note that the vectorial measurements {yi}, that are given from yi = X>ẙi + Diwi, are
equivalently given from the following model with the unit quaternion q representa-
tion of X.

yi = q−1 ⊗ p(ẙi)⊗ q + Diwi, (9.6)

91
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where for all γ ∈ R3

p(γ) =
[

0
γ

]
, (9.7)

and conversely
p†(p(γ)) = γ. (9.8)

9.2 The GAME Filter in Unit Quaternions

The notation introduced in the previous section can now be employed to provide
a unit quaternion formulation of the proposed GAME filter. Note that quaternions
are known to have a non-uniqueness issue in representing the rotations. However,
this issue does not apply to the GAME filter that is primarily derived using rotations
in SO(3). The following equations provide a unit quaternion representation of the
GAME filter.

˙̂q =
1
2

A
(

u− b̂− Pal
)

q̂, (9.9a)

where b̂ is the estimate of the bias b given from

˙̂b = P>c l, (9.9b)

where the innovation term l is defined as

l := ∑
i
(R−1

i (ŷi − yi))× ŷi. (9.9c)

The gains Pa and Pc are updated from the following equations.

Ṗa = QΩ + 2Ps(Pa(2(u− b̂)− Pal)×) + Pa(E− S)Pa − P>c − Pc,

Ṗc = −(u− b̂− Pal)×Pc + Pa(E− S)Pc − Pb,
(9.9d)

where the gain Pb is given from

Ṗb = Qb + Pc(E− S)Pc. (9.9e)

The initial conditions are given from b̂(0) = 0, q̂(0) = 1 and Pa(0) = (trace(KX0)I −
KX0)

−1 where KX0 is a known variable from the cost function. The vector ŷ = q̂−1 ⊗
p(ẙi)⊗ q̂ is given similar to (9.6) and the operator Ps is a symmetric projector defined
in (3.1). Note that the signals E and S are defined as

S := ∑
i
(ŷi)

>
×R−1

i (ŷi)×, E := trace(C)I − C, C := ∑
i

Ps(R−1
i (ŷ− yi)ŷ>i ). (9.10)

Recall that the matrices QΩ := BB>, Qb := BbB>b and Ri := DiD>i are known from
the measurement models.
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9.3 The RIEKF

The RIEKF formulation considers the quaternion system model
q̇ =

1
2

q⊗Ω,

u = Ω− 2q−1 ⊗ (BΩvΩ)⊗ q + b,
ḃ = q−1 ⊗ (BBvb)⊗ q,
yi = q−1 ⊗ (ẙi + Diwi)⊗ q.

(9.11)

Note that the state and the out errors are modelled in the inertial frame which is
different to the conventional modelling of errors in the body-fixed frame. The RIEKF
then is 

˙̂q =
1
2

q̂⊗ (u− b̂ + 2q̂−1 ⊗ (∑i Kq(ẙi − ŷi)⊗ q̂),

ŷi = q̂⊗ (yi)⊗ q̂−1,
˙̂b = q̂−1 ⊗ (∑i Kb(ẙi − ŷi)⊗ q̂.

(9.12)

Consider the errors {
q̃ = q̂⊗ q−1,
b̃ = q⊗ (b̂− b)⊗ q−1.

(9.13)

The error system is given by
˙̃q = − 1

2 q̃⊗ (b̃) + (∑i Kq(ẙi − ŷi)⊗ q̂)⊗ q̃− q̃⊗ (BΩvΩ),
˙̃b = +2(BΩvΩ)× b̃ + q̃−1 ⊗ (∑i Kb(ẙi − ŷi)⊗ q̃− BBvb + (q̃−1 ⊗ (ũ)⊗ q̃)× b̃,
ũ = q̂−1 ⊗ (u− b̂)⊗ q̂.

(9.14)
Next, linearize the error system using q̃ −→ [1, 1

2 δq̃]> and b̃ −→ δb̃, and neglect the
quadratic terms in noise and infinitesimal state error similar to [27].(

˙δq̃
δ̇b̃

)
= (A− KC)

(
δq̃
δb̃

)
−
(

BΩvΩ + (∑i KqDiwi)
Bbvb + (∑i KbDiwi)

)
, (9.15)

where

A =

(
0 −I
0 ũ×

)
, C = (2(ẙi)× 0) , K = −[Kq, Kb]

>. (9.16)

Then similar to the EKF the full filter is realized using
K = PC>R−1,
Ṗ = AP + PA> + Q− PC>R−1CP,
Q = diag(Qω, Qb).

(9.17)

Note that in [27] there is typo in the matrix A with an extra factor of 1
2 multiplying

the identity matrix I.

If the state noise is considered without a factor of two, according to our usual
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setup in this thesis such that
q̇ =

1
2

q⊗Ω,

u = Ω− q−1 ⊗ (BΩvΩ)⊗ q + b,
ḃ = q−1 ⊗ (BBvb)⊗ q,
yi = q−1 ⊗ (ẙi + Diwi)⊗ q,

(9.18)

then the matrix C of the RIEKF is modified to

C = ((ẙi)× 0) , (9.19)

that is the version used in the simulations Chapter 7.
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