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Abstract

The aim of this research was to design and implement an observer to estimate the state of

a rigid cube from sparse range measurements. This was motivated by active research in

the development of a design methodology for symmetry-preserving, infinite-dimensional

observers. The simplified cube estimation problem serves as a first step in this research

direction, investigating the use of a sparse sensor in dense estimation and identifying

effective innovation functions for rigid body state estimation.

A Matlab toolbox was developed to simulate measurements of rigid bodies by a Hokuyo

UBG-04LX-F01 scanning laser range-finder. This simulation was used to assess the

performance of the observer. Experimental data was collected to more realistically simulate

the error distribution of the sensor and for future testing of observers under real-world

conditions.

The simulation results show that the observer is almost globally convergent when correcting

orientation and size error. An SE(3) invariant innovation function would be required

to concurrently correct position and orientation, showing the importance of symmetry

considerations in nonlinear observer design. This research also demonstrates that dense

estimation can be performed using sparse range measurements, given a suitable sensor

trajectory.
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Aims and contributions

The aims of this research were to:

• design an observer to estimate the state of a rigid cube from range measurements;

• investigate whether sparse range measurements can be used to make a dense estimation

of an infinite-dimensional state;

• assess the performance of the observer through simulated and experimental testing;

• identify directions for future research in infinite-dimensional, symmetry-preserving

observer design.

The outcomes of this project include:

• demonstration that sparse range measurements can be used in a dense estimation

problem by designing an appropriate sensor trajectory;

• developing a noise model for the Hokuyo UBG-04LX-F01 scanning laser range-finder

that is more complete under the conditions tested than those provided in existing

literature;

• developing a Matlab toolbox to simulate scanning laser range-finder measurements

of rigid bodies and test observer implementations;

• the design of an observer that estimates the state of a cube from sparse range

measurements. Performance assessment showed that the observer is almost globally

convergent when correcting the orientation and size of a stationary cube. Positive

results have also been achieved with tracking rotating cubes and correcting position

error in special cases. The observer does not rely on the cube’s geometry and could

potentially be used to estimate the states of a wider class of rigid bodies;

• the collection of real-world range measurements of a rigid body moving with known

ix
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trajectory for use in future observer performance testing;

• identifying the adaptation of the current observer update to an SE(3) invariant

function as a logical step in developing a theory of symmetry-preserving, infinite-

dimensional observers.

Functions used to compute conversions between rotation representations provided by my

supervisor Dr Viorela Ila, as well as functions from the Matlab Aerospace Toolbox were

used in the observer simulation. Matlab’s Curve Fitting Toolbox was used to fit surfaces

to simulated and experimental data. All other contributions to the outcomes described

above were my own.



Chapter 1

Introduction

Advances in manufacturing and hardware design have made mobile robots more acces-

sible for not only research and industrial purposes, but to the general public. However,

autonomous robots have largely been limited to indoor, carefully controlled environments.

Before autonomous robots can be more widely deployed, they must be able to accurately

observe and represent unstructured, dynamic environments. Dense sensors such as light

field cameras are becoming cheaper and lighter, promising to allow autonomous robots

to acquire detailed measurements of these complex surroundings. To fully utilise the

potential of these advancing technologies, improvements in observer design are required

to generate more accurate and detailed descriptions of these environments from dense

measurements.

One method of estimating the state of a complex environment is with an infinite-dimensional

observer. Typically, observers for infinite-dimensional systems are extensions of finite-

dimensional Luenberger observers. Unfortunately, this design approach is only able to

guarantee convergence for linear systems. Developing a theory of symmetry-preserving,

infinite-dimensional observers would simplify the design process for nonlinear systems and

result in observers with improved convergence properties.

This research project serves as an initial exploration into the design of symmetry-preserving,

infinite-dimensional observers. An infinite-dimensional system will be simplified and

an observer will be designed to estimate a finite-dimensional state. The potential for

a symmetry-preserving, infinite-dimensional observer to improve performance will be

explored.

1
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This report presents the novel implementation of an observer to estimate the state of a

rigid cube from range measurements. Section 1.1 reviews the current state of observer

design methods for infinite-dimensional systems. Recent work in the development of design

methodologies for symmetry preserving observers is described. Particular attention is paid

to a dense optical flow estimator that will be particularly relevant to this research.

Chapter 2 provides theory on Lie groups, rigid body state representation and state observer

concepts that will be applied in the observer design.

The cube state estimation problem that is the focus of this research is described in detail

in Chapter 3. The place of this problem within the larger area of symmetry-preserving,

infinite-dimensional observer research is defined.

Chapter 4 provides a detailed description of the simulation implementation, including the

observer update function design. The performance of the observer in estimating the state

of stationary and moving cubes is assessed. It is shown that almost global convergence

is achieved for orientation and size correction for stationary cubes, though the position

update only converges in special cases.

Chapter 5 details steps taken to experimentally validate the results of the simulation.

Range measurement data is collected and used to develop an error distribution model for

the Hokuyo UBG-04LX-F01 sensor. Range measurements of a cube of known trajectory

are taken for future performance testing.

1.1 Literature review

The use of dense sensors allows for a more accurate estimation of the state of an infinite-

dimensional system such as a complex, real-world environment. The theory of infinite-

dimensional observers is required to fully utilise this information. This section will review

the current state of design methodologies and implementations for infinite-dimensional

observers. Particular focus will be paid to an emerging avenue of research; symmetry-

preserving observer design. Recent theory developments in this area have allowed limitations

in the global convergence properties of nonlinear observers to be overcome.
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1.1.1 Infinite-dimensional observers

In many real world systems the dependent variables are functions of one or more spatial

variables. An example would be the dynamics of waves in a body of water. The height of

the surface varies continuously along the x and y directions. These spatial variables vary

continuously, meaning an infinite number of parameters is required to describe the state of

the system. Such systems are termed infinite-dimensional systems, or distributed parameter

systems. Their dynamics are modelled by a partial differential equation (PDE).

When a state estimate is required but direct measurement of the state with sensors is

difficult or impossible, a state observer is employed. A state observer is a filter that

provides an estimate of the state of a system using the difference between its measured

and predicted outputs. A more detailed description of the concept of a state observer

is provided in Section 2.2. An observer for an infinite-dimensional system is called an

infinite-dimensional observer.

1.1.1.1 Linear systems

Observer theory for linear infinite-dimensional systems has been widely studied. The

techniques used are typically extensions of Luenberger observers and Kalman filter methods

used to observe finite-dimensional systems.

A simplified approach is to use a spatial discretisation method such as finite difference or

finite element to reduce the infinite-dimensional system to a finite-dimensional one. From

here, finite-dimensional observer design techniques can be used. This is known as the

early lumping method, and was employed by Stavroulakis [1] who implemented a finite-

dimensional observer as part of a control system for a infinite-dimensional systems.

The early lumping approach suffers from spillover, a phenomenon where performance is

affected by the neglected dynamics of the system[2]. Harkort [3] recently developed an

observer based control scheme that reduced this effect by using modelled outputs rather

than true measurements to reduce the effect of the neglected dynamics.

More accurate observers can be designed with the late lumping approach which uses the

infinite-dimensional model of the system in the observer design. The result is an infinite-

dimensional observer that is discretised later for practical implementation. These methods

are typically extensions of Kalman or Luenberger methods to infinite dimensions.
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Early work by Gressang [4] extended the Luenberger observer to infinite-dimensional

systems whose state space was an abstract Banach space with dynamics defined by

an infinitesimal generator of a semigroup. More recently, Smyshlyaev [5] developed an

exponentially converging backstepping observer for systems governed by parabolic PDEs.

Ramdani introduced forward and backward observers [6] whose convergence properties

were investigated by Haine [7].

1.1.1.2 Nonlinear systems

There is currently no universal approach for observer design for nonlinear infinite-dimensional

systems. The most common approach has been to linearise the system, then apply a linear

infinite-dimensional observer design. Common linearisation methods include Lyapunov

methods, extended linearisation and the Lie-algebraic approach [8].

There has been some progress in infinite-dimensional observer design for special cases of

nonlinear systems. For bilinear systems, Xu [9] designed an infinite-dimensional observer

that converged for certain inputs. Bounit [10] designed Kalman and Luenberger type

observers for infinite-dimensional bilinear systems.

Despite these small advances in special cases of nonlinear design, the most common design

methods for nonlinear infinite-dimensional systems are based on linearisation techniques.

These techniques rely on the fact that differentiable functions can be approximated by

a first-order Taylor expansion around a point. Luenberger and Kalman methods can be

applied to linear approximations of infinite-dimensional systems around an equilibrium

point. This simplification relies on the dynamics of system at the point of linearisation

being representative of the entire space. In general, this is not necessarily true, and is the

biggest limitation in this design technique. The result is that these linearised observers

only converge if the initial state estimate is within a local neighbourhood of the true state.

Only local converge is guaranteed which severely limits performance.

Global, or near-global convergence can be achieved by taking account the symmetries

inherent to the system during observer design. A powerful tool for dealing with symmetries

is the theory of Lie groups. Investigation into symmetry-preserving observer design for

systems on Lie groups is an active area of research. It promises to produce theoretically

validated design principles for nonlinear infinite-dimensional observers, though the majority

of research so far has been limited to finite-dimensional observers.
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1.1.2 Symmetry-preserving observers

The motivation behind symmetry-preserving observers is to take advantage of invariances

in the dynamics of the system. The goal is to design an observer around an equilibrium

point in such a way that it can be extended to converge around a wider set of points.

1.1.2.1 Early work

Geometry conscious observer design is not a new idea. Early investigation by Marcus [11]

into algebraic and geometric methods for nonlinear filter design showed promise. A seminal

work by Salcudean [12] was the design of an eventually-exponential, globally converging

observer for the attitude of rigid bodies from orientation and torque measurements. This

observer design took advantage of the simplicity of the quaternion rotation representation

and dynamics of rigid body motion.

Another important result that is a precursor to the active research of today is a design

method developed by Aghannon & Rouchon [13]. Their invariant observer construction was

based on Cartan’s moving frame method. Though convergence was proven for a specific

problem, the observer convergence for a general case was left an open problem. Maithripala

[14] demonstrated the effectiveness of Aghannon & Rouchons’ method by incorporating

it into the design of an intrinsic observer based controller. Performance was shown to be

independent of the coordinate system used to represent the configuration space.

1.1.2.2 Active research

There are currently two groups actively researching symmetry-preserving observer de-

sign. Both have begun to apply symmetry-preserving methods to infinite-dimensional

observers.

The work of Bonnabel, Auroux, Rouchon, Martin et al. is a progression of the early results

from Aghannon & Rouchon. Their general approach is to first design a Luenberger type

observer around an equilibrium point. An invariant frame is used to construct an invariant

output error. The observer innovation term respects the symmetries of the system and thus

the nonlinear observer is well behaved around a continuum of equilibrium points.

In [15], Bonnabel et a. developed an observer design procedure based on Aghannon &

Rouchons’ work. Asymptotic stability was reported, though this required a design procedure
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tailored to specific nonlinearities of the system and did not apply in a general case. It

was shown in [16] that an invariant error equation simplified convergence analysis. The

observer’s global behaviour improved, having a larger region of attraction in comparison

to naively linearised observers. Developments were made to the theory and presented in

[17]. For a particular class of invariant system it was shown that the observer converged

locally around any trajectory, and global convergence behaviour was independent of

trajectory.

Most recently, these invariant design methods were applied to an infinite-dimensional

system [18]. An observer estimating the state of fluid in a water tank where height varied

with the continuous dependent variables position and time was developed. It was reported

to converge more quickly and robustly than previous attempts to design infinite-dimensional

observers with Extended Kalman Filter (EKF) methods.

The work of Trumpf, Mahony, Hamel, Lageman et al. differs in scope. The methods of

Bonnabel et al. are generalised and can be applied to a wide range of systems. In contrast,

the work of Trumpf et al. is limited to two specific classes of systems but achieves stronger

convergence properties. In [19] nonlinear filters on the Special Orthogonal Group SO(3)

are used in attitude estimation and the resulting nonlinear observers achieved almost

globally stable observer error. Another attitude observer [20] achieved almost globally

asymptotic and locally exponential convergence. In [21], the design methodology for 2

classes of systems is presented. The approach taken is to lift the kinematic system onto

its symmetry group and design an observer for the lifted system. The Lyapunov method

is used to design the observer innovation term. This methodology simplifies nonlinear

observer design and produces observers with strong convergence properties. This group

has also begun research on symmetry-preserving, infinite-dimensional observers.

The motivation behind the development of infinite-dimensional observers is to allow dense

sensors to be fully utilised. In this vein, research presented in a PhD thesis by Zarrouati

[25] utilised dense measurements from a camera and depth sensor. An observer was

developed from rotation invariant equations for light and depth. Though the sensors took

measurements of an infinite-dimensional state, a finite-dimensional approximation of this

state is what was estimated by the observer.

Another recent work by Adarve et al.[26] also uses dense sensing in the estimation of an

infinite-dimensional state. This result will be examined closely as it is similar in direction

to this research.
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Figure 1.1: Infinite dimensional optical flow discretised and computed in
separate, independent regions

Adarve et al. designed an update-propagation filter to iteratively compute dense optical flow

Φ from CCD camera measurements Y . In reality, this optical flow is an infinite-dimensional

state. Rather than computing the optical flow independently at each frame, a two-stage

process is used to build it incrementally. The propagation stage uses a non-linear PDE to

model the transport of the optical flow in the next time step. The update stage corrects

this prediction using the current image.

The iterative filter used in this approach is an observer that estimates the state of the

continuous spatio-temporal flow field. By using a dense sensor, the measured image stream

can be treated as a continuous, infinite-dimensional state. This is in contrast to sparse

optical flow computation where the image is modelled as a set of discrete pixel values.

However, the flow field Φ is discretised and computed in r independent regions Ω around a

discrete set of control points ξ as shown in Figure 1.1. Here, this approach differs from

that of general infinite-dimensional invariant observer. The state is treated as a discrete

set of locally continuous states which does not allow for symmetry considerations. This is

because the PDE relations in the local regions are invariant to 2D rotation and translation,

but the interactions between regions themselves are not.

Discretising Φ and Y at the beginning of the algorithm design makes this is an example of

the early lumping design approach. Employing a late lumping approach by discretising an

infinite-dimensional observer would allow for the rotation and translation invariance of the

flow field to be taken advantage of to improve convergence properties.
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The lesson to take from this analysis is that discretisation methods must be carefully

chosen in order to preserve the invariance of the observer.

Another reason to pay attention to geometric symmetries in observer design is due to

limitations placed on convergence by the topology of the system. Bhat & Bernstein

[22] show that global convergence cannot be achieved with a continuous observer on a

state space that includes a vector bundle such as SE(3). Some advancements have been

made with extended state-space observers [23, 24], that extend the state space to include

objects such as non-orthogonal matrices. However, this scheme can produce state estimates

that are incompatible with the physics of the system prior to convergence. A theory

of symmetry-preserving observer design for infinite-dimensional systems could simplify

observer design and convergence analysis for such systems.



Chapter 2

Theoretical background

2.1 Rigid body kinematics

A rigid body is a model of a solid object whose deformation is assumed to be negligible.

The distance between every pair of points on the body remains constant. Because such a

body does not deform, knowledge of the orientation and position of a reference frame fixed

to a rigid body constitutes knowledge of the position of all points. The position of the rigid

body is thus defined by the position of a particular point in the body, most commonly its

centre of mass. The orientation can be defined using a set of coordinate axes fixed to the

body such that its origin coincides with the representative position point. The theory of

Lie groups will be used to describe the kinematics of rigid bodies in this report.

2.1.1 Lie groups

A Lie group G is a group whose elements form a differentiable manifold and whose group

operation and inverse operation are differentiable. As a group, G is a set of elements and

a group operation. This group operation is a binary operation that combines two elements

and is denoted by multiplication: AB or A · B for A,B ∈ G. Because it is a group, G

satisfies the 4 group axioms:

• Closure: The group operation G×G 7→ G is a function that maps elements of G

onto itself; ∀A,B ∈ G, AB ∈ G.

• Associativity: Elements of G are associative under the group operation; ∀A,B,C ∈

G, (AB)C = A(BC).

9
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• Identity: There exists an identity element I ∈ G such that ∀A ∈ G, IA = AI = A.

• Inverse: For all A ∈ G there exists an inverse element A−1 ∈ G such that AA−1 =

A−1A = I.

Because the Lie group G is a differentiable manifold, it is locally Euclidean. This means

that the neighbourhood around every element of G can be approximated with a tangent

plane. This property allows calculus to be performed on elements of G.

2.1.1.1 Matrix Lie groups

A matrix Lie group G ⊂ GL(n) is made up of group elements which are n× n matrices.

This work will focus on matrix Lie groups because the form of the exponential map and

Lie bracket functions provided below only apply to such Lie groups. Generalised concepts

for these functions exist, but a more detailed and relevant description can be given by

focusing on matrix Lie groups.

2.1.1.2 Lie algebra

The tangent space at the identity element of a Lie group is called the Lie algebra g. It is

called the Lie algebra because it has a binary operation, known as the Lie bracket [X,Y ].

For matrix Lie groups the Lie bracket is

[A,B]
∆
= AB −BA (2.1)

2.1.1.3 The exponential map and logarithm map

The canonical mapping from the Lie algebra g to the Lie group G is called the exponential

map.

exp : g→ G (2.2)

Similarly, the logarithm map maps elements from its domain D ⊂ G to g

log : D→ g (2.3)
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such that for a group element A,

exp(log(A)) = A (2.4)

For matrix Lie groups, the exponential map and logarithm map correspond to the matrix

exponential and matrix logarithm respectively.

2.1.1.4 Infinitesimal generators

The hat operator (·)∧ can be used to map an n-vector to an m×m matrix representation,

when Rm×m is isomorphic to Rn.

(·)∧ : Rn → Rm×m

x 7→ x∧ =
n∑
i=1

xiGi
(2.5)

where the set of elements Gi form a basis for Rm×m.

Conversely, the vee operator (·)∨ maps matrices in Rm×m to vectors in Rn such that

(x∧)∨ = x

(·)∨ : Rm×m → Rn

x∧ 7→ x
(2.6)

For an n-dimensional matrix Lie group, the Lie algebra g is a vector space isomorphic to

Rn. The hat operator (·)∧ maps vectors x ∈ Rn to elements of g. For a matrix Lie group G

whose elements are m×m matrices, the elements of g will also be m×m matrices.

(·)∧ : Rn → g

x 7→ x∧ =

n∑
i=1

xiGi
(2.7)

The basis elements Gi are m×m matrices known as the infinitesimal generators of G.

2.1.1.5 Lie bracket and group operation

For Lie groups endowned with the commutative property (∀A,B ∈ G, AB = BA), vector

addition in the Lie algebra maps to a group operation in the Lie group. For C = A+B
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where A,B,C ∈ g,

eC = eA+B = eAeB (2.8)

For non-commutative Lie groups, this relationship between the Lie algebra and Lie group

operations does not hold. Instead, for C = log
(
eAeB

)
, C is calculated with the Baker-

Campbell-Hausdorff formula:

C = A+B +
1

2
[A,B] +

1

12
[A−B, [A,B]]

1

24
[B, [A, [A,B]]] + . . . (2.9)

2.1.1.6 Actions

When a group action for a Lie group G acting on a manifold M is a differentiable map,

this is known as a Lie group action. For example, 3D rotations act on 3D points so the Lie

group SO(3) acts on R3. A left action of G on M is defined as a differentiable map

Φ : G×M 7→M (2.10)

where

• the identity element I acts as the identity on M

Φ(I,m) = m ∀m ∈M (2.11)

• Group actions compose according to

Φ(m,Φ(n, o)) = Φ(mn, o) ∀m,n, o ∈M (2.12)

2.1.2 SO(3)

A rotation represents the motion of a point about the origin of a Euclidean space. In R3

this is a proper isometry: a transformation that preserves distances between any pair of

points and has a determinant of +1. The set of all rotations about the origin of R3 is

known as the special orthogonal group SO(3). Group elements of SO(3) can be represented

using a special subset of 3× 3 invertible matrices and in this case, form a matrix Lie group.

Several rotation representations are described later in this section, but the theory presented

below only applies to matrix Lie groups which rely on the rotation matrix representation
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for group elements.

A 3D rotation matrix R is a 3 × 3 matrix that performs a rotation operation when it

acts on an element of R3. The properties of R are described in more detail in Section

2.1.2.4.

2.1.2.1 Lie algebra

The Lie algebra so(3) is a vector space whose elements represent angular velocities. These

elements can be represented with 3× 3 skew-symmetric matrices ω∧, where ω ∈ R3 is a

3-vector representing an angular velocity. For ω =
[
ω1 ω2 ω3

]T
, the skew-symmetric

representation is given by taking the hat representation of ω

ω∧ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.13)

Elements of so(3) are mapped to SO(3) according to the exponential map:

exp : so(3)→ SO(3)

ω∧ 7→ exp(ω∧)
(2.14)

where the matrix exp(ω∧) ∈ SO(3) is a rotation matrix R.

Conversely, the logarithm map maps 3 × 3 rotation matrices of SO(3) to elements of

so(3):

log : SO(3)→ so(3)

exp(ω∧) 7→ ω∧
(2.15)

This means that for a rotation matrix R, log(R) ∈ so(3) and represents an angular

velocity.
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2.1.2.2 Actions

By the group action, elements of SO(3) rotate points p ∈ R3 about the origin.

Φ : SO(3)× R3 → R3

(R,p) 7→ Rp
(2.16)

2.1.2.3 Rotation representations

There are many conventions by which elements of SO(3) can be represented. The repre-

sentations that will be used in this report are described below.

2.1.2.4 Rotation matrices

A 3D rotation matrix R is an orthogonal 3×3 matrix with a determinant of +1. Since R is

orthogonal, its columns and rows are respectively sets of orthogonal unit vectors and

R−1 = RT (2.17)

The group operation using rotation matrices is simply a matrix multiplication which

concatenates the two rotations. The product of two rotation matrices R3 = R2R1 is a

rotation matrix corresponding to left multiplication by R1 followed by R2.

The left action of a rotation matrix R on a point p ∈ R3 is a left matrix multiplication

that rotates p about the origin.

2.1.2.5 Scaled-axis representation

An orientation in R3 can also be represented by a 3-vector θ whose direction r represents

the axis of rotation and magnitude θ represents the angle of rotation.

θ = θr (2.18)

Though scaled-axis vectors are not typically used to perform rotations, Rodrigues’ rotation
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formula efficiently converts scaled-axis vectors to rotation matrices:

Rθ = I + [r]× sin θ + ([r]×)2(1− cos θ) (2.19)

Elements of so(3) are typically represented with the hat representation ω∧ of a scaled-axis

vector ω, where the magnitude ω corresponds to the angular velocity about the axis

r.

2.1.2.6 Rotation quaternions

Quaternions are an extension of complex numbers. The set of unit quaternions can be used

to represent SO(3), and will be referred to as the set of rotation quaternions or orientation

quaternions. A rotation quaternion q is a 4-tuple of real numbers that encode the same

information as the scaled-axis representation. q is often described in terms of its first

element w - the scalar part, and the remaining elements x, y and z - the vector part. Given

an axis of rotation r and an angle of rotation θ:

q =


w

x

y

z

 =

w
v

 =

 cos(θ/2)

sin(θ/2)r

 (2.20)

In general, the quaternion inverse is given by

q−1 =
1

w2 + x2 + y2 + z2


w

−x

−y

−z

 (2.21)

For unit magnitude rotation quaternions the inverse represents a rotation by −θ and is

given by

q−1 =

 cos(θ/2)

− sin(θ/2)r

 =


w

−x

−y

−z

 (2.22)
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The group operation is performed with quaternion multiplication which is defined:

q1q2 =

w1

v1

 ·
w2

v2

 =

 w1w2 − v1 · v2

w1v2 + w2v1 + v1 × v2

 (2.23)

As with rotation matrices, quaternion multiplication is associative but not commuta-

tive.

The group action rotates a point p0 ∈ R3 to p1 ∈ R3 by embedding it as the vector

component of a quaternion and applying a conjugation operation with q. The rotated

vector p1 can be extracted as the vector component of the resulting quaternion.

 0

p1

 = q

 0

p0

q−1 (2.24)

2.1.3 SE(3)

The special Euclidean group SE(3) represents rigid transformations in R3. This is a matrix

Lie group whose elements comprise the set of all rigid transformations in R3 and can be

represented with 4× 4 matrices of the form

S =

 R p

01×3 1

 (2.25)

where R ∈ SO(3) and p =
[
px py pz

]>
∈ R3.

SE(3) is a semidirect product of SO(3) and R3. As its group elements contain a rotation

matrix and translation vector, SE(3) has 6 degrees of freedom and is a 6-dimensional

manifold.

2.1.3.1 Lie algebra

The Lie algebra se(3) is a vector space whose elements are 4× 4 matrices of the form

 ω∧ v

01×3 0

 (2.26)
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where ω =
[
ωx ωy ωz

]>
∈ so(3), representing an angular velocity in scaled axis repre-

sentation, and v =
[
vx vy vz

]>
∈ TR3 ≡ R3, representing a linear velocity vector.

Elements of se(3) are mapped to SE(3) according to the exponential map:

exp : se(3)→ SE(3) ω∧ v

01×3 0

 7→
 R p

01×3 1

 (2.27)

This means that ∀T ∈ se(3), exp(T) ∈ SE(3)

Conversely, the logarithm map maps elements of SE(3) to elements of se(3):

log : SE(3)→ se(3) R p

01×3 1

 7→
 ω∧ v

01×3 0

 (2.28)

This means that ∀S ∈ SE(3), log(S) ∈ se(3)

2.1.3.2 Actions

SE(3) group elements act to perform a rigid transformation on points in R3. This

corresponds to a rotation about the origin and a translation. To apply a transformation

using the 4× 4 matrix elements of SE(3) to a point p = (x, y, z) in R3, the point must be

represented with homogeneous coordinates as p′

p′ =

p

1

 =


x

y

z

1

 (2.29)

The left group action of SE(3) is now simply a left matrix multiplication of p:

p′1 = Sp′0 =

 R p

01×3 1

p0

1

 =

Rp0 + p

1

 (2.30)
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Figure 2.1: Transformations between reference frames {F}, {A} and {B}
defined with respect to {F}

2.1.4 Reference frames

A reference frame is a system of coordinates that is used to uniquely identify points on a

manifold. This report will deal with reference frames on R3 that are used both to define

the position of a point and the pose of a rigid body in 3D space. Such a reference frame is

represented by an element of SE(3).

The notion of an inertial reference frame is introduced here. This will be defined as a

reference frame that is stationary for the purpose of the problem being described. The

convention used will be to denote the inertial reference frame as {F}.

Consider the three reference frames shown in Figure 2.1, denoted {F} (the inertial frame),

{A} and {B}. The notation F
AXB defines the transformation in X of the reference frame

{B} with respect to the frame {A}, defined in the frame {F}.

For example, FARB defines the rotation of {B} with respect to {A}, defined in the inertial

frame {F}.

2.1.4.1 Pose

A pose defines an orientation and position in space. The pose of a rigid body is represented

by a reference frame fixed to a particular point within the body. The pose of the rigid body

with respect to another reference frame is defined by the relative position and orientation
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between the two frames. This transformation can be defined with respect to either reference

frame and is represented by an element of SE(3). If a rigid body has orientation aligned

with a reference frame {B} and position at the origin of {B}, then the pose of the rigid

body with respect to {A} and defined in {F} is:

F
ASB =

FARB
F
ApB

01×3 1

 (2.31)

2.1.4.2 Point

A point p ∈ R3 in the frame {F} is denoted Fp and is expressed as a 3-vector of the

weights used to compose it from the basis vectors of {F}.

Fp =


Fx

F y

F z

 (2.32)

2.1.4.3 Homogeneous coordinates

To be acted on by an element of SE(3), a point Fp must be expressed in homogeneous

coordinates as Fp′.

Fp′ =

Fp

1

 (2.33)

2.1.4.4 Redefining the reference frame of a point

Consider a point in R3 defined in terms of the frame {A}. To redefine the point in terms

of {F}, the left action of FFSA ∈ SE(3) is used:

Fp′ = F
FSA

Ap′ (2.34)

2.1.4.5 Concatenating poses

Poses are concatenated by multiplying relative poses.

F
FXB = F

FXA
A
AXB (2.35)
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2.1.4.6 Redefining the reference frame of a pose

To define a pose transformation matrix in terms of a different reference frame, a matrix

conjugation is used.

A
BXC = (AAXF ) FBXC (AAXF )−1 (2.36)

2.1.4.7 Inverse

Taking the inverse of a pose transformation matrix has the effect of reversing the transfor-

mation, but does not alter the frame that the transformation is defined in terms of.

(FAXB)−1 = F
BXA (2.37)

2.1.5 Rigid body state representation

The state of a rigid body moving through 3D space can be represented by its linear and

angular position, velocity and acceleration. Higher derivatives could be taken but will be

ignored for simplicity. The inertial frame is denoted {F} and a frame {A} is fixed to the

pose of the moving body.

The pose of the body with respect to {F} at time t, defined in {F} is represented by the

screw matrix F
FSA(t) ∈ SE(3),

F
FSA(t) =

FFRA(t) F
FpA(t)

01×3 1

 (2.38)

where F
FRA(t) ∈ SO(3) is a rotation matrix, and F

FpA(t) ∈ R3 represents the position of

the body defined in {F}.

The linear and angular velocity of the body with respect to {F} at time t, defined in the

body-fixed frame {A} is represented by the twist matrix A
FTA(t) ∈ se(3),

A
FTA(t) =

AFω∧A(t) A
FvA(t)

01×3 0

 (2.39)

where A
FωA(t) ∈ so(3) is an angular velocity in the scaled-axis representation, and the

linear velocity is A
FvA(t) ∈ TR3 ≡ R3.



CHAPTER 2. THEORETICAL BACKGROUND 21

The linear and angular acceleration of the body with respect to {F} at time t, defined in the

body-fixed frame {A}, is represented by the wrench matrix A
FWA(t) ∈ T se(3) ≡ se(3),

A
FWA(t) =

AFα∧A(t) A
FaA(t)

01×3 0

 (2.40)

where A
FαA(t) ∈ T so(3) ≡ so(3) is an angular acceleration in the scaled-axis representation,

and the linear acceleration is A
FaA(t) ∈ T 2R3 ≡ R3.

From this point on, frames will dropped in the notation. For a body labelled x fixed to a

frame {A}, FFSA, AFTA and A
FWA will be denoted Sx, Tx and Wx respectively.

2.1.6 Rigid body kinematics

The dynamics of the screw, twist and wrench matrices as they are defined in Section 2.1.5

are governed by the following ordinary differential equations (ODEs),

d

dt
S(t) = S(t)T(t) (2.41)

d

dt
T(t) = W(t) (2.42)

d

dt
W(t) = f(t) (2.43)

where the function f(t) is known.

2.1.7 Scanning laser range-finder model

A scanning laser range-finder is a sensor that measures the distance to the nearest object

in a certain direction. Consider such a sensor fixed to a moving rigid body. The pose of

the sensor labelled s is defined by Ss, Ts and Ws. The scanning direction of the sensor

defined in the body fixed frame {A} is a unit vector Ad(t) ∈ S2.

The sensor provides measurement of the range r(t) ∈ R0+ from F
FpA(t) to the nearest

object in the environment in the direction Fd(t) = F
FRA(t) Ad(t).

The function Ad(t) determines the scanning behaviour of the sensor and depends on the

specific model used. The scanning model for the Hokuyo UBG-04LX-F01 used in this

research is provided in Section 4.1.2.2.
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2.2 State observers

2.2.1 Luenberger observers

An observer is a filter that is used to estimate the state of a dynamic system. The state x

can be chosen as some set of variables governed by the system. In real-world conditions,

the system is often infinite-dimensional.

The real-world system - known as the plant - is represented with a model. In most cases,

some simplification of the plant must be performed to produce the model.

An observer provides an estimate x̂ of the state x ∈ Rn of the model, given an output

y ∈ Rm and a system input u ∈ Rp. The dynamics of a nonlinear system are modelled

with a nonlinear function f of dimension n.

ẋ(t) = f(x(t), u(t)) (2.44)

The state output y can also be conceptualised as a measurement of the state x, where the

measurement function g is of dimension m.

y(t) = g(x(t), u(t)) (2.45)

An observer employs an innovation function L : Rm → Rn to update a state estimate

x̂ using the difference between the measurement y(t) and the predicted measurement

ŷ(t).

˙̂x = f(x̂, u(t)) + L(y(t)− ŷ(t)) (2.46)

ŷ(t) = g(x̂(t), u(t)) (2.47)

This form of observer was developed by Luenberger [27], and is often referred to as a

Luenberger observer. Combining the observer equation with the measurement prediction

function g gives the state observer as

˙̂x = f(x̂, u(t)) + L(y(t)− g(x̂(t), u(t))) (2.48)

The goal is to design an innovation function L that reduces the observer error e(t) =

x(t)− x̂(t) to zero.
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2.2.2 Symmetry-preserving observers

If the function f governing the dynamics of the state is invariant to the action of a Lie

group G, an invariant or symmetry-preserving observer has the form

˙̂x = h(x̂, u(t), y(t)− ŷ(t)) (2.49)

where the function h is also invariant to actions of G. For nonlinear systems, the result is

often improved global convergence properties in comparison to a traditional Luenberger

observer.
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Problem statement

This project is part of a larger research direction at the ANU Research School of Engineering

that will develop a theory of infinite-dimensional, symmetry preserving observers. As an

initial exploration of this open problem, the central goals of this project are to:

• gain an understanding of how dense sensors can be used to estimate the state of

infinite-dimensional systems;

• gain an insight into how symmetry-preserving observers can be used to better observe

nonlinear infinite-dimensional systems;

• uncover pertinent directions for future research in this area - where a theory of

infinite-dimensional, symmetry preserving observers would be useful;

• investigate if a sparse sensor can be used in a manner that approximates the capabil-

ities of a dense sensor in the observation of an infinite-dimensional state.

The approach taken to achieve these goals will be to design and implement an observer

for a simplified system that still captures some components of the overall research goals.

The state variable to be estimated will be finite-dimensional, and thus the observer will

be finite-dimensional. However, the sensor will still take measurements of an infinite

dimensional state. In this way, the problem is similar to the dense optical flow estimation

by Adarve et al. [26].

Initially, the observer innovation function will not be designed to be invariant. As a first

step, this research will investigate correction schemes that converge locally. A future work

package will be to adjust the update function to respect the symmetries of the system and

24
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achieve more global convergence properties.

Sparse range measurements have previously been used to reconstruct a depth field by

Szeliski [28], who fitted a spline surface model to a cloud of points estimated from range

data. The key difference in the approach used in this research is that rather than using

the range measurements to directly estimate the state, the difference in measured and

predicted range will be used to drive the innovation term of a state observer. In this

approach the trajectory of the sensor will have a greater importance in ensuring that dense

measurements can be made.

3.1 Estimating the pose and size of a cube from sparse range

measurements

x

y

z

{F}

x

y

z

{A}

x

y

z

{B}

d(t)

r(d(t), t)

Figure 3.1: Range measurements of a cube from a depth sensor

A situation in which an infinite dimensional observer would be useful is in the estimation of

the pose of an object of unknown size moving in an environment of unknown state.

For example, consider an autonomous robot deployed in an agricultural survey, which

must determine the position and size of specimens of a certain crop. Using a geometric

model for the general shape of the crop, an aerial vehicle that could routinely detect and

characterise the position and size of specimens would be useful in monitoring growth and

during harvesting.

The problem to be investigated is shown in Figure 3.1. A 2D scanning range sensor moves

through an environment consisting of a target object of known shape - in this case a rigid

cube - and an unknown background which may be an infinite-dimensional dynamic system.
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The state of the sensor is known, but the states of the cube and background environment

are unknown. The goal is to use the state of the sensor and the range measurements it

provides to estimate the state of the cube.

The frames used to describe the motion of the rigid bodies in this problem are:

• {F} - the inertial (fixed) frame. For the purposes of this problem, the inertial frame

is a frame whose motion is negligible. For the practical experiment this frame will be

fixed to the ground.

• {A} - the frame fixed to the sensor. The origin of this frame is the centre of rotation

of the sensor’s scan direction. The axes of {A} are fixed to the sensor according to

Figure 4.1 in Chapter 4. The transformation from {F} to {A} at time t is defined

by the screw matrix of the sensor Ss(t).

• {B} - the frame fixed to the cube. The origin of {B} coincides with the centre of

the cube and is aligned so that each axis intersects with the centre of a face of the

cube. The transformation from {F} to {B} at time t is defined by the screw matrix

of the cube Sc(t).

The sensor provides measurements of the range r to the nearest object from the sensor

(either the cube or the background) in the direction d(t). These measurements can be

considered sparse because the distance to just a single point is returned at each time step.

The state of the sensor Xs(t) is defined as:

Xs(t) = {FFSA(t),AFTA(t),AFWA(t),Ad(t)} (3.1)

The screw matrix represents the transformation from {A} to {F}, defined in {F}. The

twist and wrench matrices, as well as the scan direction d(t) are defined in terms of{A}.

For simplicity, this will be denoted

Xs(t) = {Ss(t),Ts(t),Ws(t),
Ad(t)} (3.2)

The direction of measurement Ad(t) varies as a rotation about the z-axis of {A}. This 2D

scanning motion depends on the model of the sensor used and is described in more detail

in Section 4.1.2.2. For simplification, the motion of the sensor itself with respect to {F}

will be limited to rotation about the y-axis of {F}.
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The state of cube Xc(t) is defined as

Xc(t) = {FFSB(t),BFTB(t),BFWB(t), s} (3.3)

For simplicity, this will be denoted

Xc(t) = {Sc(t),Tc(t),Wc(t), s} (3.4)

The range measurements do not indicate whether the object detected is the cube or

the background. Though the state of the cube and environment remain unknown, for

simplification, it is assumed that either:

• the cube is within a distance rmax from the sensor and the background is at least a

distance rmax away

• these target object and background do not touch or overlap and their surfaces are

continuous functions on R3

These assumptions will be used to separate range measurements corresponding to the cube

from those corresponding to the background. Only range measurements corresponding to

the cube will be used in the observer innovation step. For simulated data, only the first

assumption is necessary. For experimental data sets the environment is more complex so

the second assumption is required to identify range measurements corresponding to the

cube.

The aim is to design a nonlinear observer function f which estimates the state of the cube

from the pose of the sensor, scan direction d, range measurement r̃ and measurement

prediction r̂.

X̂c(k + 1) = f(Xs(t), X̂c(k), r̃(t), r̂(t)) (3.5)

This observer formulation differs from that provided in Equation 2.46 in that no state input

is present in the system and more importantly, r̃ and r̂ are provided as separate terms.

Though a true Luenberger observer is driven by the output difference r̃ − r̂, such a scheme

is not possible due to the way the problem has been simplified. Since range measurements

corresponding to the background are discarded, the term r̃ − r̂ is undefined unless both

range measurements correspond to the cube. Such a limitation would make correcting

differences in position and size particularly difficult.
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A simulation toolbox will be implemented to simulate range measurements of rigid bodies

using a scanning range sensor. The observer design will be implemented and its performance

tested under a range of conditions.

Experimental validation will be performed by taking measurements of a known environment

using the Hokuyo UBG-04LX-F01 scanning laser range-finder. These measurements will

be used to quantify the performance of the observer under real-world conditions.

The observer implementation will be considered successful if it is able to converge to the

true cube state around a local neighbourhood. Since an invariant observer is not being

implemented, global convergence is not expected.

3.2 Deliverables

The project deliverables are to:

• implement a toolbox to simulate range measurements of rigid bodies;

• design an observer to estimate the cube state from sparse range measurements;

• produce and test a software implementation of the observer;

• validate the observer performance by collecting experimental data;

• present the research in a report and presentation.



Chapter 4

Observer simulation

4.1 Implementation

A simulation toolbox was implemented in Matlab to model scanning laser range-finder

measurements of rigid bodies and test observer schemes. The main components of the

simulation are:

• rigid body trajectory computation;

• solid object modelling;

• range measurement simulation;

• noise modelling;

• observer implementation.

The notation employed here and throughout the rest of the report uses the following

conventions:

• Single values are denoted by plain text;

• Vectors are denoted in bold lowercase;

• Matrices are denoted in bold uppercase;

• An array formed by replicating a variable a in an n×m block array is denoted an×m.

• In many cases, a variable such as the sensor position ps(t) represents a set of elements,

each corresponding to the value at a certain time t. These will be referred to by

the form of the value at a single time. For example, a matrix where each column

represents a different position vector is used to represent ps(t), but it will be described

as a vector as this is the form of a single position.

29
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Algorithm 1: Scanning range-finder and state observer simulation

Data:
nsteps - number of time steps in simulation
Xs - sensor pose and scan direction
Xe - cube and background pose, points and triangles
X̂c - estimate of the pose and size of the cube
c - (true/false) current range measurement is of cube or not
r - ground truth range
r̃ - measured range
r̂ - range predicted from state estimate
α - angle of incidence for each range measurement
m - index of triangle measured
θ - scan angle in sensor frame
Θ - set of scan angles that return range measurement

1 begin
2 settings←loadsettings

3 Xs ← initialisesensor(settings)
4 Xe ← initialiseenvironment(settings)
5 initialiseobserver

6 for ii← 1 to nsteps do
7 if θ[ii] ∈ Θ then
8 [r[ii],α[ii],m[ii]]← computerange(Xs[ii],Xe[ii])

9 end

10 end
11 r̃ = addnoise(r,α,m, settings)
12 for ii← 1 to nsteps do

13 X̂c[ii+ 1]← estimatestate(X̂c[ii])
14 if θ[ii] ∈ Θ then

15 r̂[ii]← computerange(Xs[ii], X̂c[ii])
16 c← identifyobject(c, r̃)
17 if c then

18 X̂c[ii+ 1]← updatestate(X̂c[ii+ 1],Xs[ii], r̂, r̃)
19 end

20 end

21 end

22 end
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A high level description of the simulation is provided in Algorithm 1. First, a settings file

is loaded. The most important settings determined here are the trajectories of the sensor

and environment objects, the scanning behaviour of the sensor and the observer update

function. Next, the sensor class instance is initialised with initialisesensor. This

requires computation of the pose and scanning directions of the sensor over time. Similarly,

initialisation of the environment through initialiseenvironment requires computation of

the pose of each rigid body comprising it. The surfaces of the bodies are then represented

with a set of points and corresponding triangles. The position of each point with respect to

the inertial frame {F} is computed at each time step. The settings file provides the initial

conditions with which the observer is initialised in initialiseobserver. Beginning on

line 6, the state of the sensor and environment are used to compute the ground truth range

measurements r at each time step. The incidence angle between the scan direction and

object, as well as the index of the triangle hit are also stored as they will be required for

sensor noise modelling. This is performed with a parallel for loop to speed up computation.

Line 7 ensures ranges are only computed when the current scan direction is within the

sensor’s field of view. In line 11, noise is simulated and added to the ground truth ranges

to produce the measured ranges r̃. The for loop beginning on line 12 begins the observer

simulation. At each time step, estimatestate estimates the state of the cube X̂c from

the previous state with the kinematics model in Section 2.1.6. From the sensor state Xs

and the estimated state of the cube X̂c, computerange is used to determined the predicted

range measurement r̂. The variable c indicates whether the current range measurement

corresponds to the cube or the background. On line 16 the measured ranges and previous

value of c are used to determine whether the current measurement corresponds to the cube.

If it does, the cube state estimate X̂c is updated using the previous state estimate, current

sensor state, and the predicted and measured ranges.

4.1.1 Rigid body motion

To simulate range measurements the pose of the sensor and the objects comprising the

environment must be computed at each time step. The computations required to do so

can be reduced by taking into account the kinds of motion that must be simulated. This

section details how the pose of the sensor and objects is represented and computed, which is

used in the functions initialisesensor, initialiseenvironment and estimatestate

referenced in Algorithm 1.
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The observer actually computes the relative position between the sensor and cube and

simply uses knowledge of the sensor pose to determine the pose of the cube in the inertial

frame. There is no need to simulate complex sensor motions because the motion of the

cube can be adjusted to achieve the same result. The only requirement of the sensor

motion is that measurements of a large range of the environment are acquired to ensure

that the entire target object can be viewed. The scanning behaviour of the sensor is to

rotate about the z-axis of the body fixed frame {A}. To provide a rectangular field of view,

the motion of the sensor is therefore limited to constant velocity rotation about the y-axis

of the inertial frame {F}.

The environment is modelled with two rigid bodies: a cube to be observed as the target

object, and a stationary rectangular prism enclosing the sensor and cube which acts as

the background. The various cube motions that will be simulated to test the observer’s

performance can be classed in terms of the wrench matrix of the cube as either

1. Wc = 0

2. Wc 6= 0

For case 1. the wrench and screw are constant so only the initial values are required. It is

more efficient to represent the pose of a rigid body with just position and orientation in

this case. The pose can be quickly computed by interpolating between an initial and final

pose. For case 2. the screw, twist and wrench must be integrated numerically.

4.1.1.1 Interpolation

For the case of zero wrench, the pose of the body can be represented with a position vector pi

and an orientation quaternion qi. A trajectory of k poses at times t =
[
t1 t2 t3 . . . tk

]
,

is computed by interpolating from an initial pose {p1,q1} to a final pose {pk,qk}.

The array of position vectors P =
[
p1 p2 p3 . . . pk

]
are computed with:

P = (13×k)p1 + (pk − p1)
t− t1(11×k)

tk − t1
(4.1)

Spherical linear interpolation is used to compute the array of orientation quaternions
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Q =
[
q1 q2 q3 . . . qk

]
at each time step:

Q =
q1 sin((1[1×k] − t)θ) + qk sin(tθ)

sin(θ)
(4.2)

where

θ = cos−1(q1 · qk) (4.3)

This interpolation method is used to compute the trajectory of the sensor. To acquire

multiple views of the entire cube, the sensor must pan back and forth several times. This

is achieved by first reversing the trajectory and concatenating with the original to produce

the looped trajectories Ploop and Qloop:

Ploop =
[
p1 p2 p3 . . . pk pk pk−1 pk−2 . . . p1

]
(4.4)

Qloop =
[
q1 q2 q3 . . . qk qk qk−1 qk−2 . . . q1

]
(4.5)

This looped trajectory is repeated k times to produce multiple back and forth scans:

P = (Ploop)1×k (4.6)

Q = (Qloop)1×k (4.7)

4.1.1.2 Numerical integration

The time evolution of the screw, twist and wrench is computed iteratively from initial

conditions by numerically integrating the ODEs in Section 2.1.6. For a rigid body with an

associated reference frame {X}, moving with constant acceleration:

SX(t+ δt) = SX(t) exp(δtTX(t)) (4.8)

TX(t+ δt) = TX(t) + δtWX(t) (4.9)

WX(t+ δt) = WX(t) (4.10)



CHAPTER 4. OBSERVER SIMULATION 34

Though a higher order integration method such as Runge-Kutta could be used to compute

a trajectory that more accurately represents a constant acceleration, this is not strictly

necessary. The observer performance is unlikely to be affected by how constant the

acceleration is. Furthermore, it is likely that the experimentally collected data will have

even larger variations in acceleration.

To simplify the code, the position vector and orientation quaternion are computed from

the screw matrix. This allows the same functions to be used in either the interpolation or

numerical integration cases. Rotating the points that make up the rigid objects can also

be done more compactly with quaternions.

4.1.2 Sensor modelling: initialisesensor

The motion model below is used to compute the pose of the sensor. The scanning model

is used to compute the set of scanning directions. These actions are performed in the

initialisesensor function in Algorithm 1

4.1.2.1 Motion

The state of the sensor Xs(t) consists of terms corresponding to its motion and scanning

operation. Since the motion of the sensor is restricted to zero acceleration, the state of

sensor can be efficiently computed with the interpolation method and represented with

position, orientation and scanning direction.

Xs(t) = {ps(t),qs(t),Ad(t)} (4.11)

Since it has a stationary position, the position of the sensor over time is fixed at the origin

of the inertial frame {F}.

p1 = p2 = p3 = · · · = pk =


0

0

0

 (4.12)

The sensor rotates between −φ and φ about the y-axis of the body frame {A}, which

coincides with the y-axis of the inertial frame {F} in this case. Thus, its orientation is
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computed by interpolating between q1 and qk with Equation 4.2.

q1 =


cos(−φ/2)

sin(−φ/2)


0

1

0



 =


cos(φ/2)

0

− sin(φ/2)

0

 (4.13)

qk =


cos(φ/2)

sin(φ/2)


0

1

0



 =


cos(φ/2)

0

sin(φ/2)

0

 (4.14)

4.1.2.2 Scanning

The scanning behaviour of the sensor depends on the particular model used. The Hokuyo

UBG-04LX-F01 scanning laser range-finder will be modelled as it was the sensor used to

conduct experiments in this project. This sensor produces a 785nm laser beam, projected

at a precise direction. It measures the characteristics of the reflected beam to determine

the position to the nearest object in the direction of the beam. The beam direction is

varied by reflecting it off a rotating mirror. The rotation means that the beam direction

effectively rotates with a constant velocity in a single plane. A portion of the field of view

of the laser beam is obscured, so measurements will not be returned in a certain region of

each revolution.

The vector Ad(t) will be used to model this scanning behaviour. To accurately model this,

the following parameters are used:

• field of view Θ: The vector Ad(t) rotates anti-clockwise about the z axis of the sensor

frame {A}. Measurements are only taken when the scan angle about is between −θ

and θ about the −z-axis of the sensor frame {A}. In practice, the field of view is

implemented as the start angle −θ, direction of rotation and angular range 2θ.

• number of scans nscans: This represents the number of scan angles in a single

revolution. Since measurements are limited by the field of view of the sensor, the

actual number of measurements per second is nranges = 2θ
2πnscans. The angular

resolution is dθ =
2π

nscans
.
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• revolutions per second Ω: This is measured in Hz and gives the length of each time

step dτ =
1

nscansΩ

• nloops: The number of back and forth repeats of the sensor trajectory.

From these parameters the scanning direction Ad(t) is created. At each time t, Ad(t) is

either a unit vector indicating the direction of measurement in the sensor frame, or has 0

magnitude, corresponding to when Ad(t) is outside the field of view and the sensor is not

returning a measurement.

Ad(t) =




cos(−θ + 2πt′)

− sin(−θ + 2πt′)

0

 if t′ ≤ θ/π, t′ = kδτ ∀k ∈ N

03×1 if t′ > θ/π, t′ 6= kδτ ∀k ∈ N

(4.15)

where

t′ = mod (t, 1/dθ) dθ (4.16)

Figure 4.1 shows the frame {A} fixed to the sensor and the scan direction Ad(t). At time

t′ = 0, the first scan direction Ad0 has an angular displacement of −θ about the z-axis

from the forward facing x-direction. After each time step dτ , the scan direction rotates

by dθ about the z-axis. There are nranges scan directions within the field of view of the

sensor. The entire revolution is divided into nscans scan directions.

To simulate range measurements, the scan direction is required in the inertial frame {F}.

This is computed by multiplying with the screw matrix of the sensor.

Fd′(t) = Ss(t)
Ad′(t)

= F
FSA(t) Ad′(t)

(4.17)

4.1.2.3 Hokuyo UBG-04LX-F01 model

To achieve a panning motion, the sensor trajectory is defined as a rotation between π/8

and π/8 radians about the y-axis of the sensor frame {A}. The sensor rotates with a

constant angular speed of π/4 radians/s. This trajectory was seen to produce the best

performance when testing the observer.
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Figure 4.1: Scanning behaviour of the UBG-04LX-F01 and parameters used to
model it

The sensor has a field of view of π radians, providing range measurements when the scan

direction is between π/2 and −π/2 radians about the z-axis of the sensor frame {A}. The

laser beam rotates in an anti-clockwise direction about the z-axis of {A}. The beam rotates

with an angular speed of 24Hz, providing 24 scans per second. Measurements are returned

at half of the time steps ineach revolution, so each scan contains 512 measurements at

increments of pi/512 radians.

4.1.3 Environment modelling: initialiseenvironment

The environment described in the problem formulation in Chapter 3 was an infinite-

dimensional system. Since the state variable to be estimated consists of just the cube pose

and size, range measurements corresponding to the background are filtered out. Thus,

the state of the background has no effect on the performance of the observer. To reduce

computational load, the background will be modelled as a single object; a rigid rectangular

prism enclosing both the sensor and cube. The entire state - cube and background - is now

modelled as a finite dimensional state. However, the sensor is still taking measurements of

a dense depth field on S2. From its perspective, there would be no difference between the

rectangular prism background and a more complex surface model.
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4.1.3.1 Motion

The pose of each object represents the pose of its centre of mass. As described in Section

4.1.1 the pose is computed with interpolation for the case of zero wrench, and numerical

integration for the case of non-zero wrench. The pose of the object making up the

environment is computed with the function initialiseenvironment in Algorithm 1. This

function also creates the points and triangles that model the surface of the object which is

described below.

4.1.3.2 Rigid objects

The environment is represented with two rectangular prisms; the cube and a larger

rectangular prism enclosing both the sensor and cube, to represent the background. These

objects are modelled as an ordered set of 8 points in the inertial reference frame and an

ordered set of twelve triangles formed by these points. Each triangle is represented by a set

of three integers, indicating the index of the three points that make up its vertices.

The cube points in body frame {B} are represented with the matrix BP.

BP =
1

2
s


−1 −1 −1 −1 1 1 1 1

−1 −1 1 1 −1 −1 1 1

−1 1 −1 1 −1 1 −1 1

 (4.18)

To represent these points in the inertial frame {F}, FP is computed by rotating each point

with the orientation quaternion of frame {B} using Equation 2.24 before adding the vector

representing the translation of {B} from {F}.

The triangles are represented with the matrix T. Each triangle is represented by a row.

The elements of these rows are the indexes of the points in FP that form the three vertices
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Figure 4.2: Cube modelled with an ordered set of points and corresponding
triangles

of the triangle.

T =



1 2 3

2 4 3

4 3 7

4 8 7

5 6 7

8 6 7

2 6 5

2 1 5

2 6 8

2 4 8

1 5 7

1 3 7



(4.19)

The points and triangles are shown in Figure 4.2.

4.1.4 Measurement modelling

4.1.4.1 Range computation: computerange

This section describes the implementation used in the computerange function in Algorithm

1.



CHAPTER 4. OBSERVER SIMULATION 40

v1

v2

v3

e1

e2

d
a

α

β

s

y

x

z

{A}

Figure 4.3: Ray-triangle intersection

Given its screw matrix and scan direction (in the body fixed frame), the position of the

sensor and its scan direction in the inertial frame are determined. The distance to the

nearest environment object from the sensor along the scan direction is determined with

the Möller-Trumbore ray-triangle intersection algorithm, shown in Algorithm 2.

Figure 4.3 shows a simplified scenario involving the intersection of a ray with a single

triangle. In practice, the algorithm is vectorised to compute the intersections with a set

of triangles. In this vectorised implementation, many variables represent a matrix whose

columns are each vectors. These variables will still be described as vectors to emphasise

the operation of the Möller-Trumbore algorithm, rather than the specific implementation

details.

The output variables are first initialised to the case that there is no intersection with the

scanning direction. x is set to false and the range, angle and triangle index outputs are

set to return NaN.

On line 8, the set of points P are indexed using the columns of the triangle matrix T to

extract the three vertices corresponding to each triangle. The vectors representing the

edges sharing vertex V1 are computed. From the triangles and points, the vertices of each

triangle are extracted. The vector A computed on line 14 represents the translation from

the ray origin o to V1.

The collection of vectors B is computed on line 16 by taking the cross product of the scan
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direction d and each edge E2. The determinant δ of the matrix

M =
[
e1 d e2

]
(4.20)

is computed on line 16. This is first used to determine if the scan direction d lies in the

plane of the triangle by checking if the determinant is close to zero. If so, no intersection

can occur. The zero determinant values are then set to NaN to avoid a division by zero

later.

Beginning on line 21, determinant δ is used to compute the barycentric coordinates α

and β, and the distance s from the origin to the triangle plane along the scan direction

d.

The barycentric coordinates are used to determine if the intersection between the scan

direction d and the plane of the triangle lies within the triangle itself.

The vector x on line 27 now indicates which triangles intersect with the scan direction.

x is used to mask the ranges to the triangles s, to give r; the range to each intersecting

triangle.

The minimum range r and triangle index m are determined before computing the angle of

incidence θ between d and the closest triangle.

4.1.4.2 Sensor noise: addnoise

In Algorithm 1, the function addnoise takes the ground truth range measurements r(t)

and produces the noisy range measurements r̂(t) that the observer will actually receive.

The noise function fs is

r̂(t) = fs(r(t), θ(t), φ(k)) (4.21)

where θ(t) is the incidence angle of the measurement at time t, φ represents the surface

properties of the object k that was measured.

For the Hokuyo UBG-04LX-F01 sensor used, range measurements taken at various distances

and incidence angles were used to estimate the noise model fUBG which is provided in

Section 5.1.
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Algorithm 2: Möller-Trumbore ray-triangle intersection

input : o - ray origin
d - ray direction vector
P - cube in inertial frame
T - triangle matrix

output : x - True/False - measurement corresponds to object
r - distance to object in m
θ - incidence angle in rad
m - index of triangle hit

1 begin
2 /* initialise outputs */

3 x←− 0
4 r ←− NaN
5 θ ←− NaN
6 m←− NaN
7 /* triangle vertexes and edges */

8 V1 ←− P[T[:, 1]]
9 V2 ←− P[T[:, 2]]

10 V3 ←− P[T[:, 3]]
11 E1 ←− V2 −V1

12 E2 ←− V3 −V1

13 m = size(V1, 1)
14 A←− o[m×1] −V1

15 /* determinant */

16 B←− d[m×1] ×E2

17 δ ←− E1 ·B
18 y←− |δ| ≤ 0
19 δ[y]←− NaN
20 /* barycentric coordinates */

21 α←− (A ·B)/δ
22 Q←− A×E1 *(along dim 2)
23 β ←− (d[n×1] ·Q)/δ *(along dim 2)

24 s←− (E2 ·Q)/δ
25 /* intersection vector */

26 z←− y and (α ≥ 0) and (β ≥ 0) and (α+ β ≤ 1)
27 x←− z and (s ≥ 0)
28 if any(x) then
29 x←− 1
30 x[not x]←− NaN
31 r = s ◦ x
32 r = min(r)
33 m = find(r = r, 1)
34 e1 ←− E1[t, :]
35 e2 ←− E2[t, :]
36 n = e1 × e2

37 θ = atan2(|d× n|,d · n)
38 θ = min(θ, π − θ)
39 end

40 end
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4.1.5 Observer implementation

4.1.5.1 Estimate: estimatestate

The state of the cube at each time step is estimated using the numerical integration

method described in Section 4.1.1.2. This state estimation is implemented in the function

estimatestate in Algorithm 1.

4.1.5.2 Object/background separation: identifyobject

The observer update function uses range measurements to estimate the state of the cube

Xc. In order to perform accurately, the observer must only use range measurements

that correspond to the cube. The function identifyobject in Algorithm 1 uses the

range measurements and knowledge of the configuration of the environment to separate

measurements of the cube and background.

The binary variable c indicates whether the current range measurement corresponds to

cube (c = true) or the background (c = false). It is assumed that initially the sensor

will be observing the background, so c0 = false.

The scheme used to identify range measurements corresponding to the cube is shown in

Algorithm 3. There are two assumptions that may be used.

1. The difference assumption relies on the assumption that the cube and background

objects are continuous. Differences in consecutive range measurements larger than

∆max indicate a discontinuity, implying that a new object is being measured. When

this occurs, the value of c changes.

2. The range assumption is used when the maximum distance to the cube and mini-

mum distance to the background are restricted. Range measurements within rmax

correspond to the cube while larger ranges correspond to the background.

4.1.5.3 Update: updatestate

If the identifyobject function identifies a range measurement as corresponding to the

cube, the updatestate function is used to update the state estimate of the cube X̂c. X̂c is

updated using the previous cube state estimate, current sensor state, and sets of measured
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Algorithm 3: Target/background object separation

input : differenceAssumption - true/false
rangeAssumption - true/false
∆max - max diff between measurements of same object
rmax - max range for cube
c - true/false - current measurement is of cube
ri+1 - distance to object at t = i+ 1
ri - distance to object at t = i

output : c - true/false
1 begin
2 if differenceAssumption then
3 if |ri+1 − ri| > ∆max then
4 c = mod (c+ 1, 2)
5 end

6 end
7 if rangeAssumption then
8 if ri+1 > rmax then
9 c = 0

10 end

11 end

12 end

and predicted range measurements chosen according to a set of indexes u(t).

X̂c(k + 1) = f(Xs(t), X̂c(k), r(u(t)), r̂(u(t))) (4.22)

The pose of X̂c is corrected by adjusting Ŝc, T̂c or Ŵc. The orientation is adjusted by

rotating about an axis rupdate. The position is adjusted by translating in the direction of

pupdate rupdate and pupdate are scaled differently, depending on whether they are applied

to Ŝc, T̂c or Ŵc. The size update supdate is independent of the pose update scheme

used.

Input ranges:

A set of four range measurements forming a quadrilateral are used in the state update.

The four ranges are chosen with an ordered sequence of indexes u(t). At a time step ii,

the set of time steps used is in the update function is

u(ii) = {ii, (ii− 1), (ii− nscans), (ii− 1− nscans)} (4.23)

It is possible that the measured or predicted ranges do not exist for some time steps in

u(ii), as the range may have corresponded to the background rather than the cube. Thus,

the measurement indexes ũ(ii) and estimation indexes û(ii) will be subsets of, but not
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necessarily congruent to u(ii).

Orientation update:

The method used to correct the orientation of the cube state estimate X̂c is shown in

Figure 4.4.

In order to estimate the orientation of the cube, at least 3 ranges are required from both

the prediction and measurement: |û| ≥ 3 and |ũ| ≥ 3. If all four indexes are present, the

range from the last time step (ii− 1− nscans) is ignored.

For both the measurement and prediction, the points of intersection FP(u) between

the set of scanning directions FD(u) and the cube are computed using the set of range

measurements r(u).

FP(u) = FD(u)r(u) (4.24)

The normal to the plane formed by the three points is then computed.

n = [FP(u2)− FP(u1)]× [FP(u3)− FP(u1)] (4.25)

Because a cube has 24 regular isometries, it is not necessary to exactly align the reference

frames of the estimated and true cubes. Any face of the estimated cube can be aligned

with any face of the true cube, and the maximum rotation correction required will be π/4

radians.

The angle between the two normals ψ is computed as

ψ = atan2(|n̂× ñ|, n̂ · ñ) (4.26)

The axis rupdate that the estimated cube orientation R̂c will be rotated by is computed by

taking the cross product of the predicted and measured normals. The direction of rotation

is changed if the angle ψ between the two normals is greater than π/4 radians.

rupdate = sign
(π

4
− ψ

)
(n̂× ñ) (4.27)

where

sign(x) =


1 if x ≥ 0

−1 if x < 0

(4.28)
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Figure 4.4: Orientation update scheme: intersection of the scan directions with
the surfaces of the measured and predicted cubes are used to determine the
surface normals.
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To update the screw matrix Ŝc, rupdate is converted to a rotation matrix Rupdate with

Rodrigues’ rotation formula (equation 2.19). The correction is then applied as:

R̂c(k + 1) = RscaleRupdateR̂c(k) (4.29)

To update via the screw or wrench, r∧update is scaled and then added to the angular velocity

or angular acceleration respectively.

ω̂∧c (k + 1) = ω̂∧c (k) + ωscaler
∧
update (4.30)

α̂∧c (k + 1) = α̂∧c (k) + αscaler
∧
update (4.31)

The chosen scale factor depends on whether rupdate is applied via Ŝc, T̂c or Ŵc.

Position update:

The method used to correct the position of X̂c is shown in Figure 4.5.

In order to estimate the position of the cube, at least 1 range measurement is required

from both the prediction and measurement: |û| ≥ 1 |ũ| ≥ 1. Additionally, scan directions

at time steps ii, (ii− 1) and (ii− 1− nscans) are required. The scan direction Fd(t) must

be within the sensor’s field of view at these time steps.

The points of intersection are calculated using Equation 4.24. In Figure 4.5 all four scan

directions intersect with the predicted cube state, but only one intersects with the measured

cube. The average of these points is computed to give the mean estimated position µ̂p

and the mean measured position µ̃p.

The x, y and z components of the update vector may very significantly in size due to

the scanning behaviour of the sensor. It is necessary to scale the position update vector

according to these components. The mean of all predicted and measured ranges µr is

computed. Four points p0,p1,p2 and p3 are computed to be used in scaling:

p0 = ps(t) = F
FpA(t)

p1 = µr
Fd(ii)

p2 = µr
Fd(ii− 1)

p3 = µr
Fd(ii− 1− nscans)

(4.32)

The update vector is computed by scaling the mean intersection points with these four
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Figure 4.5: Position update: centre of mass of predicted and measured inter-
section points used to determine update direction vector.
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points:

pupdate =


1

|p1−p0| 0 0

0 1
|p2−p1| 0

0 0 1
|p3−p2|

 (µ̃p − µ̂p) (4.33)

The screw, twist and wrench are corrected using pupdate. The scaling factor used depends

on whether the update is performed via the screw, twist or wrench.

p̂c(k + 1) = p̂c(k) + pscalepupdate (4.34)

v̂c(k + 1) = v̂c(k) + vscalepupdate (4.35)

âc(k + 1) = âc(k) + ascalepupdate (4.36)

Size update:

In order to correct the size of the cube, at least 1 range measurement is required from

both the prediction and measurement: |û| ≥ 1 |ũ| ≥ 1. The size update scheme also differs

based on the sets predicted and measured ranges.

For the case where a different pattern of ranges is observed (û 6≡ ũ), the update method is

shown in Figure 4.6.

The dot product from the vector pupdate computed for the position update and the current

scan direction is taken:

supdate = pupdate · Fd(ii) (4.37)

For the case where the same pattern of ranges is observer (â ≡ ã), the update method is

shown in Figure 4.7.

The size update is taken as the difference in the means of the measured and predicted

ranges:

supdate = µ̃r − µ̂r (4.38)

In both cases, the cube size estimate is updated by scaling supdate and adding this to the

previous estimate:

s(k + 1) = s(k) + sscalesupdate (4.39)
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Figure 4.6: Size update - case 1: centre of mass of intersection points used to
determine size update.



CHAPTER 4. OBSERVER SIMULATION 51

y

x

z

{F}

µ̃r

µ̂r

supdate

Fd(ii)Fd(ii− 1)

Fd(ii− nscans)Fd(ii− 1− nscans)
measured

predicted

Figure 4.7: Size update - case 2: difference in mean ranges used to determine
size update.
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4.2 Results

The ability of the observer to estimate the state of a cube undergoing stationary, rotating,

and translating motions was tested. For these classes of motion, the trajectory was further

defined to assess the performance of the observer when one, two or three faces of the cube

were visible to the sensor. Initial conditions and the scaling factors of the orientation,

position and size update functions were defined to assess the individual and combined

performance of these update functions. Key results of this analysis and an overall assessment

of the observer’s performance are presented in this section.

4.2.1 Orientation correction

4.2.1.1 Stationary cube

When testing the orientation update alone, the position and size update functions were

turned off by setting their scaling factors to zero. The initial size and position of the state

estimate were assigned the ground truth values. The angle error between the predicted

and ground truth orientation was computed to quantify performance. To compute this, the

rotation matrix required to map the orientation of the predicted cube to that of the ground

truth cube was computed over time. This was converted to the scaled-axis representation.

The angle error was defined as the magnitude of this scaled-axis vector, representing the

angular error between the predicted and ground truth orientation.

The results presented in Figure 4.9 are from trials where the cube was stationary and three

faces were visible. Similar performance was achieved when two faces were visible. When

no noise was present, the angle error quickly converged to zero. In fact, for the case of

orientation correction alone, the observer guarantees global convergence. When noise was

present, the error converged to the noise floor and exhibited a stable fluctuation about this

limit. Given the mean and standard deviation of the Gaussian distributed range error, the

angle error would be expected to cross zero once the error converged to the noise floor.

The reason this does not occur is due to small error in the orientation axis between the

prediction and ground truth.

A limitation of the orientation update scheme was revealed when only a single cube face

was visible to the sensor. The normals (n̂ and ñ in Figure 4.4) estimated from the predicted

and measured intersection points were used to determine the rotation correction axis.
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(a) (b)

Figure 4.8: Orientation update when a single cube face visible leads to (a)
angle error, depicted in final the state estimate (b).

However, this information was insufficient to correct for angular error about these normals

themselves, as shown in Figure 4.8.

An approach considered to account for this was to apply a rotation to the predicted cube

about the normal axis if the visibility pattern indicted by the set of indexes u(t) was

not congruent for the prediction and measurement. This would effectively rotate the

predicted cube until the faces aligned. However, this scheme was not used as it would later

interfere with the performance of the orientation and size updates. Furthermore, it was

unstable under noisy conditions and caused rotation away from the correct orientation.

The recommendation for future work is to use the visibility pattern to estimate the actual

rotation of the predicted and measured cubes about this normal axis before applying the

necessary correction.

4.2.1.2 Moving cube

Figure 4.10 shows the angular error for a trial where the ground truth cube rotated with

an angular velocity of approximately 0.0327 rad/s such that three faces were visible to

the sensor. The observer was given the ground truth initial orientation but an incorrect

initial angular velocity of zero. Figure 4.10(a) shows that for noiseless measurements where

orientation update is performed via the screw matrix, the observer is able to estimate the

angular velocity of the cube and match its orientation. Again for noiseless measurements,

Figure 4.10(b) shows that updating via the twist matrix initially provides a slower but

smoother estimation of orientation. In trying to match the rotation of the cube, the angular

velocity estimate overshoots the ground truth angular velocity. Initially, the angle error

grows so the angular velocity increases to correct this. However, there is a delay in the
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(a) (b)

Figure 4.9: Angle error for (a) noiseless and (b) noisy measurements of a
stationary cube with three faces visible to the sensor

response of the orientation correction that causes the angular velocity to grow too large.

The overcompensation then occurs in the other direction and the error diverges. For noisy

measurements, update via the screw in Figure 4.10(c) and twist in Figure 4.10(b) is unable

to closely track the rotation of the cube. Updating via the twist matrix again results in

overshoot.

(a) (b)

(c) (d)

Figure 4.10: Angle error when cube was rotating with angular velocity of
approximately 0.0327 rad/s such that three faces were visible to the sensor.
Noiseless measurements were used to update the orientation via the (a) screw
matrix and (b) twist matrix. Noisy measurements were used to update the
orientation via the (c) screw matrix and (d) twist matrix.

4.2.2 Position correction

Figure 4.11 shows the effect of the scale pscale on the convergence behaviour of the position

error. In these trials, one face of the cube was visible to the sensor. Figure 4.11(a) shows
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that for noiseless measurements, the position error converges to a region where it begins

to oscillate. Due to the dynamics of the scanning sensor, the size of the position update

vector is too large and the estimate is unable to exactly align with the ground truth.

Eventually, the estimate happens to align with the ground truth and the position error

drops to zero.

Figure 4.11(b) shows that for noisy measurements, the update gain pscale = 0.01 used in

(a) is too large. A large random disturbance causes the position error to diverge so far

that there is no longer any overlap between the estimated and ground truth cubes. At this

point, no update can be computed. By reducing the gain to pscale = 0.001, the position

error for noisy measurements is able to converge slowly towards the noise floor.

In Figure 4.12, noiseless measurements are taken of a stationary cube with two faces visible

to the sensor. Though the error shrinks slightly at first, the basin of attraction points away

from the ground truth position. This occurs because the observer attempts to align the cube

state estimate with the wrong face of the ground truth cube. The computed update vector

will point in a direction orthogonal to the desired direction. The position update function

is only successful when a single cube face is visible to the sensor. Future improvements

should focus on designing a position update that is invariant to orientation.

4.2.3 Size correction

The size correction function is extremely robust, seeming to globally converge to the noise

floor regardless of the number of cube faces visible. Figure 4.13 shows that the size error

ratio (the ratio between the size error and ground truth size) converges to zero for noisy

measurements of a stationary cube where three faces are visible to the sensor. In Figure

4.14, noisy measurements were taken of a cube rotating at 0.0327 rad/s and translating at

0.0094 m/s such that three faces were visible to the sensor. The ground truth twist was

given as the initial twist estimate to allow the predicted cube to match the motion of the

ground truth cube. In this case, the size error ratio still converged to the noise floor. The

speed of the convergence suggests that the correction is dominated by case 2 of the size

update function. This update scheme uses the mean range difference effectively measures

the size difference. On the other hand, case 1 relies on the rarer occurrence of misaligned

edges between the prediction and ground truth being observed to determine. However,

case 1 will be required when there is non-zero position error, since a situation may arise
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(a) (b)

(c)

Figure 4.11: Position error for stationary cube with a single face visible to the
sensor. Position error (a) converges quickly for noiseless measurements when
pscale = 0.01. Position error (b) is unstable for noisy measurements if pscale =
0.01. Position error (c) convergences to noise floor for noisy measurements
when pscale = 0.001.

Figure 4.12: Position error does not converge when observing stationary cube
with two faces visible to the sensor.
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where a combination of position and size error means that the predicted and ground truth

cube faces lie the same distance from the sensor.

Figure 4.13: For noisy measurements of a stationary cube with three faces
visible to the sensor, the size error ratio converges to the noise floor

Figure 4.14: For noisy measurements of a cube rotating at 0.0327 rad/s and
translating at 0.0094 m/s such that three faces are visible to the sensor, the
size error ratio converges to the noise floor.

4.2.4 Orientation and size correction

As the orientation and size update functions were effective individually, their ability to

work simultaneously was tested.

For stationary cubes, the observer was able to converge for noiseless and noisy results,

regardless of the number of cube faces visible to the sensor. Figure 4.15 shows the angle

error and size error ratio converging to the noise floor for noisy measurements of a stationary

cube where three faces were visible to the sensor.

A more systematic test was conducted with a wide range of initial conditions to verify this

global convergence. Orientation and size correction were tested for initial angular error

ranging from a minimum of 0 to a maximum of π/4 radians, and a minimum size error ratio

of −0.5 to a maximum of 2. Noiseless range measurements were used. Figure 4.16 shows

the time taken to converge to within 1% error. Comparing Figures 4.16(a) and 4.16(b)

shows that the size error ratio always converges before the angle error. The magnitude of
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(a) (b)

Figure 4.15: For noisy measurements of stationary cube with 3 faces visible to
sensor, the angle error (a) and size error ratio (b) both converge to the noise
floor.

(a) (b)

Figure 4.16: Time taken to converge to (a) angle error < π/400 radians (1% of
maximum π/4 angle error) and (b) size error ratio < |0.01| for range of initial
conditions

the initial angle error has little effect on the speed of the size error ratio convergence. The

size correction only has a significant impact on the speed of orientation correction when

the initial size estimate is smaller than the ground truth. This global convergence was also

observed when estimating the state of a stationary cube with two faces visible, but not one.

This is due to the limitation in the orientation update described in Section 4.2.1.1.

For noiseless measurements of a rotating cube, Figures 4.17(a) and 4.17(b) show that the

observer is able to track the orientation of the cube when updating via the screw, and

the size error ratio converges to the noise floor. Though the size error ratio in Figure

4.17(d) converges to the noise floor, Figure 4.17(c) shows that updating orientation via

the twist results in overshoot. This also occurred when size correction was not being

performed. Because the convergence of the size error ratio is so rapid, the performance of

the observer when correcting both orientation and size is limited only by the effectiveness

of the orientation update.
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(a) (b)

(c) (d)

Figure 4.17: Noiseless measurements of cube rotating at 0.0327 rad/s such
that 3 faces visible to sensor. Angle error (a) and size error ratio (b) when
orientation updated via screw. Angle error (c) and size error ratio (d) when
orientation updated via wrench.

4.2.5 Discussion

4.2.5.1 Performance assessment

The analysis in Figure 4.16 shows that the observer is globally convergent when the position

error is zero. This is only the case if the position update is turned off by setting pscale = 0.

Even with a correct initial position, attempting to correct orientation and size while the

position update is active leads to divergence: the position update is unstable about the

point perror = 0.

To achieve global convergence, or even a larger basin of attraction for the position update,

the update function must be invariant to actions of SE(3). The current position update is

not invariant to actions of SO(3), as demonstrated by its divergence when more than a

single cube face was visible.

Another strength of the observer design is that it does not actually rely on the specific

geometry of the target object. Figure 4.18 shows that the orientation and size correction

converges when the object to be estimated is a tetrahedron with side length s = 0.5m. The

observer will likely give sensible results if the target object is a platonic solid due to their
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(a) (b)

Figure 4.18: Angle error (a) and size error ratio (b) for the observer using
noiseless measurements to estimate the state of a tetrahedron of side length
s = 0.5m

rotational symmetry.

These results show that sparse range measurements from a scanning sensor can be indeed

used to densely measure an infinite-dimensional state. The dynamics of the sensor are

particularly important in ensuring that the sparse measurements form an arrangement

suitable for dense estimation.

4.2.5.2 Improvements and future work

Though updating the orientation via the twist gives a smoother estimation in comparison

to the screw update, this results in overshoot. In control theory, this problem is solved

with feed-forward control which anticipates overshoot and corrects for it before it can

occur. A topic of future research would be to investigate if an observer theory analogue

to feed-forward control can be designed. A possible starting point could be to investigate

applying combinations of screw and twist updates that combine the responsiveness of the

screw update and the smoothness of the twist update.

These simulated results showed that the size and orientation update functions in this initial

observer implementation show promise. To improve performance, a more robust position

update function must be designed. A possible approach would be to augment the cube

state with a measure of the centre of mass of a history of measured points. Over time, the

difference in the estimate and measurement of this variable would produce a more accurate

position update vector. This scheme would also be much more robust to noise.

Once a working position update function is implemented, the next step is to combine the

position and orientation update functions. Such a function would act on the screw, twist

or wrench matrices as a whole, rather than correcting only the linear or angular terms.
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Designing this innovation function to be invariant under actions of SE(3) would result in

improved global convergence properties.

A symmetry preserving observer would allow design methods for linear, infinite-dimensional

observers to be utilised in nonlinear systems. This would then allow the environment to

be represented as infinite-dimensional state. The observer would not need to separate the

target object and the background. Instead, an estimate of the entire depth field could be

computed.



Chapter 5

Experimental data

In order to validate the performance of the observer implementation, experimental data

was collected with a Hokuyo UBG-04LX-F01 scanning laser range-finder.

Measurements were taken to:

• build a model of the noise characteristics of the Hokuyo UBG-04LX-F01 in order to

more accurately simulate the performance of the observer;

• observe the motion of a moving cube of known state to test the observer in real-world

conditions.

Section 5.1 details how measurements were taken to develop the noise model. Section 5.2

describes how experimental range measurements were taken and how the ground truth

cube state was determined. This work is still ongoing as the data must be calibrated before

it can be used to assess the performance of the observer.

5.1 Sensor noise characterisation

An accurate range sensor simulation must include a model for the error distribution of

the measurements. A noise model for the Hokuyo UBG-04LX-F01 was developed by Park

et al. [29]. The effect of range and incidence angles on the error was measured, but

a unified model combining both was not provided. Furthermore, [29] showed that the

measurement error depends highly on the texture and colour of the surface measured. To

accurately model the Hokuyo UBG-04LX-F01 for the usage case of this research, a wide

62
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Figure 5.1: Experimental setup to measure noise at a different ranges and
angle (lights turned off during measurement to eliminate error from variation
in lighting conditions).

set of measurements using a specific surface were taken to determine the effect of range

and incidence angle on the error distribution.

5.1.1 Measurement setup

A flat surface was painted matte white. The surface was placed perpendicular to the

ground and at a known distance and angle with respect to the range sensor. 1200 samples

of the measured distance to the surface were taken.

For this research, the cube is likely to be placed within 1.5m from the sensor and at any

orientation. The range error distribution for these conditions should be measured. The

distance from the sensor to the measurement surface was thus varied in 50mm increments

between 250mm and 1750mm, to an accuracy of ±1mm. At each of these ranges the

incidence angles was varied in 20◦ increments from 0◦ to 80◦ to an accuracy of ±0.5◦. The

physical setup is shown in Figure 5.1.

5.1.2 Results

The range error er = r− r̃ was computed. The distributions of this error for varying ranges

and angles is shown in Figure 5.2. The range error is approximately normally distributed.

The mean range error as function of r and θ is shown in Figure 5.3. The standard deviation

of the range errors as function of r and θ is shown in Figure 5.4.

Figures 5.3(a) and 5.4(a) show that the mean error and error standard deviation increase

significantly when θ > 75◦ and r > 0.8m. This can be explained by considering what

happens to the laser beam under these conditions. Though it has been idealised as a ray
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Figure 5.2: Sensor noise function fUBG(r, θ) approximately normally distributed

(a) (b)

Figure 5.3: Mean range error vs (r, θ) showing (a) large error at high angles
and range, and (b) overall trend.
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(a) (b)

Figure 5.4: Range error standard deviation σ vs (r, θ) showing (a) outliers/large
σ at high angles and range, and (b) overall trend.

in the simulation, the laser has a nonzero beam width. Thus, as θ increases, one side of

the beam will encounter the surface before the centre of the beam. A portion of the light

will reach the sensor earlier, though the total amount of light will be reduced as the angle

increases. This earlier reflected light will result in a shorter range measurement, but less

reflected light will cause a longer range measurement. For angles greater than 75◦ and

ranges greater than 0.8m, the reflected light is insufficient to allow a range measurement.

The sensor returns the maximum possible range measurement of 4095mm. In modelling

the noise, range measurements for θ > 75◦ and r > 0.8m are discarded.

These results are corroborated by [29] who reported difficulty in acquiring measurements

for high angles and modelled the noise distribution as Gaussian.

It was assumed that the noise distribution for an incidence angle θ would be identical to

−θ. However, the fact that the sensor’s scan direction rotates in a single direction may

mean this is not the case. Including the effect of incidence angles from π/2 to π/2 would

provide a more accurate noise model for future work.

The 4th degree polynomial surfaces in equations 5.2 and 5.3 were fitted to the adjusted set

of data points using Matlab’s curve fitting tool. The surfaces and the goodness of fit are

shown in Figure 5.5.

5.1.2.1 Gaussian noise model

r̃(r, θ) =


fs(r, θ, φ(k)) = r +N (µ, σ) θ ≤ 75◦ or r ≤ 0.8

NaN θ > 75◦ and r > 0.8

(5.1)
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(a) (b)

Figure 5.5: polynomials fitted to range error mean & standard deviation
data points to model noise. (a) SSE: 0.003234, R-square: 0.8447, Adjusted R-
square: 0.8278, RMSE: 0.005027(b) SSE: 7.592e-06, R-square: 0.9196, Adjusted
R-square: 0.9103, RMSE: 0.0002515

where

µ =a00 + a10r + a01θ + a20r
2 + a11rθ + a02θ

2

+ a30r
3 + a21r

2θ + a12rθ
2 + a03θ

3 + a40r
4

+ a31r
3θ + a22r

2θ2 + a13rθ
3 + a04θ

4

(5.2)

σ =b00 + b10r + b01θ + b20r
2 + b11rθ + b02θ

2

+ b30r
3 + b21r

2θ + b12rθ
2 + b03θ

3 + a40r
4

+ b31r
3θ + b22r

2θ2 + b13rθ
3 + b04θ

4

(5.3)

and coefficients aij and bij are provided in tables 5.1 and 5.2 respectively.

Table 5.1: aij coefficients

j0 j1 j2 j3 j4
i0 -0.06529 0.2126 -0.533 0.4629 -0.1223
i1 0.2024 -0.1906 0.4006 -0.1791 0
i2 -0.3074 0.0228 -0.0716 0 0
i3 0.2053 0.01455 0 0 0
i4 -0.04912 0 0 0 0

Table 5.2: bij coefficients

j0 j1 j2 j3 j4
i0 0.001242 0.2126 -0.01128 0.01162 -0.002746
i1 0.00352 0.006146 0.01021 -0.007316 0
i2 -0.005138 -0.00626 -0.0005068 0 0
i3 0.004067 0.001337 0 0 0
i4 -0.001092 0 0 0 0
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(a) (b)

Figure 5.6: Comparision of (a) measured and (b) simulated surface noise. Point
distribution along radial lines is shown as quintiles of error.

5.1.2.2 Surface noise

An additional source of range error was observed and found to be mostly independent of

r and θ. This may be caused by surface properties of the environment, though the error

is larger than expected in this case. A possible explanation is compensation performed

by the sensor to produce globally straight lines. While flat surfaces do appear flat from a

distance, locally there are regular variations in depth as shown in Figure 5.6(a).

This surface noise was modelled with a random walk function

esurface = a

(nSteps∑
n=1

−1 + 2 bRc

)
(5.4)

where R is a random variable following a uniform distribution on [0,1]. A step size

a = 0.0005m was used. Figure 5.6 shows that this function accurately models the measured

surface variations. It should be noted that the measured variation appears concave while

the simulated noise appears convex. This is due to the nature of the random walk noise.

Over a large sample, both concave and convex surface noise is observed in real-world

measurements and the simulated random walk.

5.2 Collection of observer performance testing data

Experimental data was collected to assess the performance of the observer under real-world,

less-than-ideal conditions.
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Figure 5.7: setup to collect experimental data

5.2.1 Setup

The experimental setup is shown in Figure 5.7.

The Hokuyo UBG-04LX-F01 sensor was mounted to a tripod. The sensor was panned

up and down manually while the measured range and time recorded. This panning along

trajectory with the sensor’s scanning behaviour is what allows it to densely estimate the

infinite-dimensional environment depth field. To compute the elevation angle of the sensor,

the range measurements of a portion of the blank wall at a known distance were used. The

range to this wall was measured at elevations increasing from −25◦ to 25◦ in 5◦ increments

for calibration purposes.

The target object was a cube of 100mm side length made from medium-density fibreboard.

The cube was spray painted matte white - the same surface used for the measurements in

the sensor noise modelling in Section 5.1.

The cube was placed in the gripper of a Kinova Jaco robotic arm. The arm was manually

manipulated to produce stationary, rotating, translating and combined motions. The joint

angles of the sensor over time were recorded. From this data, the forward kinematic model

for the arm was used to compute the ground truth pose of the cube over time.
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5.2.2 Results

Calibration of the data to determine the elevation angle of the sensor is yet to be completed.

However, it is unlikely that the current implementation of the observer will be able to

estimate the cube state from this data. Because the cube is held by the gripper of the arm,

neither the range or continuity assumptions in Section 4.1.5.2 hold.

An infinite-dimensional observer measuring the entire depth field would give a better

estimate of the state of the cube. A symmetry-preserving observer would likely be more

robust to the significant levels of noise in the data set.



Conclusion

An observer has been designed to estimate the state of a rigid cube from sparse range

measurements. It has been shown that by appropriately defining the sensor trajectory, the

sparse range measurements can be used to approximate those of a dense sensor.

Performance testing suggests that the observer is almost globally convergent when correcting

the orientation and size of stationary cubes for trajectories where two or three cube faces

are visible. This implementation also reveals the limitations of an observer update function

that does not consider symmetry. The position update only works in the special case that

a single cube face is visible. In order to simultaneously correct position and orientation,

the update function must be invariant to actions of SE(3). It is recommended that the

position of the cube be updated by computing the centre of mass of a history of predicted

and measured points, and defining the position update as the difference of these. This

history of points would be added as an augmented state variable. A similar approach could

be used to correct the orientation and size of the cube state estimate. Such an approach

would be far more resistant to noise.

It is recommended that the position and orientation updates are combined into a function

that acts on either the screw, twist or wrench as a whole, rather than extracting the rotation

matrix or position vector. Such an update function should be invariant to actions of SE(3),

leading to improved convergence properties over a wider region of trajectories.

A major simplification of this observer design was the representation of the infinite-

dimensional environment as a single target object and background object. Future work

should attempt to model a more complex environment that is a better representation of

an infinite-dimensional system. The triangular mesh method of modelling rigid bodies

in the simulation implementation would allow for complex, deformable surfaces to be

represented with few changes required to the code. Rather than separating the range

measurements corresponding to the cube and background, all measurements should be

70



CHAPTER 5. EXPERIMENTAL DATA 71

used. The observer update function could then be driven by the difference in measured

and predicted ranges, rather than the separate values. The benefit of this addition is that

the observer would have a form more like the traditional Luenberger observer that is used

in existing symmetry-preserving observer design methodologies [17, 21].
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