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Abstract

This report presents an investigation of how certain dataset properties affect the quality of
light-field camera calibration. Relatively little attention has been devoted to investigating
what kind of datasets produce good calibration results. The rules-of-thumb that currently
exist to guide people calibrating light field cameras have not been systematically verified,
and the full range of possible factors has not been considered. By determining what makes
a good calibration dataset, thorough recommendations can be made to the computer vision
community, which will likely improve the quality of calibration people can achieve with
light field cameras.

Through the detailed analysis of real datasets, we show that evaluating the calibration
quality using standard reprojection and backprojection errors does not always reflect key
differences in the calibration parameter estimates. This finding casts doubt on which error
measures should be used for evaluating calibration quality. We show that the intrinsic
parameter K2, which is unique to light field cameras, is highly sensitive to the inclusion
of images in which the calibration target is offset from the centre of the image. We test
this sensitivity in a depth estimation task and demonstrate that including images where
the calibration target is offset produces better depth estimates.
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Chapter 1

Introduction

1.1 Overview

Light field cameras have the ability to sample the light field, a 4-D function recording the
intensity of light in free space over a set of positions and directions. This gives light-field
cameras an advantage over standard cameras, which are only able to sample over a set of
positions. This additional directional information captured in a single light field image is
comparable to the information captured by taking multiple images from slightly different
positions using a standard camera. This additional information can be used to refocus a
light-field image at different depths, or to to compute a depth map of the scene.

Calibration of both light field and standard cameras is a fundamental task required for
many computer vision applications. Calibration is the process of relating 3-D points in
a scene in front of the camera to their corresponding points on the image plane. The
relationship between these points cannot be determined by camera geometry alone (or by
a combination of the geometry and the settings of the camera) because of real lens effects
and imperfections in the construction of the camera (e.g. not achieving coplanarity be-
tween the image sensor and the main lens). Therefore, the relationship has to be obtained
experimentally. Good calibration is crucial for applications such as depth estimation and
3-D reconstruction.

Most calibration methods require the collection of a calibration dataset. A calibration
dataset is a set of images of a target with known feature point locations. A feature point
can be any point that is easy for a computer to detect. A common target choice is a
checkerboard, where the internal checkerboard corners are used as feature points, since
they can be easily detected in an image. The physical locations of the feature points with
respect to one another needs to be known, in order to obtain ground truth on the 3-D
side of the relationship. These 3-D points can be projected to their expected locations
in the image given a set of calibration parameter estimates. An optimisation routine can
then be used to determine what calibration parameters will accurately project these known
3-D points onto the image plane. the optimisation routine typically tries to minimise the
difference between the projected points and the detected points.

Much attention has been paid to different methods of calibrating light field cameras. In
comparison, there has been little attention paid to the collection of calibration datasets,
and what properties the dataset should have. It is evident that the quality of the data
fed into any calibration method will affect the calibration quality. There are some generic
recommendations for calibrating standard cameras, which instruct users to take many im-
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ages at every possible position and orientation. Similar instructions are given for light field
cameras. To date, however, there has been no systematic verification of these recommen-
dations, or exploration of how calibration dataset properties affect calibration outcomes.
Knowing how to collect calibration datasets to achieve good calibration results would un-
doubtedly have a positive impact on members of the computer vision community who rely
on accurate calibration for their work and research.

This research was undertaken with the aim of determining what properties a good calibra-
tion dataset possesses. The initial approach was to evaluate the calibration result using a
set of error measures commonly used in the community, and examine the effect of dataset
properties on these errors. However, it became clear that this typical method of measuring
reprojection and backprojection errors did not give the same verdict on calibration quality
as measuring the precision and accuracy of the calibration parameter estimates. Addition-
ally, the errors and parameter estimates were shown to respond differently to the same
factors. This was both a useful finding but also a challenge, as it meant that the error
measures and the parameter estimates needed to be investigated independently for each
experiment, and then compared to identify any correlation.

This report presents the experimental results from four targeted experimental series that
were run, investigating how dataset size, pose set (particularly offset and angle), and appar-
ent target size affected the calibration results. In the first experimental series, the dataset
size is shown to strongly influence the precision of the calibration estimates, therefore larger
dataset sizes are recommendation required for more precise parameter estimates. An effect
on the performance metrics due to the apparent size of the calibration target in the images
was also identified in this experiment. Lastly, the inclusion of offset images is shown to
have a large effect on the estimate of K2, a parameter unique to light field cameras. In
the second experimental series we explore the apparent size effect further, and show that
smaller apparent target size systematically decreases two important performance metrics.
In the third experimental series, angle is investigated, and while concrete conclusions were
difficult to draw, the experiment does show that severely angled images should be avoid to
achieve acceptable performance metrics and stable parameter estimates. Lastly, through
performing a depth estimation task that uses the parameters unique to light field cameras,
we were able to verify that including offset images in the dataset produces better calibra-
tion parameters, although not necessarily better performance metrics.

1.2 Report Structure

This report is organised into five chapters, excluding this introduction. Chapter 2 (Back-
ground) is divided into three main sections: the first (Theory 2.1) gives an overview of
light fields, light field imaging, calibration, and disparity estimation. The second section
(Previous Work 2.2) covers the calibration method that will be used for the investigation.
The metrics used to measure calibration performance will also be discussed, as well as the
general recommendations that are currently given for the collection of calibration datasets
for light field cameras. The last section of this chapter (Problem Description 2.3) provides
details on the camera used, the dataset properties of interest, and why each property may
be important.
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Chapter 3 (Experimental Setup) is dedicate to an in-depth description of the constructed
apparatus used to obtain experimental data. This chapter also gives additional detail on
the image processing and the decoding methods used. There is a short discussion of ex-
perimental errors (Section 3.4) and their possible effects on the experiment outcomes.

Chapter 4 (Preliminary investigations) contains the methodology, design, and results for
each of the preliminary experiments conducted. The first section (4.1) investigates the
consistency of parameter estimates and serves as a general introduction to the kind of
behaviour we are interested in. The second section (4.2) describes a follow-up experiment
that was conducted to verify results relating to the performance metrics from the first
experiment. The final section (4.3) describes the experiments conducted that investigated
the effect of angled images on calibration results.

Chapter 5 (Primary Investigations) contains the results from the more targeted experiment
that was conducted to verify the preliminary findings in a depth estimation application.
Not all of the data collected for this experiment was used, so there is a short discussion
at the end of this chapter regarding future analysis of that remaining data and suggested
methods for doing so.

Chapter 6 gives a summary of the work completed and the key contributions. There is
also a discussion of future work that could be undertaken both within the initial scope
of this research but also in broader areas. Lastly, additional figures from the preliminary
investigations are contained in Appendix A, and additional tables in Appendix B.

1.3 Summary of Contributions

• Recommendation for the use of large datasets to achieve precise parameter estimates
for light field camera calibration

• Analysis of the relationship between commonly used reprojection and backprojection
errors and the accuracy of camera parameter estimates, showing that the errors are
not always good indicators of the parameter quality

• Identification of sensitivity in two error measures to the apparent size of the calibra-
tion target

• Identification of sensitivity of K2, a parameter unique to light field cameras, to the
inclusion of images where the calibration target is offset from the image centre.

• Showing that the inclusion of images where the calibration target is offset from the
image centre improves performance in a depth estimation task

• Recommendations for which factors should be prioritised for future work and sug-
gested methods for analysis



Chapter 2

Background

This chapter is composed of three sections which cover the relevant theory, literature, and
the motivations for conducting this research. In the first section, the theory of light fields,
light field imaging, and camera calibration will be covered. In the second, relevant literature
within the area of interest will be reviewed. The final section will focus on presenting and
formulating a problem description that targets the identified gap in the field. The material
in the first and second sections draws primarily from [13; 12; 2; 8; 1; 6].

2.1 Theory

This section will outline what a light field is and how light field cameras can capture it.
There will be a detailed discussion of the images produced by a light field camera, followed
by a high-level discussion of camera calibration. This content will provide the background
information necessary to understand the content in the next section.

2.1.1 The 4-D Light Field

At the most fundamental level, light allows image sensors (and by extension, cameras) to
retrieve information about the way the world is. Rays of light reflect off objects in the
world and travel from a particular point with an intensity and in a direction to an image
sensor. The image captured depends on the position and orientation of these objects rela-
tive to the sensor, because this will determine which rays hit the image sensor. Therefore,
the most useful representation of light will be one that can capture intensity as a function
of both position and direction.

Figure 2.1: Two-plane parametrization of the light field [8]

One representation that achieves this is the light field. The light field is a vector function
that describes the radiance of light rays as a function of position and direction [8]. This
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representation can have up to seven dimensions, if time and wavelength are considered,
although for static scenes, neither time nor wavelength are necessary. The remaining five
parameters consist of three position and two direction parameters. However, in free space
where rays are not blocked, one of the position parameters is redundant, since radiance
will not change along the axis of propagation [8]. This leaves us with a 4-D representation
of the light field which can be parametrized in several different ways. One parametrization
that is frequently used in imaging applications is the two-plane parametrization, which
describes the position and direction of a ray by its intersection with two parallel planes,
u, v and s, t. This parametrization is shown in Fig 2.1. The value of the function L(u, v, s, t)

is an intensity, and the parameters (u, v, s, t) define a single light ray. While useful, this
parametrization has certain limitations. In particular, it fails to capture rays travelling
parallel to the two planes. The discussion of light field cameras in the next section will
demonstrate why this limitation does not pose a problem for camera applications.

2.1.2 Standard and Light Field Cameras

Standard cameras form an image by integrating the intensity of all light rays arriving at
a pixel from different directions. An image taken by a standard camera is therefore a 2-D
sample of the 4-D light field, since no information from different perspectives is captured
in the image. To construct a light field camera, this information about direction has to
be captured. One way of doing this is by ‘multiplexing’ the angular (directional) domain
within the spatial domain [16]. Practically, this is achieved by inserting a micro-lens ar-
ray (MLA) behind a main focus lens and in front of the image sensor, such that multiple
pixels sit behind each micro-lens and the main lens, MLA, and image sensor are coplanar
[11]. A more detailed explanation of how the camera geometry is modelled is given to
help understand how angular information can be stored within the spatial domain, and
the trade-off that exists between angular and spatial resolution. This explanation will also
clearly demonstrate how such an arrangement of lenses can sample the full 4-D light field.

The main focus lens of the light field camera is generally modelled as a thin lens with radial
distortion. The light rays that travel to the main lens from a point Pi intersect the lens and
are refracted. These rays subsequently converge to a single point behind the lens to form
a ‘virtual’ image at the image point [13]. The rays then diverge until they intersect the
MLA. At the MLA, each ray intersects a lenslet, and each lenslet is modelled as a pinhole
camera. Therefore, each lenslet produces its own tiny circular subimage on the pixels be-
hind it. The image plane ends up being populated with the subimages of each lenslet in the
array [5]. Examples of what light field images look like are given in Fig 2.3 in Section 2.1.3.

This focal length of the lenslets in the MLA cannot be adjusted in the same way the focal
length of the main lens can. When the MLA is positioned one focal length (where focal
length refers to the focal length of the lenslet) from the image sensor, we refer to the cam-
era as an ‘unfocused’ light field camera [17]. Some light field cameras (such as the Raytrix
R42) contain an MLA with micro-lenses of multiple focal lengths [12]. This is desirable if
both large aperture and larger depth of field is required [15]. This is possible because the
micro-lens focal lengths can be chosen so that their depths-of-field nearly overlap, giving
an enhanced overall depth of field.

Fig 2.2 shows that a single 3-D point P is seen by multiple lenslets. Within each subimage
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Figure 2.2: Diagram of a lenslet-based light field camera. Note how rays leaving each
point from different directions are projected to different pixels on the image sensor. If all
rays passing through a point on the main lens (e.g. all red rays) are selected, a single

perspective image like one produced by a standard camera is produced.

produced by these lenslets is a single pixel that corresponds to P . The geometry of the
lenslet-based unfocused light field camera means that rays leaving P in different directions
intersect the main lens at different angles and get imaged to separate pixels, thereby pre-
serving the directional information. As discussed in Section 2.1.1, 2-D images like those
obtained from a standard camera can be extracted by selecting all rays passing through a
point on the (u, v) plane [5]. This means selecting all rays passing through a single point
on the aperture. In reality, each pixel is not a point, and since it has some size, the pixel
still integrates a volume of light, but we can approximate this volume as a single ray [2].

2.1.3 Light Field Images

The image formed on the image sensor of a light field camera has a distinctive appearance.
We refer to the image in this format as the raw image. Fig 2.3 shows two examples of
different raw images. First, note how the lenslets are ’physically’ visible in the raw image:
they are packed in a hexagonal array to achieve a high packing factor. Second, we can also
see that a single 3-D point (e.g. the checkerboard corner) appears in multiple subimages.
Furthermore, in each of those subimages, the corresponding pixel is in a slightly different
position relative to the lenslet centre. This is shown more clearly and discussed in more
detail in Section 2.2.1. These raw images show how the concept of an object being ‘in
focus’ applies to raw light field images. If an object is in focus (e.g. Fig Section 2.3b), it
will appear in fewer subimages than if it is ‘out of focus’ (e.g. Fig Section 2.3a).

Raw images are not the only image format we can extract from a light field camera. There
are also sub-aperture images [5; 11]. In Section 2.1.1 it was mentioned that producing a 2-D
slice of the light field (like what is captured with a standard camera) requires selecting only
those rays passing through a single point on the (u, v) plane, and considering all the cor-
responding points on the parallel (s, t) plane. For the light field camera, the (u, v) plane is
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(a) ‘Blurred’ raw image (b) ‘Focused’ raw image

Figure 2.3: Cropped sections of typical raw images of a checkerboard corner. Taken with
the Lytro Illum camera

the main lens plane. Sub-aperture images are simply these 2-D slices. They are equivalent
to the image you would get by placing a pinhole camera at a single point on the main lens
of the camera [13; 5]. The number of sub-aperture images you can generate is determined
by the radius in pixels of the subimages. The resolution of these sub-aperture images is
determined by the resolution of the raw image, and the radius in pixels of the subimages.
A large subimage radius but small raw image resolution will result in many low-resolution
sub-aperture images. If we describe a camera like this in terms of its angular and spatial
resolution, we would say that it has a high angular resolution (because many sub-aperture
images can be generated, and each sub-aperture image is a slightly different perspective of
the scene). However, the spatial resolution would be lower, since each sub-aperture image
will necessarily be lower-resolution. In contrast, a small subimage radius but large raw
image resolution will result in fewer high-resolution sub-aperture images, and the trade-off
between the angular and spatial resolution will be opposite (lower angular resolution but
higher spatial resolution). The usefulness of sub-aperture images in calibration will be
discussed in the following section.

2.1.4 Camera Calibration

Camera calibration is required whenever metric knowledge of a scene is required. Calibra-
tion involves estimating both intrinsic and extrinsic camera parameters by taking images
of a target with known geometry and physical size (e.g. a checkerboard). Extrinsic camera
parameters define a rigid-body transformation from 3-D points in a fixed world frame to
points in the camera’s body-fixed frame. Extrinsics are also referred to as the camera pose
(‘pose’ refers to the combination of position and orientation). A single image will have
one corresponding pose comprised of six extrinsic parameters: three position parameters
(which form a translation vector), and three rotation parameters (which can be written as
a skew vector or a rotation matrix). Intrinsic camera parameters define the transformation
of 3-D points in the camera frame (obtained via the extrinsic parameters) to points on
the image plane. For standard cameras, this is a 3-D to 2-D projective transformation.
Together, extrinsic and intrinsic parameters define the camera model that maps 3-D points
in a fixed world frame to points on the image plane.



8 Background

Figure 2.4: Camera calibration diagram for a standard camera. For a light field camera,
3-D points are projected to multiple pixel coordinates, and the projection is not 3-D to

2-D.

Calibration of light field (and other types of cameras) generally consists of three stages.
In the first step, features in raw images are estimated. Theoretically, only a single image
is needed for calibration. Checkerboards and arrays of small dots are commonly used
as calibration targets, since there are robust methods for detecting their location using
image processing techniques. The second step involves using the feature data to estimate
initial values for the calibration parameters. Lastly, these initial parameters are refined by
minimising an error function in an optimisation routine. Figure 2.4 shows this routine as
a block diagram, highlighting how the extrinsic and intrinsic parameters relate points in
the different coordinate systems.

2.2 Previous Work

In this section, the calibration method used in this research will be discussed in detail,
followed by a discussion of the performance measures commonly used to evaluate calibra-
tion quality. Lastly, a review of current recommendations regarding calibration dataset
collection will be given.

2.2.1 Calibration Methods

There are a range of approaches to light field camera calibration in the literature: some use
ray-based methods that relate pixels to corresponding rays, others match features within
subimages or within sub-aperture images [2; 1; 12; 1]. The method used for this research
was developed by O’Brien et al. and is described in detail in [13]. A summary of the
key features of this method will be given. The Matlab implementation of this method is
available online1.

The features used in this calibration method are called plenoptic discs. These discs are in
one-to-one correspondence with feature points in the scene, and can therefore be used as
features in a calibration routine. The underlying intuition for plenoptic discs is that in a
raw image, a point Pi (such as the corner of a checkerboard) appears in multiple lenslet
subimages. Therefore, each point Pi will have a collection of lenslet-pixel pairs, which are
simply the coordinates of each lenslet in which Pi appears, and the corresponding pixel
location of Pi within that lenslet’s subimage. The lenslet-pixel pairs for Pi contain two
pieces of information. First, which lenslets can see a given point, and second, the pixel
within that lenslet’s subimage where the point appears. Fig 2.5 shows what this looks like

1Available at: https://github.com/sgpobrien/PlenCalToolbox
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(a) Lenslet-pixel pairs (b) Lenslet-pixel pairs matched

Figure 2.5: Lenslet-pixel pairs for a checkerboard corner point Pi. Lenslet centres are in
red, and the corresponding pixel for the lenslet is in blue. The green lines in (b) indicate

which pixel belongs to which lenslet.

on the raw image. It is clear that this set of lenslet-pixel pairs forms a disc, which is centred
at the lenslet which see the point in the centre of its subimage. The edge of this disc is
defined by the coordinate of the lenslet that sees the point on the edge of its subimage,
at the maximum distance, the subimage radius. Thinking in this manner, we can describe
a plenoptic disc that corresponds to each point Pi. The plenoptic disc is defined by the
triple (ws, wt, R) where (ws, wt) is the centre of disc and R is a signed radius. These disc
parameters can be determined for each point by utilising the linear relationship between
the lenslet coordinate and the position within the lenslet subimage that the point appears.
This linear relationship is visually represented in Fig 2.5b.
Using the intrinsic geometry of the light field camera, the following projection equation
can be generated:

Π(P ) =

(
−fuP

x

P z
+ cu,−fvP

y

P z
+ cv,−rK2

P z
− rK1

)
. (2.1)

In Eqn 2.1, P x, P y, and P z are the coordinates of a single point P in the camera coordinate
system, r is the subimage radius in pixels, and fu, fv, cu, cv, K1 and K2 are parameters
estimated for in the calibration routine. Given estimates of the feature data (plenoptic
discs), this equation can be used to estimate the intrinsic and extrinsic parameters of the
camera.

The procedure for estimating this disc data is as follows. First, N sub-aperture images
indexed k = 1, ..., N are generated by selecting from every subimage a pixel with constant
offset (uk, vk). These pixels are stitched together into a subimage with dimensions U

r by
V
r where U × V is the resolution of the raw image. Since the lenslets are hexagonally
arranged, convex interpolation is used to generate colours for the sub-aperture image pix-
els. Matlab’s detectCheckerboardPoints function is used to detect corner points in
the sub-aperture images, and to detect the dimensions of the checkerboard. Each detected
corner in the sub-aperture image is associated with its corresponding lenslet-pixel pair.
Because there are (typically) multiple lenslet-pixel pairs for a given feature point Pi, this
provides an overdetermined linear system of equations for which a least-squares estimate of
(ws, wt, R) can be computed. This completes the feature estimation step of the calibration
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Parameters Description
K1 Relates to the distance between the MLA and main lens and the focal length.
K2 Relates to the distance between the MLA and the main lens, and the MLA

and the image sensor, should not depend on focal length.
(fu, fv) Focal length of the pinhole camera model for the lenslets
(cu, cv) Centre pixel of the raw image
k1 First coefficient for the radial distortion model
k2 Second coefficient for the radial distortion model

Table 2.1: Intrinsic parameters estimated for in the calibration method used. These pa-
rameters are estimated for the calibration dataset as a whole.

Parameters Description
τx, τy, τz x, y, z position of camera in the coordinate system of the target
αx, αy, αz Skew values, corresponding to entries of rotation matrix through the matrix

exponential

Table 2.2: Extrinsic parameters estimated for in the calibration method used. These
parameters are estimated for every frame.

routine.

The calibration initialisation is performed by deriving a linear system of equations that
estimates initial values for all calibration parameters we want to estimate. The exact
procedure follows that given in [1]. The optimisation step uses Matlab’s lsqnonlin function
to perform non-linear optimisation using the Levenberg-Marquardt algorithm. The error
that is minimised in this optimisation routine is called the plenoptic reprojection error and
is given by:

(Λ,Ξ; Φ) =
∑
i,j

(ΠΛ(Pi,j) − (ws
i,j , w

t
i,j , Ri,j))

2 (2.2)

where Pi,j = X−1
j

OPi describes the rigid transformation of coordinates from the target
frame to the camera frame, and ΠΛ denotes the plenoptic projection with lens distor-
tion modelled by a second-order approximation, and parameters given by the intrinsic
parameter estimate Λ. The parameters estimated can be separated into a set of intrinsic
parameters and a set of extrinsic parameters, which are summarised in Table 2.1 and 2.2
respectively. In the remainder of the report, the parameters (fu, fv) and (cu, cv) will also
be denoted (fx, fy) and (cx, cy).

2.2.2 Calibration Performance Measures

There is no single standard performance measure for light field camera calibration. Most
calibration methods will optimise an error that is unique to the calibration method. How-
ever, in addition to the error minimised in the optimisation step, there are three common
measures used to evaluate calibration accuracy. These errors have a non-transitive relation
to each other. A description of each error and how it is calculated will be given, which will
make the most sense in the context of the plenoptic disc method described in the previous
section.

The first performance measure is mean 3-D reconstruction error, which will be referred
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to as mean backprojection error (MBE). This is a backprojection into 3-D space. To cal-
culate this error, the feature data (plenoptic disc data) is transformed into camera frame
coordinates. The distortion model is applied using the estimated distortion coefficients.
Lastly, using the estimated extrinsics, the points are rigidly transformed from the cam-
era frame to the fixed world frame of the checkerboard [13]. The distance between the
feature point estimates and the actual feature points (ground truth) is measured, and the
result is divided by the estimated depth of the feature point to obtain MBE as a percentage.

Figure 2.6: Error diagram indicating how each performance measures calculates the error
in different coordinate systems.

The second performance measure is mean reprojection error (MRE). This is a reprojection
onto the image plane rather than into 3-D space. It is calculated by comparing the esti-
mated feature points (initially extracted from the raw data, functioning as ground truth) to
the feature points produced by projecting the true 3-D feature points through the camera
model to get the reprojected feature points on the raw image [13]. The average distance
between these two sets of feature points is calculated to give MRE, measured in pixels.

The final performance measure is mean sub-aperture reprojection error (MSE). Like MRE,
it is also a reprojection. It is calculated in two stages. First, we project the true 3-D
feature points through the camera model to get the reprojected feature points on the raw
image. Then these reprojected feature points are mapped onto sub-aperture images. The
average distance is taken between these reprojected feature points and the feature points
originally extracted from the sub-aperture images [13]. This error is also measured in pixels.

The error used in the calibration routine is called the plenoptic reprojection error. It is
conceptually most similar to the mean reprojection error. The mean plenoptic reprojection
error is calculated by projecting plenoptic discs onto the raw image using the estimated
camera parameters, and taking the mean of Eqn 2.2. Fig 2.6 gives a visual summary of
the performance measures, summarising how they relate and which coordinate system they
operate in. From Fig 2.6 it is clear that we should not expect the errors to necessarily be
correlated with each other.
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2.2.3 Calibration Datasets

Calibration datasets are simply the set of images that calibration is performed on. These
datasets usually consist of a number of images taken of a target, usually with different
camera poses. An example of a calibration dataset is given Fig 2.7. The dataset collected
will define the sample of 3-D points and corresponding features in the image that the cal-
ibration algorithm has to work with. Therefore, it is intuitive that different calibration
datasets will produce different results, because they will contain different samples of 3-D
points. However, there is very little literature on how to collect good calibration datasets,
what good makes a good calibration dataset for light field cameras. Furthermore, when
suggestions are made on what good datasets might look like, they tend to lack robust
supporting evidence.

Figure 2.7: Example of a calibration dataset with large variations in camera pose

There are a few commonly followed techniques for collecting calibration datasets. As a rule-
of-thumb, calibration datasets should contain a variety of poses and a reasonable number
of images (6 - 10 at minimum) [2; 12]. The justification for variety is intuitive: more 3-D
points are sampled in a set of two images taken from different poses than a set with two
images taken from identical poses, and more information should benefit any calibration
algorithm. The strongest justification for a minimum number of images is given in [12]
where K1, K2, cx, and cy are shown to be estimated with decreasing standard deviation as
the number of frames per set increases. Limitations with investigation given in [12] include
(a) the small range of set sizes investigated: only k-combinations from 10 images were
used, (b) not stating what kind of images were used, and (c) not giving any accompanying
performance metrics for the accuracy of the converging values of the listed parameters.

In [3] it is noted that shadows on the raw images and difficult lighting conditions result in
fewer corners being matched, which decreases the performance of calibration for camera-to-
camera calibration. [4] also notes that uneven illumination can cause the feature detection
to fail, which evidently has effects on the calibration quality, especially if this failure is not
taken into account by removing the affected image(s).

Matlab’s Computer Vision Toolbox also gives guidance on how to improve calibration ac-
curacy. The suggestions are: (a) use more radial distortion/tangential distortion/skew
coefficients, (b) take more calibration images, ensuring the images have different 3-D ori-
entations and all parts of the field of view are covered (particularly edges and corners to
ensure distortion coefficients are well estimated), and (c) exclude images that have high
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reprojection errors and re-calibrate [10].

There are also techniques that improve the accuracy of the calibration that are not related
to dataset collection but are related to dataset use within the algorithm. In [1] it is noted
that calibration errors can be reduced by discarding sub-aperture images generated using
pixels from the edges of subimages. However, discarding too many sub-aperture images
will decrease the amount of data available and will reduce the accuracy of feature detection.
This technique is also only applicable to methods that directly use sub-aperture images to
estimate feature data.

In summary, little is known about how properties of calibration datasets affect the cali-
bration outcomes beyond the rules-of-thumb presented. There is a clear gap in the field
regarding what makes good calibration datasets. By closing this gap, useful advice can be
given to members of the computer vision community on how to collect good calibration
datasets.

2.3 Problem Description

This section will expand upon the dataset properties of interest and the focus area for
this research. First, the key details of the two cameras used will be presented. Using
two different light field cameras makes it possible to determine whether the results can be
generalised or are simply effects that are tied to differences in design or quality between
different light field cameras. Second, the dataset properties of interest will be outlined,
with a discussion of how and why each property could influence the calibration outcome.

2.3.1 Lytro Illum Camera

The Lytro Illum was predominantly used for this research presented in this report. The
Lytro Illum is marketed as a consumer light field camera, and is not of the same quality
as cameras designed for high precision industrial and research applications, such as those
manufactured by Raytrix. Key properties of the Lytro Illum are given in Table 2.3.

Property Value
Aperture f/2.0
Megarays 40
Megapixels 5
Resolution 5368 x 7728
Subimage radius (pixels) 7
Multifocus No
Rolling shutter No

Table 2.3: Details of Lytro Illum camera [9]

The key parameters that are relevant for calibration are the resolution and the subimage
radius. The resolution of the Illum is comparable to a camera like the Raytrix R42. How-
ever, the Raytrix R42 has a subimage radius of 15 pixels compared to 7 for the Illum. This
means that compared to the Raytrix, the Illum will produce higher resolution sub-aperture
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images due to its low subimage radius, and therefore achieve quite good spatial resolution
at the expense of lower angular resolution. Comparatively, the Raytrix achieves very good
angular resolution, but has lower resolution sub-aperture images, highlighting the trade-off
that was discussed in Section 2.1.3. It is also important to note that the Lytro suffers
noticeable main lens distortion. To account for this, a second-order radial distortion model
was used, where two distortion coefficients are estimated.

2.3.2 Calibration Dataset Properties

Several key properties of calibration datasets were alluded to in Section 2.2.3. A compre-
hensive summary of dataset properties is given below in Table. 2.4:

Name Description
Dataset size Number of images
Number of features Number of features on target
Target symmetry Symmetric or asymmetric
Pattern size Millimetres (mm)
Pose set Set of translation vectors and rotation matrices (or skew vec-

tors) relating for each image
Target type Checkerboards, grids of dots, and square grids are common

examples.
Focal distance Millimetres (mm) from main lens

Table 2.4: Calibration dataset properties

Under the assumption that each image in the dataset is different (i.e. we are not feeding
in the same image multiple times), the dataset size is expected to influence the calibration
outcome because additional images contain additional samples of 3-D points and corre-
sponding feature points, which should improve the calibration parameter estimates that
describe the relationship between all 3-D points and corresponding feature points. This
factor will depend heavily on the variation between images. For number of features, if
the target has few features, there are less samples of the 3-D points and corresponding
feature points for the algorithm to use. Therefore, we think that more features should
always be better. For feature symmetry, because the raw images produced by light field
cameras (at least the Lytro Illum and Raytrix R42) are rectangular, the symmetry of the
target may matter. For example, an asymmetrical target can occupy the entire raw image
in a single frame, which gives a more complete set of 3-D points at that particular distance.

The size of the pattern is expected to influence the calibration outcomes in the following
way. Features in small pattern sizes at large distances become difficult to detect, which
will decrease the robustness of the feature detection and decrease the calibration quality.
This factor will be closely related to the focal distance, since short focal distances require
smaller pattern sizes [13]. The pose set is the most complex factor of those listed. While
it may be clear how pose in a single image affects the disc data for that image, it is not
clear how that disc data affects the calibration outcome, nor how multiple images interact
after the disc data estimation stage. Not only does the pose per image matter, but there
may be effects between poses. If all the poses are clustered or very similar, we will not get
an even sample of 3-D points and corresponding feature points. This factor is likely to be
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as important as number of features or dataset size, since pose set determines exactly what
the distribution of sampled 3-D points looks like.

Lastly, the target type is expected to influence the calibration outcome. The extent of
this influence may depend on the particular calibration algorithm, and the method used
to detect feature points. For example, high-accuracy feature extraction from subimages is
made difficult by the low resolution of the subimages. A calibration method that extracts
features from subimages may benefit more from features that are more constrained (e.g.
triangular tiling versus checkerboard). Lastly, the focal distance (which will be determined
by the desired application) will shift the distances at which the target needs to be placed
to produce the same disc data. Since the disc data is what the calibration algorithm actu-
ally operates on, it is conceivable that we should be trying to achieve the same disc data
independently of focal distance, and therefore focal distance may interact with pose (and
pattern size) to affect the calibration outcome.

Performing calibration can take a significant amount of time, particularly on large datasets.
Given that it was not possible in the time-frame of this project to independently vary every
factor in every possible way, not all factors could be investigated. The factors that were
not considered in this research were pattern symmetry and target type. These two factors
were excluded because to investigate them, completely new datasets would be required,
whereas a factor such as number of images or pose set can be investigated using subsets of
a single large dataset.



Chapter 3

Experimental Setup

This chapter describes the setup for the series of experiments undertaken. An experimental
approach of collecting real data was favoured over an analytical approach that studies the
propagation of errors through the calibration algorithm. Given that the intention is to
make recommendations on calibration dataset collection, by collecting real data, these
recommendations can be made in the appropriate language. For example, an analytical
approach may reveal that the algorithm is sensitive to the value of a certain variable
within the algorithm, that may or may not have a clear association with a property of the
dataset. This evidently has limited use if the goal is to make recommendations on what
a good dataset is and how to collect it. By experimenting with real data, the outcomes
are already in practically applicable terms. This chapter is divided into two short sections.
Section 3.1 describes the experimental setup used to capture data. Section 3.4 discusses
possible experimental errors, the potential impact on data collection of these errors, and
how they were mitigated.

3.1 Linear Stage

To conduct the experiments initially planned, a simple linear stage was built, which is
shown in Fig 3.1. Its key components are the rail and the moving target piece. The rail is
rigidly attached to a wooden board. At one end of the rail, a raised block was constructed
for the camera to attach to. A right-angled bracket with screw fixing holes was attached
to this platform to allow the camera to be attached via its tripod screw thread. The target
piece consists of a sliding block of wood with two adjustable screws that allow the target
to be rigidly fixed at any point along the rail. On one end of the sliding block is a rigid
wooden board, mounted with two screws, used for scenarios where no angle is desired.
On the other end is a wood board that can pivot about its vertical axis. The calibration
targets are taped to either board, depending on the experiment and the desired dataset
properties. There is space on both boards to place checkerboards at some constant offset in
the x-y plane. This setup gave relatively precise control over depth. However, the camera’s
optical axis always intersects the same point on the target (if the camera is setup to point
directly along the rail). The problems this may cause are discussed in Section 3.4.

Tape was used to keep the targets in place on the boards. Extra care was taken when
attaching the paper to the board to ensure the checkerboard lay flat. Overall, the rail
setup could be used to reliably collect data over an 83 cm range, measured from the edge
of the platform on which the camera is mounted.

16
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(a) Camera view (b) Overhead view (c) Double-sided target

Figure 3.1: Linear stage setup, demonstrating typical positioning of camera and target

3.2 Target with Fixed Depths

For the validation of the experimental results, a target scene with known depths was
constructed. This is a common way to verify the accuracy of calibration methods [7]. A
photo of the target is shown in Fig 3.2. The setup mimics the scene constructed by Bok
et al. in [1]. There are 6 target cards, each 15 mm apart in a staggered fashion. They are
made from cardboard, and each is covered with a distinct texture. In Fig 3.2 a, the front
two cards are 6 mm high, the middle two cards are 8 mm high, and the back two cards are
10 mm high. All cards are 6 mm wide.

(a) Front view (b) Overhead view (c) Side view

Figure 3.2: Target with known depths. Each target card has a distinct texture so that
disparity can be estimated

.

Constructing a target where the depths of objects are precisely known allows calibra-
tion parameters to be tested in a realistic depth estimation application. The method of
performing depth estimation used in this report uses a disparity map, which requires suffi-
ciently textured scenes. The textures on each board were chosen for their high and distinct
textures.

3.3 Image Processing and Decoding

The Light Field Toolbox for Matlab was used to extract raw images from the Lytro1[2].
This toolbox is designed to convert .LFR files into a 5-D structure described in [2]. For

1Available from https://au.mathworks.com/matlabcentral/fileexchange/49683-light-field-toolbox-v0-4
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the calibration method used in this research, the raw 2-D format described in Section 2.1.3
and displayed in Fig 2.3 was required. To extract this from the toolbox required making
the LFDecodeLensletImageSimple return function to save the variable LensletImage
as a .jpg file after de-vignetting and de-mosaicing had been applied. The devignetting is
performed using the white images stored on the camera, and corrects the vignetting within
the subimages. Demosaicing is performed using Matlab’s demosaic function.

Decoding was also performed using the Lytro Power Tools (LPT). The LPT were released
for the first two generations of the Lytro camera. They provide complete access and control
to the camera firmware via Python and Android Debug Bridge (ADB). The LPT were used
to extract the raw images of the target scene as an external standardized light field for use
in the depth estimation task. In this format, the hexagonal lenslet array is reformatted to
a square array. Data was fed into the LPT in the XRAW format from the Lytro Illum.
This format contains the white images stored permanently in the camera that are required
to decode the .LFR [9]. These square-lenslet images were exported in .png format. Since it
was unclear how the reformatting to a square array might affect calibration, the calibration
data was also reformatted for the depth estimation task.

3.4 Experimental Errors

There were several stages in the calibration pipeline where errors could occur. The linear
stage constructed did not allow for the precision attainable with high-end, purpose made
linear stages. In particular, it was not always possible to ensure that targets were precisely
orthogonal to the camera’s optical axis. The effect of this error was that the intended
pose did not always correspond to the actual pose, and subsequently, effects could be mis-
attributed.

Another potential error could have occured for datasets where the optical axes for each
frame were colinear. It is possible that this setup results in multiple solutions. This would
need to be proven theoretically, but should it be the case, it would affect any calibration
method, so it is not an easily avoided error if we want to investigate factors without varying
all aspects of pose except depth.

When using the Lytro, there was the risk of motion blur when capturing images due to the
capture mechanism of a button on the body of the camera. To avoid introducing motion
blur in the datasets, the timer feature on the Lytro was used for all image capture. This
increased the likelihood of the camera being still at the time of capture, thus decreasing
noise in the dataset.



Chapter 4

Preliminary Investigations

This chapter describes the preliminary investigations undertaken. The purpose of con-
ducting the experiments described in this chapter was to test basic assumptions regarding
calibration datasets. The aim of each experimental series was to test hypotheses and either
come to conclusions that could be tested in a real application, or indicate the need for a
more targeted experiment. The results and discussion part of each experiment will be
broken up into a section focusing on the performance metrics and a section focusing on
the parameter estimates.

4.1 Consistency of Parameter Estimates

4.1.1 Motivation and Hypotheses

To become familiar with the behaviour of the four errors and the parameter estimates,
we first wanted to collect a dataset and examine the calibration outcomes for datasets
made from every possible combination of images. While theoretically calibration can be
performed on a single light-field image, there are most likely many benefits in calibrating
on larger datasets - these benefits may manifest in better error measures or more precise
parameter estimates. The main hypothesis to test is that larger datasets increase the
precision of the parameter estimates. We are also interested in the calibration results
for datasets with different pose sets. At this stage it is hard to hypothesise what the
relationships between pose and the calibration outcomes will be, which is why the intention
is to collect data with some limited pose variation and systematically run every possible
combination of images. Then, the sensitivity of the calibration results to the inclusion of
each frame can be examined.

4.1.2 Experimental Design

The Lytro Illum was used for this experiment. One dataset was collected with 9 images.
The details of the calibration set are given in Table 4.7. In this dataset there is variation
in depth, angle, and offset. Fig 4.1 shows the raw data for this experiment. Frames 8
and 9 are the offset and angled images. Because it was economical to run all subsets for
a dataset this small, it was possible to examine different types of subsets. The types of
subsets we were primarily interested in comparing included subsets with versus without
angled frames, subsets with large depth range versus small depth range, subsets with ver-
sus without feature points close to the edge of the image. Since the angled images were
also offset from the camera’s optical axis, an offset effect versus an angled effect will not
necessarily be distinguishable from this dataset.

19
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Property Value
Dataset size 9 frames
Number of features 289 internal corners
Feature symmetry 18 x 18 checkers
Pattern size 7 mm grid size
Pose set Seven orthogonal images with no x or y offset from the op-

tical axis, at 160, 220, 330, 440, 550, 660 mm from the main
lens aperture. Two frames angled inwards by 20◦ at distances
of 548 mm and 223 mm respectively, with offsets from the
optical axis of 77 and 67 mm respectively.

Target type Checkerboard
Focal distance Approximately 440 mm from the main lens aperture

Table 4.1: Dataset properties for the proposed experiment

After running the feature estimation stage of the calibration it was observed that for frames
8 and 9, the actual range in the disc radius was within the maximum and minimum for the
entire dataset. We would expect angled frames to have a large disc radius range because the
checkerboard should be sampling a range of different depths, which correspond to different
radii. However, with only a 20◦ angle (and a large distance for frame 8), the effect was
not as noticeable as anticipated. Therefore, we should think of the key difference between
frames 8 and 9 and the rest of the frames in the dataset as being offset from the optical
axis rather than being angled.

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

Figure 4.1: All images for dataset collected
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4.1.3 Results and Discussion

4.1.3.1 Performance Metrics

Fig 4.2 shows all errors for all subsets. Subsets are ordered largest to smallest left to right,
and the legend indicates which colour corresponds to which subset size. The first observa-
tion is that subsets with single images (large subset index) produce highly erratic errors.
For MRE, MSE, and MPRE, there is a clear increase in variation as the subset size de-
creases. We also observe a strong correlation between MSE and MPRE in this experiment.
The correlation coefficient is 0.9368 (calculated using Matlab’s corrcoef function). This
indicates that MPRE, which is the error the optimisation step uses, does well controlling
for MSE but does not necessarily have similar influence over the other errors.
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Figure 4.2: All errors for the experiment conducted

The patterns visible in Fig 4.2 are due to the specific ordering of the combinations per
subset size. To avoid misinterpreting effects due to this ordering, the sensitivity of each
performance metric to the inclusion or exclusion of each frame was calculated separately.
Table 4.2 shows the sensitivity of each performance metric to the inclusion of each frame.
The sensitivity was measured by calculating the difference between the mean error for all
datasets containing frame F and the mean error for all datasets not containing F . Subsets
of size 1 were not included in this analysis, because it does not make sense to examine
inclusion versus exclusion of a frame for cases where there is only one frame in the dataset.
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A positive value indicates that the error is larger if the frame is included, and a negative
value indicates that the error is smaller if the frame is included. The frame for which
the largest absolute difference is observed is highlighted. This method of examining the
sensitivity was chosen because it eliminate possible effects between frames which is useful
for a preliminary stage of analysis. Similar analysis was performed on the data per subset
size, showing the same behaviour as the aggregate results. The data per subset is presented
in Fig 4.3.

Frame MBE (%) MRE (pix) MSE (pix) MPRE (pix)
1 0.1016 -0.1582 0.0567 2.0497
2 -0.0657 -0.0315 0.0212 0.3023
3 -0.2309 0.0518 -0.0153 -0.2789
4 0.0849 0.0365 -0.0158 -0.2015
5 -0.1158 -0.0052 -0.0169 -0.4779
6 -0.0578 -0.0520 -0.0152 -0.5065
7 0.4964 -0.0992 -0.0118 -0.3836
8 0.0486 0.0489 -0.0054 -0.2557
9 0.8211 0.1176 0.0262 1.1625

Table 4.2: Differences between mean error for all subsets that include a given frame versus
mean error for all subsets that exclude the same given frame.
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Figure 4.3: Sensitivities of a) MBE, b) MRE, c) MSE and d) MPRE to the inclusion versus
exclusion of each frame for different subset sizes (best viewed in colour).

The values for MBE in Table 4.2 indicate that including frame 9 has the biggest effect
on MBE, causing it it increase (compared to the individual effect of any other frame).
There is no obvious interpretation of the sensitivity of MBE to other frames. This may
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suggests that MBE is more affected by the combinations of frames present rather than the
inclusion or exclusion of a single frame, which is not captured at this level of analysis. This
hypothesis may be supported by observing that in Fig 4.2, MBE does not follow the trend
of the other errors and become increasingly variable as the subset size decreases. This
is demonstrated by examining the standard deviation of MBE for subset size 2, which is
0.3631, a value that is closest to the standard deviation for subset size 7 of 0.3406.

MRE is most affected by the inclusion of frame 1 which brings the error down. Frame 9
also has a large but opposite effect on MRE, with its inclusion increasing the error. This
suggests that frames with large apparent size are good for this error, but also suggests that
these frames should be on the optical axis rather than offset.

The results for MSE and MPRE show similar trends. They both indicate that frames
with larger apparent size increase the error, as is shown by the large positive sensitivity
to frames 1, 2, and 9. The effect may be due to lens distortion, since frames with larger
apparent size are more affected by lens distortion by virtue of having feature points closer
to the edge of the image, where lens distortion is more severe. The calibration method does
use a radial distortion model: however, the checkerboard is initially detected on distorted
sub-aperture images, and these detected corners are used to determine the ‘ground-truth’
disc data. The checkerboard detector used also appears to have its own distortion model,
which cannot easily be turned off. Therefore, larger MSE and MPRE may be caused by
some interaction between the lens distortion model used in calibration and the distortion
model used by the checkerboard detector.

4.1.3.2 Parameter Estimates

Next, the parameter estimates were examined. Table 4.3 shows the results of sensitivity
analysis of the intrinsic parameters, which was performed in the same manner as in the
previous section. In this case, the sign of the entries in the table do not mean the estimate
is better or worse - they indicate whether the effect of the frame on the estimate causes the
estimate to be high (positive) or lower (negative). Fig 4.4 shows the plots of all intrinsic
parameters for all subsets.

Frame K1 K2 fx fy cx cy k1 k2
(×104) (×104) (×104) (×10−9) (×10−16)

1 -2.1670 0.6963 0.0847 0.0820 22.1689 -17.2223 0.1894 -0.6099
2 -0.8169 0.4241 0.0336 0.0329 0.2858 -17.7534 -0.0038 -0.3029
3 -1.6429 0.9080 0.1323 0.1437 6.9072 27.7499 0.0494 -0.1340
4 -1.6660 0.8036 0.0349 0.0397 8.7997 11.2549 -0.0248 0.2392
5 -1.0124 0.5409 0.0291 0.0311 -12.7053 -8.9772 -0.0819 0.2767
6 0.3458 -0.5237 -0.0444 -0.0414 -10.4444 -7.2789 -0.0673 0.2161
7 -2.3639 0.5076 -0.0479 -0.0452 -10.9188 -5.8011 -0.0090 -0.2790
8 -1.5198 -4.3760 -2.3528 -2.3422 46.6692 -21.2811 0.1570 -0.5626
9 -0.5499 -4.5520 -2.3893 -2.3739 -37.9024 1.9096 0.4588 -0.8784

Table 4.3: Differences between mean parameter estimate for all subsets that include a
given frame versus mean parameter estimate for all subsets that exclude the same given

frame.
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Figure 4.4: Intrinsic parameters for all subsets.

Table 4.3 indicates that K1 is most sensitive to the inclusion of frame 7 and frame 1,
which both decrease the value of the estimate. This may be a consequence of using a small
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Frame K1

1 -3.6232 -
2 -1.8877 -1.0293
3 -3.4053 -2.8008
4 -3.5290 -3.3660
5 -2.0798 -1.8512
6 0.9004 1.1847
7 - -3.8189
8 -3.2053 -3.0501
9 -1.8046 -0.2025

Table 4.4: Sensitivity analysis of K1 on datasets (a) without frame 7, (b) without frame 1.

dataset, since frame 1 and 7 are the closest and furthest frames respectively. To determine
whether this is the case, we can remove datasets containing frame 7 from the sensitivity
analysis and observe whether frame 6 shows the same behaviour as frame 7 in frame 7’s
absence. The same can be done for frame 1. Table 4.4 shows the results of this analysis,
which indicate that frame 6 does not have a similar effect to frame 7 in frame 7’s absence,
because the relative effect of frame 6 does not change. Similarly, in the absence of frame 1,
the relative effect of frame 2 remains unchanged. This suggests that K1 is actually affected
by a more complex factor than the inclusion or exclusion of a single frame, such as certain
combinations of frames.

Table 4.3 indicates that this factor is the inclusion of frames 8 and 9 cause the K2 esti-
mates to be low, and in their absence, the K2 estimate is high. This behaviour is visible
in Fig 4.4. This would suggest that offset frames have a large effect on K2. One way of
determining which K2 value is ‘better’, and therefore whether including offset frames is
good, is to reconstruct the checkerboards. Fig 4.5 compares the 3-D reconstructions of
the checkerboard for two subsets, one containing a single offset image, frame 8 (a) and
one containing no offset images (b). Observing the z-axis scale, it is clear that the lower
value of K2 produces better checkerboard reconstructions, meaning including offset images
produces better 3-D reconstructions of the checkerboard.
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Figure 4.5: Comparison of checkerboard reconstructions for low and high K2 estimates
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Figure 4.6: Corner pixel reprojections on the raw image using different parameters: green
points are reprojections using a low K2 estimate (subset 39), red points are reprojections

using a high K2 estimate (subset 45), and blue points are the lenslet centres.

We can also compare the reprojections of 3-D points onto the corresponding pixels on the
raw image for these two subsets. Fig 4.6 compares the pixel reprojections for a corner
point in frame 1 (common to both subset 39 and 45). The reprojections using param-
eter estimates from subset 39 (low K2 estimate) are shown in green, while those using
parameters estimated from subset 45 (high K2 estimate) are shown in red. The lenslet
centres are shown in blue. There is a small but constant offset between the pixel loca-
tions. However, the reprojections are reasonably close together. Table 4.5 shows why this
may be the case. The parameter estimates fx and fy appear to be compensating for the
larger K2 estimate. If we look back at Table 4.3 we see that fx and fy have similar sen-
sitivities, which supports the hypothesis that these parameters are simply compensating
for the value of K2. Overall, this small comparison highlights that the performance met-
rics do not tell the whole story, and that the parameter estimates need to be considered too.

Subset 39 Subset 45
K1 -34.7565 -34.8193
K2 1.4839 × 104 1.1372 × 105

fx 7.0118 × 103 5.3751 × 104

fy 6.9896 × 103 5.3584 ×104

MBE (%) 2.1635 1.9983
MRE (pix) 0.5164 0.4675
MSE (pix) 0.2979 0.2908
MPRE (pix) 2.6297 2.4049

Table 4.5: Comparison of K1, K2, fx, fy, and performance metrics for subset 39 and 45.
A full comparison showing all parameters and performance metrics is given in Appendix B

Table B.1.

Examining the centre pixel parameters cx and cy shows that cx is most sensitive to the
inclusion of frames 8 and 9, while cy is most sensitive to the inclusion of frames 3 and 8. It
is possible that these effects are due to inaccuracies in the setup, where the centre of the
checkerboard was not always located precisely in the centre of the images for frames 1 - 7.
Lastly, the distortion coefficients k1 and k2 are unsurprisingly most sensitive to frames with
feature points close to the edge of the image, with frame 9 having the strongest influence
on both parameters, followed by frame 1.
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4.1.3.3 Precision of Parameter Estimates

Finally, to address the hypothesis regarding number of frames to use, the standard devi-
ation of the intrinsic parameters was calculated for the different subset sizes used (1 - 8).
Fig 4.7 shows that single frame calibration is not adequate for producing precise parame-
ter estimates, and that using more frames is always better if precise calibration parameter
estimates are required. The exact number of frames required will depend on the desired
precision of estimates, which will be determined by the application. The data used to
produce these graphs is tabulated in Appendix B Table B.2. It should be noted that the
confidence intervals for each datapoint are different, with the highest confidence values at
frames 4 and 5 (the number of samples is included in Appendix B Table B.2).

There is interesting behaviour around dataset size 3 frames for fx, fy and cx, cy, parame-
ters that are associated with the plenoptic disc centre part of the projection model. This
could possibly be a statistical effect. The number of samples starts off low for 1 frame
datasets, reaches a maximum at 4 and 5 frame datasets, and then decreases again. While
the number of samples is changing, the sample size (number of frames) is also changing.
Changing the number of samples has a different effect to changing the sample size, so it is
possible that at datasets with 3 frames, there is some crossover between the two effects. A
thorough statistical analysis would be required to determine the cause of this behaviour.
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Figure 4.7: Standard deviation for intrinsic parameters (a) K1, (b) K2, (c) fx and fy, (d)
cx and cy, (e) distortion coefficient k1 and (f) distortion coefficient k2.

In summary, the key results from this experimental series into the behaviour of errors and
the consistency of parameter estimates were:

• Larger datasets increase the precision of parameter estimates.
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• K2 estimates are sensitive to whether the dataset contains images with an offset from
the optical axis, while K1 estimates appear to be most sensitive to frames at the ends
of the range of depths in the dataset

• Smaller apparent size is better for MSE, MPRE

• The errors and the parameter estimates are not always correlated
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4.2 Varying Apparent Size Using Different Grid Sizes

4.2.1 Motivation and Hypotheses

One of first choices made when collecting a calibration dataset is what calibration target
to use, and what properties it has. In the case of checkerboards, this corresponds to the
physical size of the checkers, how many checkers there are, and whether the checkerboard is
symmetric or asymmetric. This experimental series focuses on the first property, grid size
(in mm), in order to verify the findings relating to apparent size from the first experimental
series.

As discussed in Section 2.1.3, the distance at which the main lens of the camera is focused
determines the distance at which an object will appear ‘in-focus’. This affects the char-
acteristics of the plenoptic disc - out of focus images will have larger (absolute) plenoptic
discs, and in focus images will have smaller plenoptic discs. In addition to this camera
geometry, the distance an object is placed from the camera affects its apparent size in
pixels in the raw image. This apparent size will affect the position of the plenoptic disc
centres in the raw image small apparent grid sizes will have disc centres that are closer
together than large apparent grid sizes. The first experimental series showed that smaller
apparent grid size is better for MSE, MPRE, and worse for MRE (although it looked like
offset interacted with an apparent size effect for MRE). In this experimental series, we want
to verify these results by varying grid size, and then observing whether the relationship
holds when focal distance is varied. If the observed effect really is caused by apparent
size, we would expect larger grid sizes to produce worse MSE, MPRE, but possibly better
MRE. Furthermore, we would expect this relationship to hold for any focal distance, since
varying focal distance does not change the apparent size.

4.2.2 Experimental Design

The Lytro Illum was used for this experiment. The experiment was conducted by select-
ing six grid sizes and three focal distances and taking one dataset of 16 images per focal
distance per grid size, giving a total of 18 datasets. This experimental design generates
‘nested’ variation in the two factors of interest: focal distance and grid size. The set of
distances were held constant for all 18 datasets. Table 4.6 shows the complete dataset
properties. In summary, the only (intended) difference between the 6 datasets per focal
distance was the apparent size of the checkerboard in the raw image. The only additional
difference between the focal distance sets was the value of the disc radii per image.

The focal distances were intended to be located at the front, middle, and back of the range
of distances at which the target is placed. The focus settings on the Lytro indicated that
the focal distances were correctly positioned when capturing the dataset, but after decod-
ing, it turned out that the focal distances were actually located as shown in Fig 4.8.

The decision to have the checkerboard orthogonal to the optical axis in every frame was
made to eliminate the potential effects of other factors. However, as discussed in Sec-
tion 3.4, this may create an ill-conditioned calibration problem where there are multiple
solutions. This means that the calibration outcome may be highly sensitive to very small
variations in input data. However, as a preliminary investigation, it was preferred to hold
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Property Value
Dataset size 16 frames
Number of features 361 internal corners
Feature symmetry 20 x 20 checkers
Pattern size 3.5, 4.5, 5.5, 6.5, 7.5, 8.5 mm grid sizes
Pose set No rotation around any axis. x and y offset always approxi-

mately 0 mm. z positions in 20 mm increments over 300 mm
range starting at approximately 185 mm from the main lens
aperture

Target type Checkerboard
Focal distance Approximately 265, 465, and 625 mm from the main lens

aperture

Table 4.6: Dataset properties for the proposed experiment

Focal distance

short

185 mm

485 mm

20 mm

Focal distance

medium

Focal plane

long

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.8: Visual illustration of the setup for this experiment

all other factors constant.

4.2.3 Results and Discussion

The performance metrics for each dataset are shown in Fig 4.9. A number of datapoints
were removed because they produced unacceptably high MBE of over 100%. Closer inspec-
tion revealed that this was caused by parameter estimates for K2, fx, and fy that were
several orders of magnitude lower than they should have been, which also affected the ex-
trinsic parameter estimates. This was most likely a result of the ill-conditioning discussed
previously. The graphs for all datapoints including those with large MBE can be found in
Appendix A Fig A.2. Grid sizes 5.5 mm and 8.5 mm were particularly susceptible, but the
reason for this could not easily be determined without detailed analysis of the optimisation
algorithm behaviour.

Fig 4.9 shows that for MSE and MPRE, smaller grid sizes are always better, independently
of the focal distance. Since smaller grid sizes result in smaller apparent size, this supports
the hypothesis that apparent size has a real effect on MSE and MPRE. The results for
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MRE could arguably support the same conclusion, although the distinction between large
and small grid sizes is less clear. inconclusive with respect to apparent size.
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Figure 4.9: Performance metrics for the experiment conducted. The different series repre-
sent different grid sizes (best viewed in colour)

There are some other interesting trends in the data presented relating to the focal distance.
The MBE results indicate that the set of poses (16 orthogonal images at equally spaced
distances) is best suited to cases where the focal plane is far behind the furthest frame.
It is not clear why this would be the case. The MRE results do not clearly support this,
although one could argue that the 4.5 mm series demonstrates similar behaviour to MBE.
The MSE results indicate that dataset is best suited to the medium focal distance. There
is also some sensitivity at the medium focal distance for MSE, where large grid sizes have
higher error compared to the short focal distance, whereas smaller grid sizes have lower
error compared to the short focal distance. This sensitivity around the medium focal dis-
tance is observed in MRE and MPRE too, but manifests differently, most likely due to the
different ways the errors are measured.

The medium focal distance datasets were examined in more detail, since all datasets in
this group produced acceptable MBE results. Fig 4.10 shows the errors and parameter
estimates plotted against grid size for the medium focal distance dataset. The remaining
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intrinsic parameters are shown in Appendix A, Table A.3. These results show the effect
of grid size in the absence of variation in any other factor besides grid size. Apart from
the small dip in MBE, all errors show similar behaviour, with lower errors for smaller grid
sizes. Furthermore, we see that K1 also has similar behaviour, with lower estimates for
smaller grid sizes.
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Figure 4.10: Medium focal distance performance metrics and parameter estimates: (a)
MBE, (b) MRE, (c) MSE, (d) MPRE, (e) K1, (f) K2, (g) focal length of lenslets, and (h)

centre pixel.

The behaviour of K1 may be a product of holding constant too many factors in this exper-
iment, but it does show that larger apparent size increases the parameter estimate. This
may simply be a direct response to MPRE, since this is the error optimised for in the
calibration routine. To investigate this effect further, a similar dataset would need to be
examined where the focal distance is in the middle of the range of distances at which the
target is placed. The estimate for K2 appears to be sensitive to larger grid sizes but in
a non-linear matter, which indicates that the results for 7.5 and 8.5 mm may be effects
of ill-conditioning where the estimate is responding to very subtle differences in the larger
grid size datasets.
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Ideally, and experiment like this would be repeated using a camera that suffers negligible
lens distortion, such as the Raytrix R42. This would allow us to pinpoint the cause of
the apparent size effect. However, there are still key findings that can be taken from this
experiment:

• When all frames are orthogonal to the camera’s optical axis, the calibration prob-
lem becomes ill-conditioned which can manifest in MBE of over 100% and unusable
calibration parameters

• With the exception of a few data points, smaller apparent size is associated with
better performance metrics (independently of focal distance)
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4.3 Angled Images

4.3.1 Motivation and Hypotheses

The introduction of angle into a dataset has potential effects that are of interest. By ro-
tating the target round any axis (except the z-axis), depth variation within a single image
can be achieved. It is not clear how this variation within an image contributes differently
to depth variation between images. However, there is a clear conceptual difference between
these two types of variation. Practically, it will nearly always be true that a more depths
can be sampled by introducing angle into a single image than by using many parallel im-
ages taken at small depth increments. There is also potential for interaction between the
distance at which the angled target is placed and how the angle ‘translates’ into disc radii
variation, as seen in the first experimental series.

Several observations have informed the hypotheses for this experimental series. It has
been observed that the calibration algorithm converges more often and with fewer itera-
tions when the dataset contains angled images. It has also been observed that the frame
MRE and MSE for individual angled images within datasets are higher than for orthogo-
nal images in the same dataset. The aim of experimenting with angle is to investigate the
impact of quantity and ‘severity’ of angle on the calibration performance measures. The
broad hypothesis is that moderately angled images are sufficient for making the calibra-
tion problem ‘well-conditioned’ and reducing MBE to acceptable values, and that severely
angled images in a dataset will increase MRE and MSE. We also want to know whether
parameter estimates such as K2 are also sensitive to angle in the same way they are sen-
sitive to other factors (e.g. offset from the optical axis).

4.3.2 Experimental Design

The Lytro Illum was used for this experiment. The optical axis of the camera passed
through the centre of the target in each image, and images were taken at 7 distances that
crossed the focal plane. At each depth, three images were taken: one orthogonal frame (0◦

rotation), one frame rotated around the y-axis by 30◦, and one rotated by 60◦. Rotation
around the y-axis was chosen for convenience, but it is important to note that it is not
necessarily representative of equivalent rotation around the x-axis. A separate experiment
would need to be conducted to determine whether y-axis and x-axis rotation have equiv-
alent affects on calibration. In theory they should, but due to a number of real factors
such as lens distortion, this may not be the case. Rotation around the z-axis was not
examined at all in this experiment due to issues correctly detecting the orientation of the
checkerboard within the calibration routine.

The intention with this experimental design was to calibrate subsets of the whole set. The
set was divided into the three frame types: 0◦, 30◦, and 60◦. In the first part of this
experiment, 20 random pairs for each combination of frame type were taken. Table 4.8
shows the combinations of frame types in the order they appear in later figures. While
calibrating pairs of images has been shown to produce more variable errors/less precise
parameter estimates, it is a good place to start because the effects will be more noticeable
if there is less data. Once we know what effects are the right ones to look at, a more
targeted experiment can be designed that uses larger, more realistic datasets.
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Property Value
Dataset size 21 frames
Number of features 361 internal corners
Feature symmetry 20 x 20 checkers
Pattern size 3.5 mm grid size
Pose set See Fig 4.11. No x-axis or y-axis offset. Depths of 20 mm

increments over 120 mm range. Three angles at each depth,
with 0◦, 30◦, and 60◦ rotation around y-axis.

Target type Checkerboard
Focal distance Approximately 265 mm from the main lens aperture

Table 4.7: Dataset properties for the proposed experiment

Focal distance

185 mm

305 mm

20 mm

30
◦

60
◦

Figure 4.11: Visual illustration of the setup for this experiment

Subset index range Frame 1 Type Frame 2 Type
1 - 20 30◦ 30◦
21 - 40 60◦ 60◦
41 - 60 0◦ 30◦
61 - 80 0◦ 60◦
81 - 100 30◦ 60◦

Table 4.8: Structure of frame type combination experiment

4.3.3 Results and Discussion

Fig 4.12 shows the results from the frame type combination experiment. The MBE results
indicate that combinations of orthogonal and 30◦ frames are best, while combinations of
30◦ and 60◦ are worst. Further discussion of this behaviour is given later in this section.
The best performing group for MRE is (marginally) the 30◦ and 60◦ group, which is sur-
prising given how poorly only 60◦ frames do against MRE. MSE seems to preference the
30◦ frame only group, as does MPRE. MSE and MPRE are also highly correlated in this
experimental series, with a correlation coefficient of 0.9115.
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Figure 4.12: All errors for the frame type combination experiment

We can also examine the parameter estimates, which are shown in Fig 4.13. The variation
in K1 is reasonably consistent for each section, indicating that K1 is not sensitive to angled
versus non-angled frames (at least for pairs of images). K2 is stable for the first two combi-
nation types, which are the sets where samples are drawn from images with the same angle
but different depths (e.g. all 30◦, or all 60◦). This may indicate that having only frames at
similar depths is not good for K2, since for the first two frame type combinations it is not
possible to generate a pair where both frames are at the same depth. The last set of frame
type combinations with only angle result in very low K2 estimates, orders of magnitude
below what they should be (the same phenomenon seen in Section 4.2). If we compare the
locations of the low K2 estimates we see that they align with large MBE of over 100%.
This is a useful result because it shows that MBE will pick up certain inaccuracies in the
parameters.

Looking at the other intrinsic parameters shows that K2, fx, fy, cx, cy are compensating
for one another, since they all spike in the same places (except for fx, whose behaviour for
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Figure 4.13: All intrinsic parameters for the frame type combination experiment

the second subset group has no plausible explanation). The extrinsic parameters for these
spiking datasets show that the extrinsics are also compensating, with estimated depths
of less than 1 mm. The distortion coefficients spike at the same subsets as K2, but the
magnitudes are not proportional.

While some of the results were difficult to interpret, there are still several important con-
clusions that can be drawn:

• Combinations of moderately angled (30◦) and orthogonal frames achieve a good
trade-off across all errors.

• K2, fx, fy, cx, cy estimates are sensitive to combinations of moderate and severely
angled frames.

• MBE will pick up low K2, fx, fy parameter estimates, provided they are orders of
magnitude below the typical values.



Chapter 5

Primary Investigation

The purpose of the primary investigation is to verify the results obtained from the pre-
liminary experiments in a real world application, depth estimation. Depth estimation
extends upon the verification techniques already used such as examining the checkerboard
reconstructions and reprojections. The checkerboard reconstructions are not sufficient to
fully test the geometric accuracy of the calibration parameters, because the reconstruc-
tions rely on extrinsic parameter estimates, and as seen, inaccuracies in parameters can
be compensated for by other parameters. Therefore, depth estimation has been selected
as an independent task for verification of the results. Additionally, it is still unclear what
method of calibration evaluation should be used for a given task. This section will describe
the highly targeted experimental series and subsequent validation that was undertaken in
order to determine what measure or parameter matters most for depth estimation.

5.1 Hypotheses

In Section 4.1, it was shown that K2 is highly sensitive to the inclusion of images offset
from the optical axis. Through the simple reconstruction of the checkerboard using the
estimated intrinsic and extrinsic parameters, we observed that datasets containing offset
images produced better reconstructions. The hypothesis is that K2 estimates produced by
datasets containing offset images also give better depth estimates when compared to K2

estimates produced by datasets without any offset images.

The sensitivities of K1 were harder to determine in the preliminary investigations, possibly
due to its nonlinear relationship in the function relating 3-D points to disc data, and pos-
sibly due to the small dataset used. However, the current hypothesis is that K1 is sensitive
to factors relating to depth and apparent size. This is worth investigating in more detail,
however, as will be discussed, effects due to K2 will be more visible in a depth estimation
application due to K1 once again having a non-linear relationship in the depth equation.
Therefore, the focus in this experimental series was on K2.

A final goal of this experimental series was to determine whether calibration estimates
that performed better in the depth estimation task could be correlated in some way with
any of the performance measures. If the error measure can be correlated with MPRE in
particular, this would add support for this error measure as a good choice for the error to
minimise in the optimisation step.

38



§5.2 Experimental Design 39

5.2 Experimental Design

The Lytro Illum was used for this experiment. Table 5.1 gives the details of the dataset
that was collected. The dataset was composed of four distinct groups of images, which
are visually represented in Fig 5.1 (the relative distances reflect the actual setup). The
different colours in this figure represent ‘subsets’ with a specific pattern. For example, the
red frames form a set of 11 images, all orthogonal to the optical axis, at increasing distance
from the camera.

Property Value
Number of frames 42 frames
Number of features 361 internal corners
Symmetry 20 x 20 checkers
Pattern size 3.5 mm
Pose set See Fig 5.1. No y-axis offset. Offset from x-axis

of approximately 70 mm for all offset frames.
Depths of 110, 140, 170, 200, 230, 260, 290, 330,
380, 470, 590 mm from main lens aperture

Target type Checkerboard
Focal distance Approximately 200 mm from main lens aperture

Table 5.1: Dataset details for the proposed experiment

Focal plane

30
◦

200 mm

110 mm

590 mm

70 mm

70 mm

Figure 5.1: Visual representation of the data collected for this experiment. The different
colours identify different groups (best viewed in colour)

The intention was to run many randomised subsets drawn from the four groups of images.
The groupings of interest were (a) only images with no offset (i.e. all frames lying on the
optical axis), (b) only images with offset (i.e. all frames lying off the optical axis), (c) all
angled images (which would include both on and off axis images), and (d) and all orthogo-
nal images (which would also include both on and off axis images). Due to the arrangement
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of the depths and poses, if a statistically significant number of subsets can be calibrated,
this would hopefully distinguish effects such as angle with respect to position (i.e. whether
angled frames should be placed on the optical axis or offset, and angled towards or away
from the optical axis). Analysis and results from the first two groupings were completed,
and the full analysis of the remaining groupings is left as future work.
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Figure 5.2: Examples of a) disparity map, b) disparity map with confidence < 0.6 filtered
out, c) confidence map used to filter (dark regions indicate low confidence), and d) depth
map. The different colours in a) indicate regions in front (blue) and behind (red) the focal

plane (black).

As well as calibration datasets, images of the target with known depths (see Section 3.2)
were also taken at different distances throughout the same range as the calibration data.
Disparity maps were calculated for each of these images using the method described in
[14]. The disparity map used for analysis is shown in Fig 5.2a. This particular image was
chosen because it showed large differences in disparity between the cards. The regions
containing these cards of known depth were manually segmented. To get real depth from
the disparity map, the following equation was applied:

D = − K2

(K1 + (2 · r2 · δ))
(5.1)

where D is depth, K2 and K1 are intrinsics estimated in the calibration algorithm, r
is the subimage radius for the camera, and δ is disparity (which was determined using
the mean disparity of each segmented region within each card). Disparity estimates with
low confidence values were also filtered out. Fig 5.2c shows the confidence values, and
Fig 5.2b shows the resulting filtered disparity map. When calculating depth using the
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mean disparity, only disparities with confidences of 0.8 and higher were used, which filtered
out the problematic disparity values. Once the depths had been calculated using Eqn 5.2,
the best parameters were defined as those with the lowest sum of squared difference (SSD)
error, where the difference was calculated between the truth depths between adjacent cards
and the estimated depths between adjacent cards. This error is measured in mm2.

5.3 Results and Discussion

5.3.1 Performance Metrics

While the focus of this experiment was not on examining the performance metrics in great
detail, they are still worth displaying. Fig 5.3 shows all performance metrics. The be-
haviour of MSE and MPRE supports the hypothesis that the apparent size effect is related
to distortion, since the dataset with no offset images would have the least distortion, which
corresponds to systematically lower error measures according to MSE and MPRE. MBE
arguably shows the opposite behaviour to the other errors, with the datasets containing
no offset images producing systematically higher error according to MBE. The intrinsic
parameter estimates are provided in Appendix A Fig A.4.
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Figure 5.3: Performance metrics for the data collected in Section 5 (Primary Investiga-
tions).
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5.3.2 Depth Estimation

Parameters were generated by calibrating random combinations of frames from three
dataset ‘groups’ or ‘types’. The first group was all images with no offset from the op-
tical axis (red and orange frames in Fig 5.1). The second group was only images with
offset from the optical axis (blue and green frames in Fig 5.1). The last group included
the entire dataset, and therefore included both offset and non-offset images.

Fig 5.4 shows the SSD error for the different parameter estimates produced in the manner
stated above, with 50 datasets randomly selected. Subsets ranged in size from 10 to 16
images. The index on the x-axis has no meaning, the datasets are simply presented in the
order they were generated. It is clear from Fig 5.4b that there is a systematic difference in
the error produced by the different dataset types. On average, the parameters produced
by datasets containing no offset images are associated with a higher SSD error than the
other two dataset types, which both contain offset images. The mean SSD is tabulated in
Table 5.2, as well as the minimum SSD error and the parameters that produced the lowest
errors. This confirms the hypothesis that datasets containing offset data produce more
geometrically accurate calibration parameter estimates.
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Figure 5.4: Comparison of SSD error for the three datasets types examined. The datasets
used to generate these calibration parameter estimates ranged from 10 - 16 images in size.

We also explored the relationship between the estimate for K2 and the SSD error. This
relationship is plotted in Fig 5.5. This figure illustrates again that different dataset types
produce systematically different K2 values. It also shows that these K2 values have a
strong effect on the SSD error. There are a number of interesting observations that can be
made about this graph. The first is that while it looks like there should be some symmetry
in the shape of the curve, most points are clustered to one side (corresponding to lower
K2 estimates). It is unclear why this is the case, many more samples would need to be
computed in order to understand this behaviour more fully.

Table 5.3 compares the estimated depths between adjacent cards with a similar experi-
ment conducted by Bok et al. in [1]. It should be noted that no details were given in [1]
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Figure 5.5: K2 estimates plotted against the corresponding SSD for the three dataset types
shown in Fig 5.4.

Mean SSD Min. SSD K1 K2

No offset images 17.4207 14.2358 -69.3467 1.4386 × 104

Only offset images 13.1889 12.8064 -69.6468 1.6464 × 104

Combinations of both 14.4265 12.7581 -69.0229 1.6513 × 104

Table 5.2: Mean and minimum SSD for the different types of datasets. The parameters
that produced the minimum SSD are also shown.

of the setup other than the relative depths being 15 mm. It is not known what the focal
settings of the camera were, or where the target was positioned with respect to the camera.
The actual size of the cards in the scene is also unknown. However, this shows that the
parameters perform quite well compared with the ground truth values, with a maximum
deviation of 4 mm, compared to 13 mm for [1]. Furthermore, it is likely given the pat-
tern in the depth estimates that the target was placed on a slight angle with respect to
the camera, which is why the depths between every second card are systematically lower.
This may mean that the parameter estimates are more precise than the SSD error indicates.

Adjacent Cards Ground Truth (mm) Bok et al. [1] Best estimate (mm)
(1) - (2) 15 17 13.3271
(2) - (3) 15 14 16.6362
(3) - (4) 15 8 11.2232
(4) - (5) 15 4 20.6317
(5) - (6) 15 2 14.9595

Table 5.3: Comparison of estimated distances between adjacent cards (as seen in Fig 5.2)
to a similar experiment in [1]. The best estimate uses the parameters from Table 5.2 in

the ‘Combinations of both’ row.

So far we have seen clear evidence in support of including offset images in calibration
datasets to achieve good depth estimation results. However there are still peaks evident
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(a) High SSD (b) Low SSD

(c) High SSD (d) Low SSD

Figure 5.6: Histograms comparing the frames used for (a) high SSD errors for no offset
dataset types, (b) low SSD errors for no offset dataset types, (c) high SSD errors for all
offset dataset types, and (d) low SSD errors for all offset dataset types. Angled frames are
orange, orthogonal frames are blue, and in instances where both the angled and orthogonal
frame at the same distance were used, that region appears dark brown. Frame 1 is closest

while frames 11 and 10 are furthest from the camera for the respective groups.

in the SSD error for all dataset types. We explored the peaks that occur in the first two
dataset types by closely examining the frames used for the datasets that produced param-
eters that produced large SSD error. These frames were compared to those in datasets
that produced parameters that produced very low SSD error. This comparison may not be
representative of the overall behaviour, but it is a reasonable place to start. The results are
presented in the form of several histograms in Fig 5.6, where the frame number is a proxy
for the depth of the frame, and the colour indicates whether the frame is orthogonal or
angled. This representation gives a sense of the distribution of frames both throughout the
depth range, and whether there were multiple frames at any depths (these appear brown
in the figure). The title number is the index number that can be related back to Fig 5.4.

Fig 5.6a and b compare the frames used for local maxima and minima in SSD for datasets
without offset images. The high SSD datasets seem to have (a) only angled frames at the
front of the depth range, and (b) angled frames at depths with no accompanying orthogonal
frame at the same depth. If we look at Fig 5.6c and d, which make the same comparison
but for datasets with only offset images, that trend is less clear. Fig 5.6c and d is harder to
interpret, but may indicate that frames are more clustered (e.g. index 84) for the low SSD
datasets and more ‘sparse’ for the high SSD datasets. It is not possible to draw concrete
conclusions from this small, surface-level investigation, but these results do indicate that
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there is some effect relating to the distribution of images that has a large effect on SSD,
which itself is highly correlated with K2.

Finally, we tried to relate the performance as measured by SSD in the depth estimation
task to the original performance metrics. Table 5.4 shows the correlation coefficients per
dataset type. The strongest correlations appear for the no offset datasets, with MPRE
most strongly correlated with SSD. However, the correlations for the other two dataset
types are low, and the rankings are not consistent. This tells us that either the errors do
relate to SSD but in a non-linear way, or that the errors do not correlate with SSD very
well. Ideally, these coefficients would be calculated on a much larger sample size, while
also systematically varying factors such as dataset size over a wider range, but the current
conclusion that can be drawn is that the errors do not correlate very well with SSD, and
therefore are not a good way to evaluate the calibration outcome for a depth estimation
task like the one presented.

SSD MBE MRE MSE MPRE
No offset 1.0000 0.2368 0.1394 0.1728 0.4162
Only offset 1.0000 -0.1397 0.0530 0.0011 -0.1422

Combinations of both 1.0000 0.1182 0.1252 0.0631 -0.0040

Table 5.4: Correlation coefficients between SSD and calibration performance metrics for
each dataset type

5.4 Summary

The experiments conducted in this section have shown that accuracy in a depth estimation
task depends heavily on the estimates for K2. It was previously concluded that parameters
produced on datasets including offset data improved 3-D reconstructions when compared
to the 3-D reconstructions produced by parameters obtained from datasets with no offset
images. This verification in a depth estimation has shown that datasets containing offset
images are almost always sufficient for producing accurate K2 values. However, we did see
that there are still other factors in play that can cause the K2 values to be inaccurate. A
small investigation points towards the distribution of 3-D points sampled by each frame
in the dataset as the cause, but much more detailed analysis is required to determine the
precise relationship.

Angle as a factor should have been investigated in tandem with offset in this experimental
series, because the conclusions of this experiment rely on the assumption that the effect
of angle is unchanged when an angled frame is moved off the optical axis (i.e. any change
that is observed in the calibration is due to the frame being offset rather than being angled
and offset). This assumption should have been tested. The first place to start with this
testing would be to extract datasets where the only difference is angle (i.e. one dataset has
an orthogonal frame at position X, and the other has an angled frame at position X, and
all other frames are the same), and examine the difference in both calibration performance
metrics and parameter estimates.

There is still a huge amount to discover with the dataset collected for this primary inves-
tigation. As discussed, two groups were not analysed at all (all orthogonal frames and all
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angled frames) and could be examined in a similar way. The recommended approach is
to run a statistically significant sample of random subsets of different sizes from these two
groupings. After this is complete, the depth estimation task can be performed and the
errors examined according to the same method used above. If a statistically significant
number of datapoints can be generated, this will allow for more complex statistical anal-
ysis that can examine interactions between factors, which will provide very valuable insight.



Chapter 6

Conclusions and Future Work

The effects of certain calibration dataset properties on calibration outcomes have been
investigated. One of the first findings was that different methods for evaluating calibration
will tell you very different stories about the calibration quality. In particular, the perfor-
mance metrics MBE, MRE, and MSE, all of which are commonly used, do not correlate
well with the values of the calibration parameter estimates.

The recommendations that can be provided based on the research conducted so far are to
use large datasets for calibration (provided that there is variety of pose in these datasets),
and include many offset images at different distances. This should ensure that the param-
eter estimates are precise and accurate, although it may not produce particularly low error
measures. Severe angles should be avoided, as they can cause large variation in the pa-
rameter estimates. While a concrete conclusion regarding the distribution of frames within
the space in front of the camera cannot be drawn without more data and more detailed
statistical analysis, there is clearly an effect most likely related to the distribution of 3-D
points that the frames ‘collectively’ sample. As an preliminary recommendation, we advise
that the dataset should contain frames that are near other frames, particular if one frame
has large variation in one or more aspects of pose (by near, we refer to both depth and
offset).

There are many areas of future work in this space. One of the first tasks would be to
complete the analysis for the entire dataset collected for the primary investigation. From
the primary investigation it was clear that the density and uniformity of the 3-D points
sampled affects theK2 estimates, which affect the accuracy in depth estimation tasks. This
is a clear avenue for future work. It would involve a more detailed statistical approach,
where we control for the density and uniformity of distribution of either points in 3-D space
or some parametrization of these points that relates more specifically to checkerboard pose
(such as angle around its central axis, position of its centre, and depth of its centre).

As noted, not all factors that relate to calibration datasets were investigated in this re-
search. The target symmetry and target type would be useful to investigate to a similar
level of detail. This would add value because practically speaking, these factors are easy
for anyone performing calibrating to control. Another useful task would be replacing the
current error minimised in the optimisation step with other error measures (specifically
MBE, MSE, and MRE) and observing the effect on the calibration parameter estimates.
This would be useful in determining whether a different error measure should be optimised
to produce results that can be better correlated with the errors.

47
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Lastly, different calibration methods could be used on the data collected to verify the find-
ings of this research. This would add value by demonstrating whether the observed effects
generalise, or are simply artefacts of the particular calibration method used. This would
also assist in standardising the comparison of calibration methods, which is typically done
on whatever datasets authors make available when publishing new calibration methods.
As discussed at the very beginning of this report, it is conceivable that different methods
will favour different datasets. Therefore, performing similar analysis on other calibration
methods becomes very valuable future work because it could bring a greater level of stan-
dardisation to the comparisons of calibration methods.
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Appendix A: Additional Figures
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Figure A.1: Sensitivity graphs for (a) K1 and (b) K2 from Section 4.1.3.2. These graphs
show the differences between mean parameter estimate for subsets that include a given
frame versus mean parameter estimate for subsets that exclude the same given frame. The

results are separated by subset size.
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Figure A.2: All performance metrics for all datapoints in the grid size experiment from
Section 4.2. (best viewed in colour).
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Figure A.3: Intrinsic parameters fx, fy, cx, cy, k1, and k2 from Fig 4.10 in Section 4.2
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Figure A.4: All intrinsic parameters for the data collected in Section 5 (Primary Investi-
gations).
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Appendix B: Additional Tables

Subset 39 Subset 45
Intrinsic Parameters

K1 -34.7565 -34.8193
K2 1.4839 × 104 1.1372 × 105

fx 7.0118 × 103 5.3751 × 104

fy 6.9896 × 103 5.3584 ×104

cx 2.7027 ×103 2.6291 ×103

cy 3.8246 ×103 3.8998 ×103

k1 -7.0711 ×10−9 -7.0818 ×10−9

k2 9.6984 ×10−17 9.8742 ×10−17

Performance Metrics
MBE (%) 2.1635 1.9983
MRE (pix) 0.5164 0.4675
MSE (pix) 0.2979 0.2908
MPRE (pix) 2.6297 2.4049

Table B.1: Comparison of all intrinsic parameters and performance metrics for subset 39
and 45 (from Section 4.1.3.2, extension of Table 4.5).
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Subset size 1 2 3 4 5 6 7 8
Sample size 9 36 84 126 126 84 36 9

K1 108.4332 4.3750 2.1889 1.4574 1.0434 0.7813 0.5891 0.4104
K2 (×105) 4.4831 0.5045 0.5326 0.4777 0.3911 0.2858 0.1651 0.0018
fx (×104) 1.8343 2.3826 2.4907 2.2522 1.8517 1.3518 0.7784 0.0019
fy (×104) 1.8551 2.3653 2.4769 2.2410 1.8436 1.3468 0.7760 0.0019

cx 43.4605 55.2068 264.4112 42.9745 36.6613 29.8212 22.1247 13.9639
cy 78.4191 73.6810 227.8615 38.1634 29.4453 21.7885 14.2874 6.7613

k1 (×10−8) 0.1460 0.0832 0.0888 0.0342 0.0242 0.0182 0.0128 0.0072
k2 (×10−14) 0.1378 0.0454 0.0193 0.0096 0.0040 0.0025 0.0017 0.0007

Table B.2: Standard deviation of intrinsic parameters per subset size (from Fig 4.7 in
Section 4.1.3.3).
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