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Abstract

Simultaneous localisation and mapping (SLAM) is finding its way into the consumer ready

market. From the increasing availability of monocular cameras SLAM is an attractive

choice to generate accurate representations of the pose and the surrounding environment.

These algorithms are being implemented on low-power architectures for large-scale produc-

tion. For this next stage of delivery there needs to be consistent frameworks that enable

effective regulation. Ensuring safety in autonomous driving is just one example where the

co-design of SLAM algorithms will be essential.

This report develops a V-stage multi-objective pipeline that transforms a given applica-

tion of SLAM into an informed decision about which solver to use. Stage I abstracts

the application into a condition table that characterises the given application. Stage II

provides selection critera for algorithms, datasets and metrics along with the proposed

sequence classification matrix (SCM) which admits a partial ordering on features of the

dataset for application-based evaluation. Stage III transforms the condition table into a

specific protocol that selects which SCM and which metrics to use. Stage IV provides

the evaluation guidelines following a robust set of principles intended to delineate cases

of over-fitting. In the final stage the results from the benchmark are cross-checked and

compared to determine the outcome for solver choice.

The general framework was instantiated through three examples concerning a house-

hold consumer robot, unsafe mine exploration and a race track environment. Following

the pipeline proposed three recommendations for which solver to use along with conditions

on ensuring working performance. The metric for map consistency was also extended

from the planar case to the visual SLAM problem with limitations concerning coordinate

parameterisation.

Under the SCM characterisation a profound result is the systematic discovery of the

following three properties: 1. If loop closures do not occur on large scenes then scale drift

will occur. 2. The sliding window optimisation gives a performance boost on scenes with

greater rotational velocity and 3. From the sequence ordering scenes with higher average

motion characteristics will deteriorate the performance of the solvers. Although these are

established in the literature the approach presented created an efficient window into these

properties.
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1 Introduction

1.1 Overview

Simultaneous localisation and mapping (SLAM) is an important feature for several sensor

modalities in the modern world. In scientific domains it has helped place the rover on

mars [71] and given new insights into underwater reef mapping [92]. As we continue to

develop the algorithms we find its application instrumental for safe autonomous driving

and even applications for cleaning your home [53]. This next stage of consumer delivery

will come with it a host of challenges like effective embedding practices, efficient power

constraints and most importantly the framework for benchmarking and testing various

SLAM algorithms.

To enable a robust future the way in which benchmarking is carried out will be critical.

The performance measures, testing conditions and available algorithms will all contribute

to the calculus of a decision. A decision that will answer the question which solver is most

applicable for the application at hand. Currently in the literature researchers tend to err

on the side of robustness and take a publish on performance approach. This accepted

evaluation procedure is running the risk of over-fitting the sequence and producing results

that do not represent the behaviour on similar sequences to the one published. The

ineffective co-design between validating the benchmarks and developing the algorithms

can cause a vicious cycle where only solvers with better performance are published, as

is the case in the computer vision community [72]. In order to restrict this cycle of

research we need to look at principled frameworks for benchmarking that if followed makes

cherry picking a sequence impermissible. Through a rigid framework the performance of

an algorithm will be more representative of real world operation and not an optimised

parameter set that scores very well on one sequence.

This report intends to develop a principled framework for benchmarking monocular SLAM.

The price, size and availability of these cameras makes it a candid choice for the consumer

delivery stage. The developments for the monocular case has also been shown to translate

to both stereo and visual-intertial implementations [95]. The systematic approach will

have important implications in the regulatory procedures as well as providing greater

cohesion among researchers. The algorithms and datasets have been selected to highlight

this framework in action, and under this approach it was found that limitations and

features of the solvers could be efficiently uncovered.
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1.2 Report Structure

The background section §2 develops the problem, notation and language used within the

report. The typical formulation is given along with a historical overview §2.1.2 to see

how SLAM has developed in a sensor agnostic framework. The monocular case in §2.1.3

is provided to show how the categories for an online or full solution are adapated for a

camera modality. Both the front end §2.2.1 and back end §2.2.2 are provided to illuminate

the algorithmic architecture so that the results can be technically explored. The solution

§2.3 concerns ways in which we measure the trajectory §2.3.1, the map §2.3.2 and how

scene features can describe robustness §2.3.3. The project scope looks at the available

datasets §2.4.1 that monocular SLAM can be tested on as well as the limitations and

advantages of different sequences. The co-design paradigm §2.4.2 showcases examples

where the current evaluation procedure is not ready for the consumer market and lastly

the benchmarking section §2.4.3. explores how we benchmark and how the next stage will

need frameworks to allow comprehensive evaluation.

The systematic approach §3 section outlines the proposed methodology for fairly bench-

marking SLAM systems given the context of the application. The set of principles §3.1

outlined underpin the entire operation. Application and acquisition §3.2 contain the first

two stages of the bencmarking pipeline and it summarises the inputs into the benchmark.

A selection criteria for metrics and algorithms is also provided, aswell as the condition table

for transforming the application into functional requirements. Selection and evaluation

§3.3 introduces the sequence classification matrix, how the ordering works and a decision

tree for transforming the condition table into a benchmarking protocol. Examples and

selection criteria are also provided. This section contains stages 3 and 4 of the pipeline.

Finally section §3.4 finalises the process and turns the evaluated results into a useful

decision.

The results is split up into two sections. The first section §4.1 concerns the applica-

tion where a visual odometry solver is used. This section also explores the steps for

validating the intended functionality to ensure meaningful results. The SLAM results §4.2

deals with the other two applications and makes recommendations on both trajectory and

map performance. In both results section the recommendation is given followed by an

exploration of the results based on the rules of thumb provided in §3.3.

Lastly the conclusion section §5 outlines the main results, links the developed frame-

work to the research question and gives its relation in the broader context. Limitations of

the approach are also discussed along with recommendations for future work.

RJP Page 2
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1.3 Summary of Contributions

• Developed a V-stage multi-objective framework for fair benchmarking

• Allow a user friendly process which can take clients functional requirements, test

a set of solvers and make an informed decision about which solver is best for the

chosen application

• Developed a novel way of characterising sequences from both visual and motion

features.

• Extended Mazurans work on map consistency to the 3D visual SLAM problem, along

with limitations of the approach

• 3 VO Systems Benchmarked (DSO, ORB and SVO)

• 2 SLAM Systems benchmarked

• Following the proposed framework can elucidate profound solver properties: 1. The

effect of scale drift on scenes without loop closures. 2. How the sliding window

optimisation can give a performance boost on scenes with greater rotational velocity.

Although these properties have been established in the literature this approach allows

a systematic arrival.

RJP Page 3
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2 Background

The following three subsections give a view of what visual SLAM is, how we solve it

and lastly what the solution actually means. The first section The Problem outlines

its development, from its early infancy in geosciences to the state of the art monocular

solutions. Following this is a section on The Solver which breaks down the typical pipeline

which each SLAM/VO method uses. Lastly, The Solution attempts to characterise quality

and its tight coupling to context. The section on Project Scope situates the benchmarking

problem and why there needs to be a careful re-development. This chapter will provide

the necessary language and tools to describe the cutting edge solvers we see today, it will

also give insight into why SLAM is important in modern robotics and why benchmarking

is such a complex but necessary tool in order to continually improve our understanding of

the problem and how to effectively solve the problem.

2.1 The Problem

2.1.1 Formulation

Simultaneous localisation and mapping, otherwise known as SLAM is one of the most

fundamental challenges in robotics. The problem arises when neither the map nor the pose

of the robot is known a priori. Adding to this complexity is an attempt to estimate both

states in the face of noise. We use onboard proprioceptive sensors of a robot to predict

its position in the environment. This prediction is compared to observations from the

exteroceptive sensors in such a way to update its position in the environment and update

the environment itself.

”One may separate the problem of physical realization into two stages: compu-

tations of the ”best approximation” x̂(t1) of the state from knowledge of y(t)

for t ≤ t1 and computation of u(t1) given x̂(t1)”

– R. E. Kalman, ”Contributions to the Theory of Optimal Control,” 1960

Kalman can be attributed with the seminal technique for solving SLAM however the

solution can be predated to the calculation of planetary orbits. At an abstract level we

can break the SLAM problem into two categories [82] which will be explored more deeply

in §??. The online SLAM problem which involves estimating the posterior over a pose in

an incremental fashion. This is typically written as;

p(xt,m|z1:t, u1:t) (1)

RJP Page 4
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Here zi denotes the vector of measurements and time i and similarly for ui representing

control inputs. For the case of 3D SLAM, xt ∈ SE(3) is the pose at time t. Refer to the

definition section when we use the term pose as it can be intepreted in a host of different

ways. For our purposes we will always consider the SE(3) transformation in a global

reference frame that describes both the orientation and translation of the robot written

in the basis of that reference frame. Robotics is a dynamic phenomena and you should

think of these transformations as literal re-locations of objects in space. The second type

of SLAM problem is known as the full SLAM problem where we attempt to determine the

full posterior over the entire path x1:t, this has also been adapted to batch solvers where

instead of the entire path it is simply the path xk:k′ where k′ − k > 1. Both problems are

directly related from the following [82]

p(xt,m|z1:t, u1:t) =

∫ ∫
· · ·
∫
p(x1:t,m|z1:t, u1:t)dx1dx2 . . . dxt−1 (2)

This difference can be observed graphically in Figure 1. x0 represents the prior on the

system which is the initial location and orientation of the robot. This represntation

highlights the simultaneous nature of the problem in that the robot acquires a map whilst

trying to localise itself in that map. The solution to the full SLAM problem is then given

x0

u1

x1

z1

m

zt−1 zt zt+1

ut−1 ut ut+1

xt−1 xt xt+1

Figure 1: Graphical representation of the SLAM problem. The areas in grey are what we
are estimating. For the full SLAM problem we estimate all filled in regions, whilst in the
in online problem we only estimate the regions with the solid bounding box.

by;

p(x1:t,m1:t|z1:t, u1:t) = ηp(x0,m0)
∏
t

p(xt|xt−1, ut)
∏
t

p(zt|xt,mt) (3)

Withe η a normalising factor. From this setup you can recognise the difficulties surrounding

the problem. The three discussed will be the high dimensionality in the continuous

parameter space, the correspondence problem and the representation and propagation of

measurements; Combined they make SLAM an active and challenging research field.
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2.1.2 Historical Overview

There is an excellent exposition of the history of the SLAM problem given in [28] however

the authors of this paper released some of the seminal works in the field [27], whilst the

claim is true that SLAM (in the robotic sense) was born at the 1986 IEEE Robotics and

Automation Conference in San Francisco, California. It is also worth mentioning that

the problem can be reduced to geographical surveying and under this characterisation it

has been around since the calculation of planetary orbits by Gauss (1809). Tools like the

method of least squares which is used extensively in modern SLAM is also traced to this

period. The difference between both is that issues like data correspondence are easy for a

human surveyor but very difficult for a robot. The robotic SLAM - which will be referred

to as simply SLAM - problem was formulated in a probabilistic sense in [78, 27], where the

authors explain how to deal with uncertainty in the geometry and relative coordinate frames.

Around the same time 3-D representations of an environment from a passive sensor were

being explored [6]. These descriptions were called visual maps which required geometric

primitives (here points, lines, and planes), aswell as a characterization of the uncertainty

on the parameters of these primitives, caused by noisy measurements. The authors also

linearised the measurements to apply the extended kalman filter for constructing the maps.

In a similar light the EKF was being used in sonar navigation. These works provided the

probabilistic representation of 3D maps, the linearisation of the measurement equation

aswell as dealing with uncertainty in coordinate frames to produce the first framework

for solving the SLAM problem [79]. It develops the stochastic map and formalises how to

read and incrementally update spatial arrangements given noisy measurements. It also

recognised the correlation between all variables (landmarks and poses) forcing the solution

to contain the entire state. With the framework in place the community began analysing

and implementing EKF-SLAM on feature based measurements (using artificial beacons)

[79], exploring effective data association and proving fundamental convergence results [83].

Occupancy grid mapping, and particle filters were also introduced as alternate solutions

[82]. Over the years different sensor modalities were used as measurement inputs for the

SLAM problem but it wasn’t until the structure from motion (SFM) - recovering relative

camera poses and three-dimensional (3-D) structure from a set of camera images - was

established that saw a camera to be used as a sensor. Considering single cameras can only

provide bearing measurements the first bearing-only SLAM was developed. These works

provided estimations of features that were invariant to the robot pose, which decoupled the

pose and map error. The SLAM problem with camera input forced techniques surrounding

place recognition, sensor fusion and dense reconstruction of urban environments (2000 -

2003) [28]. It is important to recognise that SLAM was developed to be sensor agnostic

and operate in real-time whilst SFM only deals with cameras as the input and was

largely developed to operate offline. A significant linkage between the two fields is visual

odometry whose genesis concerned a particular case of SFM but now identifies strongly as
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a reduced version of visual SLAM. The first implementation of EKF-based SLAM on a

single (monocular) camera was developed by Davison in 2004 [23].

2.1.3 The Monocular Case

SLAM will now refer to the visual SLAM problem where a single camera is used as the

only sensor modality. The appeal of this setup is the ongoing reduction in size and price

of monocular cameras, making it readily available. It is also a suitable design choice for

GPS-denied environments. An effective solution should be able to transform a sequence of

images into a trajectory of the cameras optical centre, as well as a representation of the

map. The feature-based solver is represented in Figure 2.

kHk+1 ∈ SE(3)

Ik
Ik+1

Ik
Ik+1

Frame by frame solution

Figure 2: From adjacent image frames Ik, Ik+1 the SLAM solver attempts to estimate the
SE(3) transformation that describes the relative motion of the cameras optical centre, the
top planes show the matching of features for correct motion

We can classify these solvers according to §2.1.1. For the full SLAM problem the primary

idea is bundle adjustment (BA) which minimises a cost function over a large set of vari-

ables. Typical cost functions include the reprojection error as used in [49, 67], or for direct

methods the photometric error [30, 68]. The cutting edge implementations are LDSO

[29], ORB-SLAM2 [67], PTAM [49] and DTAM [68]. Each solver performs an online (BA)
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problem at an interactive rate. This is achievable through advanced linear algebra and

sparse graph techniques. [24]. DTAM and LSD-SLAM are both direct methods which do

not require feature extraction or the corresponding map artifacts. They also tend be more

robust to low-texture environments and blur [59]. The photometric consistency limits the

baseline making it less robust to sweeping camera motions or swift rotations. This is a

limitation of the direct methods compared to the feature based methods like ORB-SLAM2

or PTAM. The dense methods do not take into account mapping performance only the

localisation of the robot [30, 68]. Lastly ORB-SLAM2 has been shown to outperform

PTAM especially with the number of outliers contained in the map [67]. This is also

instructive since ORB-SLAM2 builds on the work of PTAM.

The most common formulation of the online SLAM problem is with a state-space model

with additive Gaussian noise. This naturally leads to the use of the extended Kalman filter

(EKF) since the state-space model is typically non-linear, seminal works from Mono-SLAM

represented image patches as landmarks in the map. The EKF provides a recursive

estimate of both the pose and landmarks with the computation time being quadratic with

respect to the number of landmarks [83]. EKF can be viewed as a generalised Bayes filter

and it is one of the most well-known algorithms in the SLAM community. A response to

the quadratic dependence of the EKF observer is to use a particle filter. Specifically it

was FASTSLAM that is able to provide a cheaper factored solution to the SLAM problem.

It has time complexity O(M log(K)) where K is the number of landmarks, and M is

the number of particles [83]. Since the development of these algorithms there has been

increasing attention towards developing non-linear observers that act on the state-space in

a natural way, without the need for linearisation, which has shown to be problematic from

poor Jacobian estimates [42], or poor scalability from computational complexity [17]. The

non-linear community has placed continued efforts developing models for pose estimation

and attitude estimation [89, 64, 14, 88, 90, 8]. Bonnabel et al. showed that the SLAM

formulation admits a natural invariance with respect to a reference frame pose change.

This allowed an invariant EKF to be designed [13]. This idea seeded the development and

analysis of the invariant EKF model [10, 9]. The works of Mahony and Hamel developed

a geometric nonlinear observer for SLAM [63]. The authors assert the SLAM state-space

as a quotient manifold whose equivalence class is defined by a change of reference frame.

This development had several benefits over standard approaches. Most notably taking

into account the known invariance, allowing the scene to be dynamic and the natural

symmetry admitting robustness. The work following this model is outlined in [39] which

continues from the last paper and develops a new symmetry action that is consistent with

bearing and range measurements where the prior paper still required linearisation of the

output map.
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2.2 The Solver

The community has presented several different ways to transform successive image frames

into a trajectory and map estimate. From dense-direct to sparse-indirect the way in which

solvers function is clearly different, however the overarching pipeline can be separated into

a front-end and back-end as is shown in Figure 3. We can break down these solvers into

Sensor
Modality

Detect

Describe

Match*

State Update/
Optimisation

SLAM
Estimate

Back end

Front end

Track

Indirect

Direct

Figure 3: Solvers algorithmic pipeline, the sensor modality in this case is a monocular
image and the SLAM estimate is the resulting state estimate.

the categories mentioned in

2.2.1 Front End

Given successive image frames the front end is responsible for data processing and data

association. Looking at the flow within the front end we have four primary stages. Ii is

fed into the algorihtm and a filtering method is applied to detect a set of features from

the entire frame. Common methods are FAST, SURF or SIFT [73, 12, 60]. These features

are then abstracted into a binary descriptor space such as BRIEF, BRISK or the retina

inspired FREAK [18, 55, 3]. Now that the detected features are described in their binary

space we can attempt to match pairs of features from frame Ii−1. This is done through

comparing two sets of binary descriptors in an attempt to find correspondences between

frames. If we did not use binary descriptors the standard way of matching two SIFT

features v1, v2 ∈ R3 would be to compute the euclidean norm;

dE(v1, v2) = ‖v1 − v2‖2
2 (4)
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For two BRIEF descriptors v1, v2 ∈ {0, 1}256 we can use the hamming norm which is the

number of positions in which bit-vectors differ. It is equivalent to the `1 norm.

dH(v1, v2) = ‖v1 − v2‖1 (5)

The speed from this method exploits the low level hardware instructions in that only the

XOR and sum operator is required. We consider matched points if the hamming distance

is lower than a certain threshold. Before moving onto tracking it is very important to

understand the different roles matching plays on SLAM systems. Just discussed was short-

term data association or feature matching whilst the second long-term data association is

known as loop closures and is a necessary feature for place recognition. If at some point

in the sequence the camera has visited a previous location, say in frame Il we have to

match feature descriptors to a database of global features which hopefully confirm that Il

is indeed in the same place as Ik with k << l. The primary tool for making this robust

is DBoW and its updated versions [96]. If the feature matching is stable and successful

we consider the solver in a tracking state. The next step concerns operating on matched

feature points to arrive at an estimate for both the motion of the camera, as well as the

map of the environment. The motion estimate typically employs a constant velocity motion

model if tracking has started, or methods like the eight-point and five-point algorithm will

be used. It is possible however to bypass this process and use all the information available.

Direct methods aim to estimate camera motion directly from the input images.

2.2.2 Back End

The backend of SLAM is always responsible for providing an estimate of the state. For

an incremental solver such as EKF, the backend provides an estimate of the state and

no furter optimisation. Batch solvers however will optimise the updated state through

a tool known as bundle adjustment (for a modern synthesis see [86]). To explore this

properly is out of the scope of the report however there are some well known libraries like

GTSAM, g2o and HOGman worth mentioning [24, 51, 40]. A comparison is also shown

here [62]. For a high-level description each library uses sparse linear algebra techniques and

advanced graph theory to solve a factor graph. It is a reduction from a Bayesian network

that describes the entire state of the SLAM problem. When we enforce the assumption

that the state-space model of SLAM is modelled via additive Gaussian noise we can solve

the factor graph as a non-linear least squares estimate. we can define the motion of the

camera as [25];

xi = fi(xi−1, ui) + wi ⇐⇒ P (xi|xi−1, ui) ∝ exp−1

2
‖fi(xi−1, ui)− xi‖2

Λi
(6)
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Figure 4: Factor graph for the full SLAM problem. The unknown poses and landmarks
correspond to the circular and square variable nodes, respectively, while each measurement
corresponds to a factor node (filled black circles) [25]

where fi is the process model, wi is normally distributed zero-mean noise with covariance

matrix Λi. For the measurement model; [25];

zk = hk(xik , ljk) + vk ⇐⇒ P (zk|xik , ljk) ∝ exp−1

2
‖hk(xik , ljk)− vk‖2

Σk
(7)

where hk is a measurement equation, vk and Σk are defined as above. Here we are using

the notation that ‖e‖2
Σ = e>Σ−1e which is the squared Mahalanobis distance. To give two

examples, consider an indirect solver applied to a monocular sequence. The Gaussian

measuerment noise corresponds to the distance between the back projected feature point

and the corresponding feature on the image plane. For a direct solver the gaussian noise

is modelled through the difference in intensity of the back projected feature point onto the

image plane against the corresponding feature intensity.

2.3 The Solution

The following section will define the metrics used throughout the benchmarking process,

aswell as choices on why certain metrics were left out. It will also explain the importance

and heuristic motivation of each performance measure. The table outlines the chosen

metrics applied to either a SLAM or VO system; Upon initialisation the scale, orientation

ATE RPE Alignment Error Map Consistency
SLAM metric Yes Yes No Yes

VO metric Yes Yes Yes No

Table 1: Metrics considered in the benchmarking process
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(s ·R, t) ∈ Sim(3)

x

z
y

{0}

x′
z′

y′

{0′}
Umeyama Alignment

x1

x2

x̂1

x̂2

Figure 5: Umeyama method to find the solution to the absolute orientation problem

and translation of the map is set in an arbitrary but consistent manner. This creates

solutions where only the shape of the trajectory is the same (See Figure 5). When

evaluating the performance of a solution there are a number of pre-processing steps that

need to be taken to ensure a solution is of its best representation. Most implementations

will not store the pose at every time index however ground truth files typically do. This

places a restriction on the number of poses that can be compared. We get around this

issue by selecting a set of poses that are close in timestamp to the ground truth poses and

then apply methods of Umeyama to find a Sim(3) transformation that aligns the solution

with the ground-truth [87]. Ideally we want to minimise the euclidean distance between

sets of paired points in R3. The question of pairing poses xi ⇐⇒ x̂i′ plays an important

role in data association. We have;

min
k∑
i=1

∥∥x̂f(i) − (sRxi + t)
∥∥

2
x, x̂ ∈ R3 (8)

This describes the mean squared error of two point patterns. The solution to this problem

is an element of Sim(3) parametrised by [87], for the implementation see Algorithm ??;

H =

[
s ·R t

0> 1

]
R ∈ SO(3), t ∈ R3, s ∈ R (9)
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2.3.1 Localisation Metrics

When evaluating the performance of the trajectory two well established metrics are used

within the literature. In both cases we want to optimise the error of the estimated solution

with respect to the ground truth which finds the best S ∈ Sim(3) transformation that

minimises the least square error. The absolute trajectory error (ATE) and the relative pose

error (RPE). The former can be considered an indicator for global consistency, whilst the

latter measures the drift or local performance of the trajectory over a fixed time interval.

Given estimated poses in a global reference frame {H1, H2, . . . , Hn ∈ SE(3)} and ground

truth poses {Ĥ1, Ĥ2, . . . , Ĥn ∈ SE(3)} The ATE Fi at timestep i is [80]:

Fi = Ĥ−1
i SHi (10)

Where S is transforms the estimated poses to the same coordinate frame as the ground

truth, such that the distance between points is minimised. The RMSE over all timesteps

of the translation component is then computed as;

RMSE(F1:n) :=

√√√√ 1

m

m∑
i=1

‖trans(Fi)‖2 (11)

For the relative pose error we now look at relative transformations. For the estimated mo-

tion {0H1,1H2, . . . ,n−1Hn ∈ SE(3)}, and the groundtruth motion {0Ĥ1,1 Ĥ2, . . . ,n−1 Ĥn ∈
SE(3)} with a time interval ∆, the RPE Ei at time step i [80]:

Ei =
(
iĤi+∆

)−1

× S × iHi+∆ (12)

For n poses, m = n − ∆ errors are obtained. The RMSE over all time steps of the

translation component is then computed:

RMSE(E1:n,∆) :=

√√√√ 1

m

m∑
i=1

‖trans(Ei)‖2 (13)

For certain sequences where external ground truth is not provided it is still possible to get

a measure of drift as long as the camera begins and ends in the same location, as is done

in [31]. In this case the authors have provided the alignment error which is evaluated as

follows. Let {p1, . . . , pn ∈ R3} be the tracked positions of frames 1 to n. Let S ⊂ [1;n] and

E ⊂ [1;n] be the frame indices for the start and end segments for which the aligned ground

truth positions p̂ ∈ R3 are provided. The first step is aligning the tracked trajectory with

the start and end segments independently. This provides two relative transformations;

T gts := argmin
T∈Sim(3)

∑
i∈S

(Tpi − p̂i)2 (14)
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T gte := argmin
T∈Sim(3)

∑
i∈E

(Tpi − p̂i)2 (15)

We now define the alignment error, which is an indicator for the scale, rotation and

translation drift over the full sequence;

ealign :=

√√√√ 1

n

n∑
i=1

∥∥T gts pi − T gte pi∥∥2
(16)

2.3.2 Mapping Metrics

Typical datasets do not provide the ground truth of the environment. Even when one

is provided as is done in the ICL-NUIM dataset [41], there is still the issue of finding

correspondence between the feature point cloud generated by the algorithm and the given

ground truth. We wish to find an affine transformation that minimises two sets of 3D

point clouds. The problem formulation is similar to (8) with a slight difference;

min
k∑
i=1

∥∥p̂f(i) − (Rpi + t)
∥∥

2
p, p̂ ∈ R3 (17)

Solutions to this problem have been based on the singular value decomposition, quaternions

and also iterative methods [5, 33, 57]. This difficult, and often expensive task makes

mapping accuracy less important than trajectory error. It is possible however to use

mapping metrics that are independent of the ground truth. This direction is still in its

infancy however there is work being done on statistical measures for map consistency.

Mazuran et al. produced a paper in 2014 that develops a pairwise inconsistency measure

between observable viewing cones in poses [66]. The author uses 2D range scans to create

observable boundaries. These visibility polygons are then used to compute inconsistency

distances. After normalising this measure and computing a matrix that compares all

range scans over the entire map the author tests all pairs of scans through an inverse

CDF inequality with a user-set confidence. If all tests are succeeded we consider the map

globally consistent. In this paper we aim to extend the 2D polygon boundary to a 3D

convex hull and see the resulting outcome. This method employs an approximate time

complexity of O(N2 +K2) where N is the number of camera poses and K is the size of

the point cloud seen from that camera pose. The logarithm dependency of computing

the convex hull and finding the closest distance to the plane has been omitted since it is

dominated by large N and K. The inconsistency distance is measured as follows;

di(p
k
j ) =

dist(pkj ) ifpkj ∈ Vi
0 Otherwise

(18)
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Here Vi is the convex hull generated from the point cloud seen from frame i as well as the

optical centre of the camera. pkj are the boundary points of Vj . We define the inconsistency

measure to be;

Mij =
∑
k

di(p
k
j ) +

∑
k′

dj(p
k
i ) (19)

Given N poses we can generate the following N ×N matrix;

Ψ =

[
Mij − µinij
σi
√
nij

]
ij

(20)

Here nij is the number of inconsistent points in frame i with respect to frame j which

will make entries in (20) zero if the viewing cones do not overlap. µi is the mean distance

from the optical centre of the camera to the landmark, and σi is the associated variance.

Suppose F−1(p) is the inverse CDF of the normal distribution, we conclude consistency

from frame i to frame j if the following inequality holds;

Ψij ≤ F−1(1− α) (21)

For global consistency we model the outcome of a pairwise hypothesis test over a Bernoulli-

distributed random variable parametrised by α. Since (21) has a type I error probability

of 1− (1− α)r we have to compute the maximum number ξ̂ of tests that can fail for a

confidence level 1− α′ as;

ξ̂ = min
0≤ξ≤r

{
ξ

∣∣∣∣∣
r∑

i=ξ+1

(
r

i

)
αi(1− α)r−i ≤ α′

}
(22)

Computing ξ̂ is numerically unstable and instead the author proposes [66];(
r

i

)
αi(1− α)r−i

= exp (i logα + (r − i) log(1− α) + log Γ(r + 1)− log Γ(i+ 1)− log Γ(r − i+ 1)) (23)

Where Γ(·) is the gamma function. This allows the computation of a cascaded hypothesis

test. We first perform all pairwise hypothesis tests. Then, if the number of failed tests is

smaller than ξ̂, the overall consistency test is positive.
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2.3.3 Characterising Robustness

The metrics mentioned give a sense of performance for an individual sequence. Taking this

a level higher we wish to understand how the performance changes based on properties of

the sequence. These can be broken down into intrinsic (what is inherent to the visual

feed), extrinsic (elements that give the sequence context) and event-based (specific

actions in the sequence) conditions. The proposed features are outlined as follows;

Intrinsic Description
Readout method Whether the camera uses rolling or global

shutter
Sequence resolution The output resolution of the video feed
Light exposure Image plane illuminance times the exposure

time (determined by the aperture)
Extrinsic
Motion The linear and translational velocity of the

camera
Environment Whether the scene is indoors, outdoors or a

combination of both
Texture Low texture or repeating patterns
Event-based
Occlusion Whether an object you are tracking is hidden

by another object
Dynamic objects Whether the scene has dynamic components
Motion blur Apparent streaking of moving objects

Table 2: Different properties in a monocular sequence

All of these properties have direct ramifications on the performance of the solver. When

the linear and angular displacement increases the constant velocity motion model begins to

break down, if there are dynamic objects the back projection function will incorrectly align

with the image plane. If the readout method is rolling shutter unless explicitly modelled,

direct solvers will suffer. Low textured environment can create the aperture problem which

causes degenerate directions for tracking. These properties are responsible for the different

solvers in the community. The very difficulty produces different techniques and solver

types. Occlusion and rolling shutter are depicted in Figure 6.
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Occluder

kHk+1 ∈ SE(3)

tk tk+1

v

tk tk+1

Occluder

li li li

Ik
Ik+1

kHk+1 ∈ SE(3)

pkG

pkR

pk+1
G

pk+1
R

vk

vk+1

GS

RSRS

GS

Feature point

Occlusion

Rolling Shutter

Figure 6: Two scenarios where occlusion (top-left) and dynamic objects (top-right) disrupt
the line of tracking. (bottom) The effects of rolling shutter tend to represent features on the
image plane in a distorted manner, often shifting the location. This is because the sensors
on an RS camera occur sequentially when capturing an image.

The brief introduction to the visual SLAM problem provides the necessary language to

explore the recent directions in the community. The understanding of the solution and

how we characterise performance and robustness can give context to the benchmarking

tools that have been developed.
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2.4 Project Scope

This section looks at the rapid development of the datasets in the community as well as

the benchmarking methods developed, it will highlight a particular case where overfitting

has been presented as performance and hopefully illuminate the absence of principles

surrounding benchmarking.

2.4.1 Testing Environments

Datasets provide a means of evaluating a solution. Typically, the dataset will contain a

reference file or groundtruth that will show the performance of your solution. They provide

necessary feedback and can highlight certain characteristics of your approach. From a

literature search there are 310 sequences available to test your SLAM algorithm [95] (as

of May 2019). The vast collection contains real world datasets focusing on mapping [69,

19, 61], localisation [47, 20, 91] and odometry [80, 31, 46], although It was Kitti’s urban

driving experience [38], The EuRoC drone dataset [16] and the VI collection from TUM

[77] that championed VO/VI SLAM. Underwater reef mapping [92], mine exploration [85]

and low-cost consumer robotics [53] are some examples of how SLAM is being deployed.

The datasets had to respond by increasing the available testing conditions. Subterranean

environments including mines in Chile [54] and underwater datasets [34, 65] that use a

submersed UAV to navigate. The turbidity and light refraction alone constitutes brand

new conditions, which was explored in [65]. Further difficult visual conditions are explored

through dense fog [22] and the presence of smoke and dust [70]. With the former motivating

solvers that could operate in smoke environments [50, 2]. With respect to micro aerial

vehicles the UZH-FPV drone [44] sequence was released in October 2019 with indoor flight

speeds of 23.9 [m/s]. The sustained improvement at both a hardware and software level

permits solutions to this highly aggressive environment.

InteriorNet[56] and ICL-NUIM[41] are recent examples of simulated datasets. ICL-NUIM

contains two indoor scenes. Kerl et al. extended the dataset to model a rolling shutter

camera [48]. In the low textured scene DSO managed to outperform ORB2 highlighting

that a low textured scene could be more damaging to a feature based solver than rolling

shutter is to a direct solver [94]. Investigating the effects of rolling shutter is one of the

major challenges in monocular VO [94] and this was made possible through simulated

environment. There is also vehicular scenes in the VKITTI suite. These datasets are

attractive due to environment customisation and perfect groundtruths however it is still not

the real world. Early experiments have been conducted to understand consistency between

real and simulated environments [7], which concludes similar tracking and mapping results

for a slow moving indoor ground robot. It has been confirmed that the difference between

simulated and real conditions does not affect scale estimation in monocular SLAM [74].
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Recent work more akin to this report investigates methods of characterising scene difficulty.

Ye et al. uses a decision tree on five variables like duration and motion and classifies

difficulty between easy, medium and hard. All inputs and response variables have at most

3 different values [95]. The difficulty labels were either provided by the original dataset

or determined from the reported tracking outcomes using DSO and ORB2. The second

order Wasserstein metric has been employed to characterise difficulty in a continuous

sense [75]. The metric captures motion, structure and appearance qualities and managed

to show a positive relationship between the metric and drift (RPE). This was tested on an

EKF-solver on both ICL-NUIM and the TUM-RGBD dataset.

2.4.2 Co-Design Paradigm

The co-design paradigm is intended to develop solutions from the involvement of all

stakeholders. This approach will be necessary for the next stage of consumer delivery

however the current landscape in SLAM will not accept this framework if the accepted

practise of evaluation continues. Technologists in monocular SLAM are developing novel

and elegant approaches to tackle the problem. From direct image alignment to double

windowed optimization the field is being postured by advanced knowledge and rigorous

theory. To gauge this acceleration, the community agrees on common indicators that are

used to inform on performance. If an algorithm or method produces results with promising

indicators then the community can determine whether further investigation is required.

This approach gives a sense of cohesion among researchers in that potentially promising

directions can be observed by all. From the various assumptions in different approaches -

brightness constancy assumption in direct methods and constant velocity motion in feature

methods - comes different benchmarks to support and explore those assumptions. The ICL-

NUIM dataset has sequences with generated rolling and motion blur [41]. The TUMmono

dataset is photometrically calibrated for improved performance on direct solvers [31]. It

is okay to provide conditions where a solver excels but it is approaching a point where

algorithms are developed and datasets are carefully selected to showcase performance.

This is creating a divide between the presented indicators and actual performance. A

classic example is in the ETH : MH01 dataset in Figure 24, where the authors for DSO

start the solver near the 50 second mark to remove the portion of the scene where the

MAV is static (20 - 40 [s]) [29]. In direct methods a constant scene can cause indeterminate

convergence of the homography matrix, and with this portion of the scene removed the

solver has a reduction of the RMSE ATE of almost 50%. Another example of favoured

performance is the TUMmono dataset. The photometric calibration, whilst improving

performance for direct solvers actually damages the performance of feature based solvers.

It increases the spectrum of intensity which causes dark scenes to become darker and

this can cause tracking to fail. ORB2 for instance lost tracking on 3 scenes in [94] where

without calibration it was steady. It also increased the alignment error ealign on all scenes.
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What we see here is alterations, and over parametrisations to fit the data to the solver

and unfortunately this forces solvers to not be robust in conditions that are similar to the

results that are published. There is a whole range of benchmarks available online, with an

extensive list of metrics and evaluation tools however there are no guidelines or principles

in how to use them. There needs to be a focus on delineating the process to avoid over

parametrisation. This will provide a better, more honest representation of the performance.

This is not a new idea even for the robotics community; Researchers should all uphold a

baseline of experimental conduct, and for the robotic mapping problem (2002-2007) [81]

reproducibility rarely occured [4], despite the standards in place to reduce this [45]. In

response, a paper was published that proposed several recommendations, two of which are

directly applicable in this context; The behavior of the mapping system for different values

of the parameters should be shown, and experiments in which the mapping system does not

perform well should be shown.[4] The first principle provides insight into robustness whilst

the latter promotes a deeper understanding from other researchers.

2.4.3 Benchmarking For Consumer Delivery

There are three activities that achieve the benchmarking of systems [52]. In predefined

problems where robots compete against each other (i.e. navigating through a desert [84] or

FPV racing [44]). The comparison of performance indicators on publicly available datasets,

and related publications that introduce scoring metrics on different methods. Focusing on

the comparison of solutions a set of performance indicators is benchmarked across a range

of solvers, or a benchmark is presented that represents how the solution will be deployed.

For performance only there is a comparison of several ROS-based SLAM solutions in an

indoor environment [43]. The solvers use stereo, monocular, or depth sensor modalities. A

comprehensive comparison of monocular SLAM algorithms uses several publicly available

datasets [71], with the addition of testing the algorithms on 8 new datasets. This is due

to the often unattainable performance given in the original SLAM paper [71]. There is

an extensive evaluation on the EuRoC dataset with strictly VIO solutions [26]. Whilst

the first two comparisons investigated error metrics under different sensors, scenes and

solvers this paper wanted to recognise time and memory constraints for different hardware

implementations. Which found that accuracy and robustness is very dependent on the

implementation. A response to this is to use low powered, highly efficient architectures

like FPGA. Early works explored the system architecture required for 3D reconstruction

[37] followed by feature extraction with ORB features [32]. These works provided the

groundwork for a parallel implementation of FastSLAM2.0 on an GPGPU/FPGA [1]. Due

to the increasing applications of low power consumer electronics [53] efforts need to be

taken to ensure effective embedding practises. The compilation and tuning techniques for

reaching the consumer stage are explored here [76]. One aspect of realising this future is

the requirement of having frameworks that allow effective and rapid benchmarking.
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Comparing algorithms can be a difficult task with the different software architectures of

each solution. the diversity of software interfaces for the different datasets and algorithms

complicates comprehensive evaluation. This makes bench marking multiple solvers, with

multiple metrics a drawn out task. In response researchers from Kings College London

and NWPU have developed SLAMBench3.0 [15] and GSLAM[97] respectively. It provides

a library of common algorithms used in the SLAM pipeline along with an API to develop

your solution. Multiple datasets, algorithms and metrics can be comprehensively evaluated

on these systems however there is no framework surrounding the benchmarking process. A

response to this, and the main contribution of this report is the development of a principled

approach at comparing SLAM algorithms.
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3 A Systematic Approach

A note on terminology

It will be very important to clarify the terminology for this framework. For the

proposed benchmark we will use the following: The pipeline is the general procedure

that one takes from transforming an application to an informed decision (see Figure

7). The parameters will refer to the internal changes in the pipeline, such as which

SCM to use or which metrics to evaluate. When these parameters are selected as in

§3.3.2, it will be considered a protocol for that application. Concerning solver types;

visual-intertial navigation is SLAM: VIN, and VO can be considered a reduced

SLAM system, in which the loop closure (or place recognition) module is disabled.

This claim was made in [17]

In order to benchmark different SLAM solvers it useful to look from a top down view at

what benchmarking is for. There are several papers that explain the datasets, equipment

used and accompanying metrics yet there is a lack of clarity about how to transform the

results into a useful result. This chapter aims to look at the principles that will be followed

for each experiment which will allow the experimenter to make an informed decision on;

Which solver is most applicable for the chosen application? (24)

In order to come to this decision a framework will be developed such that, when followed

you can make that justified choice. The principles developed along the way consider the

connection between the solver, the scene and the solution so that a holistic decision can

be made. The first part summarises the datasets visual and technical properties which

will allow a rigid classification. This will then lead into a specific protocol which will be

used for evaluation. This will provide a pathway to answer the question in (24), which as

a flow diagram is;

SLAM
Application

Lift
Condition/
Constraints

Protocol
Selection

Compare
Results

Informed
Decision

Evaluation

Dataset &
Algorithm
Acquisition

Figure 7: Proposed benchmarking pipeline that will be used in the report
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3.1 Principles

It is integral that we consider the context as much as the SLAM approach. There is no

merit to the community or the decision in making a benchmark that tests all datasets

as there is no SLAM algorithm that will be able to perform best on all. This balance

between creating a universal structure and allowing for the individual application makes

forming a set of principles difficult. The following set, with justifications will be followed

throughout the benchmarking pipeline.

1. No internal changes will be made to the solvers except for logging purposes.

Reason This paper provides a general framework and treats each SLAM implementation as

a black box.

2. The same quality of information will be used when running the simulation, the

different types are described by;

2.1 Camera intrinsics

2.2 Standard image formatting (Zip or png is typical depending on the solver)

2.3 For photometrically calibrated datasets only scenes with the vignette, transfer

function and exposure provided will be used.

Reason To ensure a fair comparison for the given solvers.

3. The following attributes are required for each application

3.1 The readout method (global shutter (GS) or rolling shutter (RS))

3.2 The type of scene (indoor vs outdoor vs mixture)

3.3 The types of motion that the camera will be exposed to.

3.4 Scale of the scene

3.5 Tolerance for error on the trajectory

3.6 Loop closure capability

3.7 Whether the map is required, and whether it is required to be consistent.

Reason These requirements can be applied to each monocular application yet the specificity

still allows reasonable context.

4. The same computer will handle each simulation which will operate with no back-

ground tasks.

Reason Processing speed and performance can affect the estimated solution. We attempt to

recreate equivalent working conditions.
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5. The sequence will be fed into the solver from the beginning frame with no adjustments

made for any solver.

Reason To ensure each solver experiences the same visual conditions.

6. No parameter optimisation will take place between sequences, however for different

datasets the parameters will be changed to the authors predefined parameters.

Reason This restriction is to avoid over parameterizing a sequence and attaining unrealistic

working performance for the application. It also shows uniform conditions for each

dataset.

3.2 Application and Acquisition

3.2.1 Condition Table

SLAM
Application

Protocol
Selection

Compare
Results

Informed
Decision

Evaluation

Dataset &
Algorithm
Acquisition

Lift
Condition/
Constraints

Figure 8: Pipeline Stage I

In order to use the benchmark the applications requirements have to be lifted to the

following table.

Condition/Constraint Description Range
Scene type Indoor, outdoor or mixed -
Scale Roughly order of magnitude

of metric trajectory
10m - 10km

Motion type Linear, rotational or the full
spectrum of motion

-

Readout method Global or rolling shutter
(based on CCD or CMOS)

GS/RS

Trajectory tolerance How close you require the
trajectory to be to the
ground truth

1cm - 10m

Loop closures place recognition in the
solver

Yes/No

Map consistency Does the map generation
need to be consistent

Yes/No

Table 3: Condition table for each SLAM application, cells in bold will be used for protocol
selection
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Loop closures, readout method and map consistency determine which SCM and metrics to

use. The remaining fields act as clearances, that if broken will not permit the use of that

specific solver. The trajectory tolerance is how close you want the estimated solution to

be the ground truth solution. When evaluating the SCM for either ATE or RPE it gives a

RMSE value which is an average representation of performance. If this value gets within a

small distance to the tolerance (See Table 4) then that sequence should be investigated

further, by plotting the entire ATE.

Scale Closeness of RMSE
10m 1%
100m 2.5%
1km 2.5%
10km 5%

Table 4: Closeness values to determine whether further investigation is required. These
examples are given for context, in reality the tolerances would be based on the application.

3.2.2 Datasets and SLAM Algorithms

SLAM
Application

Lift
Condition/
Constraints

Protocol
Selection

Compare
Results

Informed
Decision

Evaluation

Dataset &
Algorithm
Acquisition

Figure 9: Pipeline Stage II

Selection Criteria for Each Dataset

This criteria is motivated from §2.3.3.

1. Range of trajectory scales

Reason In order to understand how solvers perform for varying scale. This will highlight the

performance against scalability.

2. Different camera dynamics (linear vs angular velocity)

Reason Often certain solvers have an edge over linear velocity or rotational velocity and

determining these conclusions will assist in deciding on a solver for that application

3. Different readout methods
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Reason Direct and indirect solver assumptions can breakdown depending on the readout

method. This is to ensure certain solvers are not subjected to a readout method

that will result in failure.

4. Allow different metrics to be evaluated based on the data available in the ground

truth

Reason Having multiple metrics provide a characterisation of performance and not an isolated

indicator.

5. Range of environments

Reason Understanding the solvers performance on different environments can determine

whether it can be used for the given SLAM application.

6. Short and long sequence duration

Reason To further understand scalability with respect to time; Note: This is different to

trajectory scale since a robot could be moving at a high speed over a large trajectory

however temporally the scene could be short (i.e. KIT04).

7. Different motion modalities

Reason Although motion modalities still give rise to different motion variables the character-

istics of the motion will be very different (i.e. fixed camera in a car vs. camera from

a drone)

The following table is a brief summary of the four datasets. It includes properties of each

dataset along with the metrics that can be evaluated. The selection criteria is evident.

Dataset ETH KIT TUM TUR
# Sequences 10 11 50 19
Scale∗ 10m 1km 100m 10m
Robot Drone Car Hand Ground/Hand
Environment Indoor Outdoor Indoor/Outdoor Indoor
Readout Method Global Global Global Rolling

Metrics measurable from ground truth provided
ATE Yes Yes No Yes
RPE Yes Yes No Yes
Alignment Error No No Yes No
Map Consistency Yes Yes Yes Yes
Map Accuracy No No No No

Table 5: Datasets (∗Approximate length of the metric trajectory)
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ETH: EuRoC MAV

The EuRoC mav dataset was released in 2016 by researchers from ETH zurich. In this

report it will be referred to as ETH. It consists of 10 sequences taken on the The AscTec

“Firefly” hex-rotor helicopter (see Figure 10). The datasets contain a stereo camera as

well as an IMU for acceleration readings. The authors split the sequences into two main

environments, the vicon room and the machine hall with difficulties ranging from easy to

difficult. The vicon room has full 6DOF pose capture whilst the machine hall sequences use

an MS50 Leica for position capture. For the motion characteristics the slowest and fastest

average linear velocity occurs in ETH : V 201 and ETH : MH03 at speeds of 0.33[m/s]

and 0.99[m/s]. The highest average roational velocity (ARV) occurs in ETH : V 203 at

0.66[rad/s]. The average length of the trajectory is 81.2[m] with the longest trajectory at

130.9[m] for ETH : MH03. These sequences span on average 2 minutes.

Frame 1047

Figure 10: (Left) Trajectory snippet from the ETHV103 sequence. (Right) Still frame from
the mav in motion

KIT: Visual Odometry

The kitti vision benchmark suite is a joint project of Karlsruhe Institute of Technology

and Toyota Technological Institute at Chicago. The odometry dataset (KIT) was released

in 2012 that uses an automobile along 21 different sequences. The rig contains a stereo

camera, with a velodyne HDL-64E laserscanner. Sequences range anywhere from 1km to

10km in suburban areas. Only the first 11 sequences will be considered as they contain pose

information whilst the remaining are used for validation. For the motion characteristics

the slowest and fastest average linear velocity occurs in KIT07 and KIT04 at speeds of

6.07[m/s] and 140[m/s]. The highest average roational velocity (ARV) occurs in KIT06

at 0.13[rad/s]. The average length of the trajectory is 2016[m] with the longest trajectory

at 3724[m] for KIT00. These sequences span on average 3.5 minutes.
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Frame 1210

Figure 11: (left) Snippet from the second Kitti sequence, (right) still frame showing the
cameras input

TUR: RGB-D SLAM

Using both a handheld camera as well as a pioneer rig the TUM research team capture

several indoor environments from a kinect sensor (TUR). Each sequence contains the full

6DOF pose estimate with vicon equipment. The dataset does contains colour and depth

estimates for each frame as well as accelerometer data. The sequences come with and

without loop closures. For the motion characteristics the slowest and fastest average linear

velocity occurs in TUR2rpy and TUR1desk2 at speeds of 0.01[m/s] and 0.43[m/s]. The

highest average rotational velocity occurs in TUR1360 at 0.73[rad/s]. The average length

of the trajectory is 14.5[m] with the longest trajectory at 43.08[m] for TUR2PS3. These

sequences span on average 3.5 minutes.

Frame 945

Figure 12: (left) Snippet from the TUM-RGBDFr1360 sequence, showing part of the loop.
(right) Still frame from the trajectory show
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TUM: Monocular Visual Odometry

Brightness variations due to vignette, gamma correction and exposure time can be elimi-

nated by a complete photometric calibration [29].

I(x) = G(tV (x)B(x)) (25)

where the measured brightness I depends on the irradiance B, the vignette V , the exposure

time t and the camera response function G (gamma function). G and V can be calibrated

beforehand, t can be read out from the camera. The research team from the Technische

Universität München (TUM) provide 50 photometrically calibrated sequences for the

evalutation of visual odometry (TUM). The dataset is shot with two separate cameras

(see Figure 13) that traverse several parts of the campus. Each sequence has the same

initial and terminating spot which is why it is used to measure drift from VO solutions.

Of the 50 sequences only 2 (TUM50, 34) contain both indoor and outdoor environments.

Figure 13: (left) narrow and wide lens for the sequences. (right) snippett of all 50 sequnces
used in the making of the TUMmono dataset
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SLAM Algorithms

The following is a list of the implementations used in the benchmarking pipeline;

ORB-SLAM2: [67] feature-based monocular SLAM system that operates in real time, in

small and large, indoor and outdoor environments. The system is robust to severe motion

clutter, allows wide baseline loop closing and relocalization, and includes full automatic

initialization. Building on the works of PTAM from Klein and Murray ORB-SLAM2

(ORB2) was developed by Raul Mur-Artal. It has low latent interactive bundle adjustment

as well as a strict outlier rejection protocol. These together permit long operation and

elimination bad data association [67].

DSO: [29] A direct sparse visual odometry formulation. Developed by Engel, et al.

It combines a fully direct probabilistic model (minimizing a photometric error) with

consistent, joint optimization of all model parameters, including geometry – represented as

inverse depth in a reference frame – and camera motion. This is achieved in real time by

omitting the smoothness prior used in other direct methods and instead sampling pixels

evenly throughout the images.

SVO: [35]A semi-direct monocular visual odometry algorithm. The approach elimi-

nates the need of costly feature extraction and robust matching techniques for motion

estimation. Our algorithm operates directly on pixel intensities, which results in subpixel

precision at high frame-rates. A probabilistic mapping method that explicitly models

outlier measurements is used to estimate 3D points, which results in fewer outliers and

more reliable points [21].

LDSO: [36] an extension of Direct Sparse Odometry (DSO) to a monocular visual

SLAM system with loop closure detection and pose-graph optimization (LDSO). Loop

closure candidates are verified geometrically and Sim(3) relative pose constraints are

estimated by jointly minimizing 2D and 3D geometric error terms. These constraints are

fused with a co-visibility graph of relative poses extracted from DSO’s sliding window

optimization [29].
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3.3 Selection and Evaluation

3.3.1 Sequence Classification Matrix

From using a criteria for dataset collection we require a way of ordering them in a sensible

way. The proposed idea is to form a sequence classification matrix (SCM) that categorises

sequences based on a choice of quantitative variables. The construction of the SCM must

satisfy the following;

1. The SCM must be a square matrix.

2. Atleast one common metric should be measurable within the groundtruth to enable

evaluation on the entire matrix.

3. There has to be a pairwise ordering between the matrix cells along the direction of

the variable

It would be valuable if the variables chosen would highlight performance and robustness

of an algorithm. The variables selected is the average linear velocity, average rotational

velocity, proportion of time spent indoors/outdoors and duration of the sequence. These are

adopted from the selection critera in 3.2.2 with the benefits of being simple yet informative

and can easily be applied to the datasets considered. Three examples SCM’s are shown in

Figure 15.

v1

v2

D1 = (v11 , v
1
2)

D3 = (v31 , v
3
2)

D2 = (v21 , v
2
2)

D4 = (v41 , v
4
2)

v21 v41

v11 v31

v22 v42

v12 v32

Figure 14: Construction of an SCM n = 2, with a Hasse diagram (using ≤) to show the
partial ordering of datasets in SCM.

You can patch four basic SCM’s to form a coordinate style SCM. Each quadrant uses the

ordering proposed except the operator switches to ≥ below the x-axis, the arrows shown

in the example indicate the ordering.
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ETHMH04 ETHMH03

ETHMH02 ETHV201

ETHMH01 ETHV101

ETHV103 ETHV203 KIT07 KIT06

KIT00 KIT08

KIT09 KIT02

KIT04 KIT01

Scale

Linear Velocity

Rotational Velocity

TUM40 TUM28

TUM11 TUM13

TUM09 TUM12

TUM10 TUM02 TUM44 TUM19

TUM34 TUM21

TUM50 TUM20

TUM42 TUM22

Outdoors

Duration

ETH ×KIT TUM

TUR1F TUR1xyz

TUR2LNL TUR2PS360

TUR2360K TUR2D

TUR2rpy TUR2xyz TUR2PS3 TUR1rpy

TUR2360H TUR1360

TUR2LWL TUR1D2

TUR1D TUR1R1

Rotational Velocity

Linear Velocity

TUR

Figure 15: Selected variables and sequences that give three SCM’s to be used in the
benchmarking process
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From the rules provided it is possible to build the matrix by selection however this can

be tedious. For this report the variables of interest were plotted centred around the unit

square. You then select sequences that best fall into the 16 bins on the SCM ensuring

proper ordering. Generating datasets of different size comes with a different experience.

A 2× 2 SCM may be necessary if less datasets are provided, the only issue with using a

smaller SCM is a weaker characterisation over the chosen variables. In the other direction

you could have n = 5 which would give you 25 sequences to evaluate. If the choice of

variables only have small changes between cells then a more refined characterisation would

take place. A condensed version of each SCM (See Figure 15), along with metrics and

chosen variables is shown in Table 6.

SCM ETH ×KIT TUR TUM
Variables Scale vs. motion Motion Environment vs. duration

SLAM/VO Both Both VO
ATE Yes Yes No
RPE Yes Yes No
Drift No No Yes

Map Consistency Yes Yes Yes

Table 6: The variables and metrics for the three proposed sequence classification matrices

Issues noticed when generating the SCM is the inhomogeneous distribution of sequences

when plotted. If benchmarks were motivated by a characterisation such as the SCM, it

could create a smoother pool of sequences to choose from, which would provide a uniform

performance evaluation. For example, the TUM dataset only contains two sequences

(34, and 50) that go both indoors and outdoors. The rest of the sequences are either

one or the other. For the ETH ×KIT SCM the four sequences in the fourth quadrant

do not highlight significant differences in increasing rotational velocity. This is because

it is difficult to increase rotational velocity when metric scale increases. A way around

this would be to have circular trajectories of constant radii, like in KIT18, however this

sequence is only used for validation and does not provide a ground truth.
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3.3.2 Selecting The Protocol

SLAM
Application

Lift
Condition/
Constraints

Compare
Results

Informed
Decision

Evaluation

Dataset &
Algorithm
Acquisition

Protocol
Selection

Figure 16: Pipeline Stage III

MC ATE/RPE MC ATE/RPE

Drift ATE/RPE

Readout method

Loop closures

ETH ×KIT TUR TUR

TUM LHS ETH ×KIT TUR

GS RS GS RS

No Y es

ETH ×KIT

Condition table

Map consistency Y es No Y es No

S3 S2

S1

Requires full SLAM system

Requires reduced SLAM system (VO)

Figure 17: Three stage decision tree for selecting the benchmarking protocol. Highlighted
are the three applications (S1,S2 and S3) explored in §4, aswell as bounding boxes for the
different versions of SLAM algorithms most suitable for that application
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3.3.3 Evaluation and Alignment

SLAM
Application

Lift
Condition/
Constraints

Protocol
Selection

Compare
Results

Informed
Decision

Evaluation

Dataset &
Algorithm
Acquisition

Figure 18: Pipeline Stage IV

After the algorithm[s] have been selected, the solvers parameters can be changed if there

is a change of dataset. Within a dataset all solver parameters will remain fixed. For

evaluation refer to the principles section in §3.1. Specifically points 2, 4, 5 and 6. The

following setup was used when benchmarking.

System Configuration

Category System Specification
Operating System Ubuntu 18.04.3 LTS
CPU Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
VM Configuration 1 physical processor; 2 cores; 2 threads
RAM 12192200 KiB
Motherboard 1.2/VirtualBox (Oracle Corporation)
Graphics Intel(R) HD Graphics 620

Table 7: System specifications when benchmarking

Methods of Umeyama

The following pseudo algorithm was used on all trajectories (except TUM) in order to

evaluate the metrics described in §??. As mentioned in §2.3 the algorithm determines

(s ·R, t) ∈ Sim(3) that minimises the following;

min
k∑
i=1

∥∥x̂f(i) − (sRxi + t)
∥∥

2
x, x̂ ∈ R3 (26)

Where x and x̂ are the estimated and groundtruth positions of the camera respectively.

The algorithm assumes both input vectors are ordered through correspondence.
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Algorithm 1: Umeyama Alignment to obtain Sim(3) parameters [87]

Input: {xi}ni=1, {yi}ni=1, xi, yi ∈ R3

Two sets of paired 3D points

Output: (s ·R, t) ∈ Sim(3) s, t ∈ R R ∈ SO(3)

/* Variable initialization */

1 µx ← 1
n

∑n
i=1 xi /* mean vector of {x} */

2 µy ← 1
n

∑n
i=1 yi /* mean vector of {y} */

3 σ2
x ← 1

n

∑n
i=1 ‖xi − µx‖

2
/* variance around mean {x} */

4 σ2
y ← 1

n

∑n
i=1 ‖yi − µy‖

2
/* variance around mean {y} */

5 Σxy ← 1
n

∑n
i=1(yi − µy)(xi − µx)> /* Covariance matrix */

/* Singular value decomposition of the covariance matrix */

6 UDV > ← SVD(Σxy)

7 if rank(Σxy) > m− 1 then

8 if det(Σxy) ≥ 0 then

9 S ← I

10 (R, t, s)←
(
USV >, µy − c · µx, σ−2

x · Tr(DS)
)

11 return (R, t, s)

12 else if det(Σxy) < 0 then

13 S ← diag(1, 1, . . . , 1,−1)

14 (R, t, s)←
(
USV >, µy − c · µx, σ−2

x · Tr(DS)
)

15 return (R, t, s)

16 end

17 else if rank(Σxy) = m− 1 then

18 if det(U) · det(V ) = 1 then

19 S ← I

20 (R, t, s)←
(
USV >, µy − c · µx, σ−2

x · Tr(DS)
)

21 return (R, t, s)

22 else if det(U) · det(V ) = −1 then

23 S ← diag(1, 1, . . . , 1,−1)

24 (R, t, s)←
(
USV >, µy − c · µx, σ−2

x · Tr(DS)
)

25 return (R, t, s)

26 end

27 end
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3.4 Making an Informed Decision

SLAM
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Figure 19: Pipeline Stage V

After lifting the requirements to a condition table you select the protocol according to the

decision tree in Figure 17. From there you evaluate and align the recommended sequence

classification matrices for the chosen metrics. The matrix then identifies whether there

is a clear choice for the given application. It is also necessary to check the RMSE ATE

values against the trajectory tolerance. If this value falls within a threshold (See Table

4) of the tolerance then that sequence should be investigated further showing confidence

intervals for the trajectory error.

Rules of Thumb

1. Explore the entire ATE and RPE result for the best and worst solution

2. Investigate sequences that have significant performance differences

3. Select sequences on the boundary of the SCM that is relevant to your application

A benefit from using this classification approach is that you can quickly identify good and

bad performance, and it acts as a window into which sequences should be analysed further.

In this benchmarking process some of the more complex visualisations, and interesting

results are explored in Figure 32 and 33. These sequences were chosen for further analysis

when following the rules of thumb provided. The main objective in this pipeline is to

provide an honest characterisation of performance against variables of interest to allow an

informed decision.

SLAM
Application

Lift
Condition/
Constraints

Compare
Results

Evaluation

Dataset &
Algorithm
Acquisition

Protocol
Selection

Informed
Decision

Figure 20: Informed Decision
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4 Benchmarking Results

Consider three separate applications where visual SLAM is a viable solution. Following

the principles layed out in §3.1 we will take a methodocial approach in making justified

recommendations to each scenario. The following cases are;

(S1) A light-weight indoor application for flying a drone with an attached gimbal. The

user is interested in installing small rings and obstacles within the environment so

that he/she can look at the trajectory later and see whether any improvements in

the flight controls can be made.

(S2) A Mining company would like to trial a rover in exploring underground tunnels. These

are outdated due to the width and height violating current regulations regarding

structural integrity and size (2m by 2m). The tunnels do not contain loops and were

used for human operation in the 1970’s. The company would like to get an accurate

sense of the trajectory with a consistent map generation in low light conditions.

(S3) A professional go-kart firm is looking at finding optimal routes on racetracks. It would

like to explore the different path characteristics to discover improved trajectories

on the track. In order to understand driver fatigue over time it should be able to

perform global loop closures over several rounds on the track. The track also has

GPS-denied zones.

Lifting these constraints into abstract functional requirements produces the following

tolerance table; Following the principles and methodology developed in §3 we will arrive

Application Parameters S1 S2 S3
Loop closures No Yes Yes
Readout method GS GS GS
Map consistency No No Yes
Scene Indoor Indoor Mixed
Scale 10m 100m 10km
Motion type Full spectrum Linear Full spectrum
Trajectory Tolerance 0.5m 1m 25m
Recommendation* ORB2 (VO) ORB2 ORB2

Table 8: Condition table for three different applications. (the recommendations do have
some caveats)

at the recommendations stated in Table 8.
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Following Figure 17 we identify three separate benchmarking protocols. For S1 we will

be evaluating drift on TUM and ATE/RPE on a submatrix of ETH × KIT . From

the decision tree the solution admits a reduced VO system. For S2 we will be testing

ATE/RPE on the ETH ×KIT SCM. For S3 we will be testing ATE/RPE as well as map

consistency on ETH ×KIT .

4.1 Visual Odometry Results

S1 does not require loop closure capability. The reduced VO solvers that will be used

are ORB-SLAM2 (VO), DSO and SVO. Looking at the scale of the setup it would not

be informative to evaluate each solver on the entire SCM. We will select a submatrix

consisting of all sequences on the left hand side (LHS) of the SCM which is shown in 27.

A shaded cell indicates no test is performed.

4.1.1 Solver Validation

Both ORB2 (VO) and DSO have a frame acceptance protocol which makes the RPE

defined in (12) not suitable, as a time step ∆ for both solvers will be different lengths.

This can be verified from the pose acquisition graph in Figure 25. For this version of SVO

it only attains tracking for 3 out of the 8 scenes so we will observe the performance of

all three solvers on sequences where tracking is unanimous. This is done for validation

purposes before we begin the decision process. For the MH 01 easy sequence we have the

following trajectory path
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Figure 21: Trajectories in x-y plane for ETHMH01 from all three solvers. Groundtruth is
also plotted (the star indicates start and finish point)

Figure 22: Close-up of linear motion of
ETHMH01 on all three solvers

Figure 23: Close-up of arc motion of
ETHMH01 on all three solvers

Figure 21 validates the intended functionality of all three solvers when comparing to

the ground truth. The Sim(3) transformation (discussed in §3.3.3) correctly aligned the

solution from each solver to the given ground truth. From the exigent frame culling

procedure in ORB2 (VO) the close-up taken on Figure 22 only shows a single SE(3)

transformation along that trajectory snippet. However when inspecting SVO we see every

frame being accounted for. DSO does include a culling procedure although less pressing

than ORB. For the arc motion in Figure 23 we see similar frame increments for both ORB2

(VO) and DSO, whilst SVO computes every frame. With respect to the ground truth we

can compute ATE for all three solvers. The RPE would only serve as a weak indicator

considering the Leica MS50 used in the MH sequences only measures position and not the
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entire 6-DOF pose as is done in the Vicon sequences. From Figure 24 both ORB2 (VO)

Figure 24: Absolute trajectory error (trans) on MH 01 easy

and DSO outperform SVO for ATE. Looking at Figure 25 there is a linear growth in the

number of poses vs. time for SVO, whilst DSO and ORB2 (VO) on average attain a new

pose every 4 and 20 frames respectively, this behaviour is also reported in [67]. Looking at

the RMSE of both performance measures (See Figure 26) we see DSO and ORB2 (VO)

attain very similar results whilst SVO is approximately a magnitude larger in ATE.

Figure 25: Pose acquisition vs time for
ETHMH01

Figure 26: ATE vs RPE (RMSE) on
ETHMH01

It is clear from the sequence presented the better option for [S1] is to use DSO or ORB2

(VO). Considering SVO could not retain tracking it has been removed from the decision

process. The performance of the remaining solvers is displayed on the SCM in Figure 27.

Looking at each cell in Figure 27 we see that all but two scenes fall within the desired

range for ORB2 (VO), whilst DSO fails in 3 scenes. Since ORB2 (VO) outperforms DSO

on all scenes except ETHV 103 the clear choice is ORB2 (VO), however both scenes which

fell within the desired tolerance will be explored. The variables (θ̇, l) for each sequence are

as follows. ETHV 103 = (0.62 [rad/s], 36.5 [m]) and ETHV 203 = (0.66 [rad/s], 86.1 [m]).

The average rotational velocity for both scenes is almost 50% higher than the sequences

directly above on the SCM.
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KIT07 KIT06

KIT00 KIT08

KIT09 KIT02

KIT04 KIT01

Scale
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3.802

0.0305

0.153

0.021

0.047

0.022

0.036

0.175

0.044

0.034

0.170

1.502

0.907

0.552

1.130

ETHMH04 ETHMH03

ETHMH02 ETHV201

ETHMH01 ETHV101

ETHV103 ETHV203 KIT07 KIT06

KIT00 KIT08

KIT09 KIT02

KIT04 KIT01

Scale

Greater Linear Velocity

Greater Rotational Velocity

LHS : ETH ×KIT

Figure 27: Evaluated SCM from S1 for the RMSE absolute trajectory error [m] for ORB2
(VO) (Top) and DSO (Bottom). The shaded cell indicates that dataset is exempt from the
benchmark
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Figure 28: Boxplot displaying the ATE metric on the datasets which violated the tolerance
condition (left: ETHV103, right ETH:V203)

S1 Recommendation

ORB2 (VO) with the rotational velocity not exceeding 0.3 [rad/s]. For

improved performance in faster environments a different solver or further

tuning would be required

Following the recommendation is an exploration into the results based on the rules of thumb

§3.4; It is evident from Figure 27 that scenes with increasing rotational or translational

velocity will deteriorate performance. The scenes centred around the middle all achieve

close performance (within 20cm) however as we look at scenes with increased motion

characteristics the solvers can break down. As does DSO on ETH : MH04. Under these
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benchmarking conditions ORB2 (VO) managed to outperform DSO on 6 out of the 8

scenes. Of the two cases where DSO performed better, ETH : V 103 produced an RMSE

absolute trajectory error of 1.5m for ORB2 (VO) and nearly 1m for DSO. This highlights

that both solvers did not perform to a usable level considering the ETH setup is only a

5x5 metre room. Both times where DSO did outperform ORB2 (VO) was on scenes with a

higher rotational velocity which stems from the sliding window optimisation that DSO has

[29]. It considers the most recent frames which gives it an edge for tracking motion with

high rotational velocity. From the scenes tested scale does not appear to have a noticeable

influence on the solvers, which is probably because all scenes in the ETH dataset travel

a maximum distance of 130m (MH03) whilst the average length is 81.3m. Considering

the RMSE ATE for the 2nd and 3rd row the solvers produce similar results under easier

motion environments. If S1 only considered this spectrum of motion then a further SCM

evaluation could be undertaken on a separate SCM such as the TUM dataset to cement a

decision (results for this are shown §B.)

4.2 SLAM Results

Scale

Linear Velocity

Rotational Velocity

ETH ×KIT

ETHMH04 ETHMH03

ETHMH02 ETHV201

ETHMH01 ETHV101

ETHV103 ETHV203 KIT07 KIT06

KIT00 KIT08

KIT09 KIT02

KIT04 KIT01

Scale

Linear Velocity

Rotational Velocity

0.085

0.082

0.050

0.073

0.891

1.154

1.402

2.051

0.021

0.041

0.098

0.105

25.38

75.81 25.61

0.030

0.050

0.136

0.126

7.034

13.47

52.01

128.9

0.133

0.290

0.139

1.053

2.735

3.481

14.02

14.00

24.46

S3

S2

Figure 29: LDSO vs ORB2 on the ETH × KIT SCM. Displayed is the RMSE of the
absolute trajectory error (ATE) in [m]
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4.2.1 Trajectory Analysis on ETH×KIT

For S2 and S3 we require loop closure functionality which will use a full SLAM system

(From the decision tree in Figure 17). The results in the SCM on Figure 29 indicate an

average reduction of 27.7% (0.08m) when comparing to ORB2 (VO) and a reduction of

55.8% (0.23m) for DSO, which indicates the added power from the map, aswell as validating

its utility. For both applications the increase in scale from the condition table has justified

the usage of the entire SCM. Based on S2 the mining tunnels are primarily straight lines

with minimal turning. Because of this the top submatrix has been highlighted to better

represent the range of conditions the application demands, ETH : V 201 has also been

included as it is good practise to ensure atleast one sequence has a full 6DOF ground truth.

The KIT sequences do contain this however ETHV 201 is significantly shorter. Looking

at the hatched sequences we recognise only KIT01 violates the applications requirements

for ORB2. Sequences in this quadrant use scale and velocity (s, v) as the indicators. For

KIT01 = (2453m, 21.5m/s) and KIT04 = (393m, 30.9m/s). Since the trajectory scale

will be exposed to at most 1km this edge case will unlikely be experienced. Under the

scale requirements ORB2 falls under the trajectory limit. With further parameter tuning

both solvers could operate sucessfully (only a 0.2m reduction for LDSO) however from

these results alone

S2 Recommendation

ORB2 ensuring the operating trajectory remains within the proposed

conditions of 1km.

For S3 we want to understand the performance over the entire spectrum of motion. Again

the choice to use the right hand side for S3 is reflected in the applications trajectory.

Sequences which violate the trajectory tolerance is KIT02 = (5067m, 10.5m/s) and

KIT08 = (3223m, 7.62m/s). There is no clear restriction to be placed on the recom-

mendation as KIT02 has a lower trajectory error yet it has higher variables. Looking at

Figure 30: KIT08 and KIT02, highlighting scenes where scale drift is large (left) and how
scale drift can be avoided on longer sequences if loop closures occur.
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Figure 31: Observing how the scale parameter s in the Sim(3) alignment evolves when
more poses are matched to the ground truth. When scale drift causes the solver to be
ineffective the parameter will not converge to a value. For KIT02 (right) we see an
immediate convergence from multiple loop closure corrections

the trajectory for both sequences shows that the map itself does not have loop closures.

Considering the application performs multiple loops

S3 Recommendation Part 1

ORB2 ensuring there are sufficient loop closures to avoid scale drift.

Without the inter camera distance from a stereo setup the algorithm is prone to incorrectly

constructing the trajectory or the map points at each frame [74]. This compounding error

can affect the scale of the problem and unless corrected via a loop closure or an optimisation

technique the solution can quickly diverge. From Figure 31 the scale parameter does not

converge on the KTI02 sequence as more poses are added to the Umeyama alignment.

When the scale parameter does converge scale drift does not appear to deteriorate the

solution, as shown to the right of Figure 31. The effects of this drift are very damaging.

You can see that both solvers gradually make the map and trajectory decrease in size.

Scenes such as this, identified by the SCM play an important role in validation and testing

a chosen application. Scale is not an issue for these solvers if certain conditions are

satisfied. KIT08 for instance is approximately 2km (5067 [m]) longer than KIT02 (3223

[m]), yet with apparent loop closures the system can maintain working operation (based

on S3 requirements). The ordering of the SCM is able to reveal interesting behaviour. For

the scale drift the sequences variables was not indicative of the performance difference,

which forced a look at the trajectory. A concern immediately presented under the selected

ordering is the large difference between scales on either side of the abcissa. The shortest

trajectory from the KIT dataset is 400m which is almost twice the length of the longest

trajectory from the ETH dataset. This characterisation for presenting the datasets is

motivated with the intention to promote the collection and acquisition of a homogeneous

pool of sequences in the community. In these 16 sequences on the SCM ORB2 achieves

a lower RMSE ATE in 12 sequences. Focusing on the S2 submatrix we notice similar
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performance for all sequences. ORB2 slightly outperforms each solver. To get a better

characterisation of the performance we will explore the performance measure against a

motion variable. Figure 32 shows the frame filtering from each solver, especially from

ORB2. Both solvers from 10−20 seconds do not compute any poses for ETH : V 203. This

is because the visual feed from the monocular camera was static, and this pre-processing

stage allows lifelong operation. What is clear from the distribution of points is that scenes

with higher rotational and translational velocity will accept more frames. In 90 seconds

LDSO acquired 875 frames in ETH : V 203 whilst for the ETH : MH01 sequence it

had 450. ORB2 on the other hand remained within 10% of 100 frames for both. This

indicates that ORB2 is more scalable than LDSO. This is always a limitation for solvers

that perform bundle adjustment. Although LDSO only performs BA along the trajectory

and map points in the sliding window it will still add to the processing time. ORB2 does

a larger BA taking into account the entire covisibility graph. This strength from ORB2

stems from the ability to perform interactive bundle adjustment by focusing on scalable

rejection protocols. Both S2 and S3 are an order of magnitude larger than the first scenario

demanding longer operation. For S2 and S3 the magnitude of the scale will usually require

Figure 32: Looking at two vicon sequences from the ETH dataset to highlight the difficult
transient effects as well as the exigency in ORB2’s pose acquisition. (Best viewed in colour)

global bundle adjustment. For S3 we will investigate the performance on the submatrix

in Figure 29. Looking at the ATE measure we see a convincing winner from ORB2. It
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outperforms LDSO on 7 from 8 solvers and achieves equal performance on KIT06. From

the rules of thumb it is informative to look at the edge cells of the SCM, as well as focus

on any clear outliers. We can investigate the solvers performance on KIT07 to tease out

any concerns dealing with the application of S3. From Figure 33 we notice peaks and

troughs from both solvers. What is significant is that both peaks occur at corner points of

the sequence. This indicates that points of increasing rotational velocity are harder to

track, which is a similar conclusion we had in §4.1.1. It also appears that LDSO is lagging

behind ORB2 which could be an indication for a slower solver Based on the trajectory

alone ORB2 will be carried forward to determine map consistency.

Figure 33: Plotting the ATE of ORB2 and LDSO on the KIT07 sequence. Both markers
refer to frames in the scene with maximum ATE. These have been mapped to the trajectory
to indicate position.

4.2.2 Map Consistency
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Figure 34: Rays from the optical centre of the camera to the map points for the first frame
in the KIT sequence 04. (Note the scale difference)

In order to validate global consistency in (S3) it is important to note a serious restriction

when comparing this method of map consistency between two implementations. Firstly,
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the number of features that the SLAM implementation uses per keyframe will significantly

affect computation time, and the paramaterisation of feature points can invalidate this

method in certain sequences. Take for example KIT04, and the first frame of the sequence

(See Figure 34). Considering the convex hulls between respective frames can be significantly

different in LDSO (from the inverse depth parametrisation) the map consistency measure

breaks down §2.3.2 for outdoor environments. One could place a saturation value on the

map points generated by LDSO but in §3.1 it was made clear that no filters or specialised

adjustments would be made to the internal pipeline. Removing the very map points

that give accurate rotational anchors would affect the integrity of the implementation.

Therefore for the definition extended from the works of [66] LDSO will most likely not

achieve consistency in outdoor environments or environments with windows. In the

proposed paper global consistency is achieved if the cascading hypothesis test (outlined in

§2.3.2 is passed for all pairs of poses. This produces an SCM with each cell producing

a binary value (shown in Figure 35). All sequences were considered globally consistent

Scale

Linear Velocity

Rotational Velocity

ETH ×KIT

ETHMH04 ETHMH03

ETHMH02 ETHV201

ETHMH01 ETHV101

ETHV103 ETHV203 KIT07 KIT06

KIT00 KIT08

KIT09 KIT02

KIT04 KIT01

Scale

Linear Velocity

Rotational Velocity

S3

S2

Figure 35: Map consistency on ETH ×KIT for ORB2. The filled in cells indicate global
consistency has been reached with a confidence of 0.95. This is a user set parameter.

except for KIT02,09 and 08. It does appear that scenes with higher ATE produce less

consistent maps. The scene that experiences scale drift is intuitively not consistent due to

the growing and shrinking that occurs to the viewing cone over time. The recommendation

for map consistency is to ensure loop closures and be careful when the operating trajectory

exceeds 3000m, as both KIT02 and KIT08 fall into this category.

S3 Recommendation Part 2

For consistent map generation in S3 it is recommended to follow Part 1

as well as an operating restriction that the length of the trajectory does

not exceed 3000m.
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Limitations concerning this metric is the unsuitability for the inverse depth representation.

The authors definition of consistency [66] is not immediately clear. A better definition

given in [93] is that it should contain no artifacts and doublets except all perceivable

structures. The idea of computing the polygonal boundaries from sparse points has been

explored here [58], however the author also uses ORB2 and does not consider an inverse

depth representation. A further limitation in our approach is the way in which variance

Figure 36: Upon a loop closure on KIT01 the previous sparse map cloud contains artifacts,
however after the loop closure the algorithm deletes vertexes and constructs a consistent
map [58]

was computed, for both solvers the first frame of the sequence was run 100 times and

the difference between the average length of the optical ray was assigned the variance

for that sequence. Although this represents the variability between consecutive runs and

captures the non deterministic effects it is still not rigorous in the original assumption of

the paper [93]. For an RGB-D sensor it is possible to generate variance in the position of

the landmark as done here [11]. However this benchmark was for monocular SLAM which

defeats the intention of the report.

5 Conclusions and Future Work

A V-stage multi-objective pipeline has been developed to transform a given SLAM appli-

cation into an informed decision about which solver to use. To arrive at the decision a

condition table was developed to abstract the SLAM application into functional require-

ments. A decision tree was used to select the benchmarking protocol and a selection and

ordering criteria concerning metrics, algorithms and datasets allowed a consistent and

thorough evaluation. Three separate applications were considered and three recommenda-

tions were made with accompanying operating conditions. In the broader context the set

of principles proposed allow a robust and fair framework for comparing SLAM implemen-

tations. The procedure, when followed disrupts the pattern of over parameterisation and

delineates over-fitting.
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The condition table contained 6 variables that were general yet informative for the

given context. This characterisation of an application could be applied in any setting and

this is evident in the diversity of the three example applications. The estimated solutions

for each application were validated through comparisons to the trajectory, ensuring the

frame acceptance protocol was operational and observing the increased performance of

adding loop closure functionality. This was cross referenced with the literature to ensure

the solvers achieved intended functionality. The validation provides strength in the recom-

mendations. Each recommendation also provided insightful conditions surrounding scale

drift and velocity constraints.

This systematic approach allowed an efficient identification of three intrinsic limita-

tions: First. If loop closures do not occur on large scenes then scale drift will occur,

second. The sliding window optimisation gives a performance boost on scenes with

greater rotational velocity and three. From the sequence ordering scenes with higher

average motion characteristics will deteriorate the performance of the solvers. Although

these properties have been established this approach to ordering and characterising the

datasets allowed an efficient discovery. The map consistency from [66] was extended

to the visual SLAM problem and the limitations were discussed, it was recognised that

map consistency should be able to deal with solvers that use an inverse depth representation

The black box approach to testing the SLAM implementations had the advantage of

clarifying that the benchmarking framework was the objective of the report, however it

also meant that the same three recommendations for each application was ORB2. With

parameter tweaking LDSO could very well achieve S2. The variability in recommendations

would have provided a better outcome that a different solver could be selected under this

framework. However if the blackbox approach was not taken this could have resulted in

the testing of a lot more solver variants and that was not the point of this report. With

respect to trajectory metrics the choices provided an understanding of global accuracy of

the map however the solvers chosen did not allow the relative pose error to be correctly

measured.

The need to develop independent mapping metrics is apparent, it is particularly im-

portant to deal with SLAM applications that use different coordinate representations.

The community should place continued efforts in ensuring a set of principles is followed

when benchmarking SLAM implementations for commercial use. As SLAM becomes more

applicable in industry the regulatory framework will need to be clear to allow a virtuous

co-design cycle. Under the proposed principles it is difficult to show performance that is

achieved by over fitting sequences, which would be very advantageous in this next stage,

especially if the principles can be embedded in an evaluation framework like GSLAM [97]

or SlamBench3.0 [15].
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A Coordinate Representation

The homogeneous coordinates of a landmark with respect to a given frame of reference is

defined as;

p̄ ∈ E3, p̄ =

[
p

1

]
(27)

Where p = (p1, p2, p3)> ∈ R3. We should think of these points as physical points in space

without the additive vector space structure of R3. The issue with this representation, in

a monocular setting is that low parallax measurements make it very difficult to deduce

whether the feature has a depth of 10 units or of a magnitude greater. We can devise

methods to circumvent this problem by only choosing features that are close to the

camera relative to its latest translation (previous image) but this could mean we lose

valuable information. Furthermore, paying too much attention to outlier rejection can

be computationally demanding. There is also the horizon issue or dealing with points at

infinity, especially in outdoor scenes. These features should exhibit no parallax and have

no influence on camera translation, but they are perfect for gaining information about

rotation. These issues with the homogeneous representation motivated what is known as

the inverse depth representation which is exposited for the monocular case in [21]. The

primary results conclude that numerically, this representation is far superior, it is able

to deal with points of low parallax and points at infinity. It is important though how it

formulated, the inverse depth is relative to the positions from which the landmarks were

first observed. This does give a computational drawback as the inverse depth scheme

requires six paramaters rather than 3. This can be shown in Figure 37

Figure 37: Inverse depth representation [21]
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For this paramaterisation a point in space is defined as;

pi =

xiyi
zi

+
1

ρi
m(θi, φi) (28)

Where m = (cosφi sin θi,− sinφi, cosφi cos θi)
>. We also need to remember that now we

define the landmark taking into account the optical centre of the camera (xi, yi, zi) at the

frame with which it was seen. Whats notable about this paper is the authors result on the

linearity index of both the homogeneous case and the inverse depth case. When a feature

is initialised the inverse depth allows the feature to have infinite depth, but cannot include

zero depth. It turns out that the linearity index remains stable for low parallax α and

high parallax whilst the homogeneous case breaks down.
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B Drift performance on TUM

From Figure 15, the top right SCM looks at 16 sequences from the TUM dataset, whereby

the duration of the footage and the proportion of time spent indoors are the two charac-

terising variables. The heuristic here was to determine whether scalability will accelerate

the affects of drift. It also serves as another meaure to differentiate performance. Recall

(16) which describes the scale, rotation and translation drift over the entire sequence. We

will evaluate this metric on all 16 sequences for ORB2 and DSO. The metric is defined as

the translational RMSE of the tracked trajectory, when aligned (a) to the start segment

and (b) to the end segment. the feature matching.

Indoors

Long sequences

35.77

2.712

27.57

4.949

51.38

3.147

357.2

4.038

2.342

0.6632

5.092

1.698

7.604

0.859 0.678

2.198

0.643

2.608

0.7197

7.687

1.166

133.3

4.255

2.779

0.475

25.45

0.442

0.762

0.709

14.53

2.049

0.917

Indoors

Short sequences

TUM40 TUM28

TUM11 TUM13

TUM09 TUM12

TUM10 TUM02 TUM44 TUM19

TUM34 TUM21

TUM50 TUM20

TUM42 TUM22

Outdoors

TUM

Outdoors

Long sequences

Short sequences

IN/OD

Figure 38: Evaluating the scale alignment error which describes the drift of the VO system
with respect to scale, translation and rotation. (ORB top, DSO bottom)
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C Sequence Properties
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Sequence Duration [s] Length [m] Avg. Linear Velocity [msˆ-1] Rotational Velocity Avg. [radsˆ-1] Proportion ID Proportion OD
KIT00 471 3724 7.91 0.085 0 1
KIT01 114 2453 21.5 0.055 0 1
KIT02 483 5067 10.5 0.067 0 1
KIT03 73 561 6.79 0.036 0 1
KIT04 28 393 31.8 0.01 0 1
KIT05 288 2206 7.67 0.058 0 1
KIT06 114 1233 10.8 0.13 0 1
KIT07 114 695 6.07 0.12 0 1
KIT08 423 3223 7.62 0.096 0 1
KIT09 164 1705 10.33 0.094 0 1
KIT10 124 920 7.39 0.064 0 1
ETHMH01 182 80.6 0.44 0.22 1 0
ETHMH02 150 73.5 0.49 0.21 1 0
ETHMH03 132 130.9 0.99 0.29 1 0
ETHMH04 99 91.7 0.93 0.24 1 0
ETHMH05 111 97.6 0.88 0.21 1 0
ETHV101 144 58.6 0.41 0.28 1 0
ETHV102 83.5 75.9 0.91 0.56 1 0
ETHV103 105 79 0.75 0.62 1 0
ETHV201 112 36.5 0.33 0.28 1 0
ETHV202 115 83.2 0.72 0.59 1 0
ETHV203 115 86.1 0.75 0.66 1 0
TUR1xzy 30 9.16 0.24 0.16 1 0
TUR1rpy 28 2.64 0.06 0.88 1 0
TUR2xyz 123 9.7 0.06 0.03 1 0
TUR2rpy 110 4.49 0.01 0.10 1 0
TUR1360 29 7.49 0.21 0.73 1 0
TUR1floor 50 14.08 0.26 0.26 1 0
TUR1desk 23 10.56 0.41 0.41 1 0
TUR1desk2 25 11.46 0.43 0.51 1 0
TUR1room 49 17.48 0.33 0.52 1 0
TUR2360H 91 17.17 0.16 0.36 1 0
TUR2360K 48 15.16 0.3 0.23 1 0
TUR2D 99 20.34 0.19 0.11 1 0
TUR2LNL 112 10.92 0.24 0.26 1 0
TUR2LWL 173 15.13 0.23 0.30 1 0
TUR2P360 73 17.28 0.23 0.21 1 0
TUR2PS 156 43.08 0.26 0.23 1 0
TUR2PS3 112 20.48 0.16 0.22 1 0
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