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Abstract

This thesis investigates the task of visual scene reconstruction from a systems theory
perspective. In this framework, the scene can be considered as the unknown state to
be estimated, and the output of the system is a light-field. While measurements of
a light-field can be obtained through more classical sensors such as monocular cam-
eras, light-field cameras offer several advantages for scene reconstruction because the
gradients of light-fields are known to be highly correlated with depth. Proving what
conditions are necessary in order for depth estimation to be possible has remained
a significant theoretical gap in the literature. In this thesis it is shown that for any
mildly complex scene class, if depth can be extracted from light-field gradients for
any scene in that class, then it is necessary and sufficient that each scene in the class
is Lambertian and textured. The geometry of light-field cameras is explored in detail,
resulting in a novel bijective point-projection model with clear applications to scene
reconstruction that is later used for state-of-the-art camera calibration. The perfor-
mance of scene reconstruction tasks depends crucially on the way in which the scene
is represented. Observers for explicit and implicit scene representations are derived.
In both cases, convergence is guaranteed and demonstrated experimentally, but in
the latter case, finite-time convergence is derived and under milder conditions, even
if the underlying state is infinite-dimensional.
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Chapter 1

Introduction

This thesis proposes the use of observers for the estimation of dense reconstructions
of scenes using light-field measurements. In this setting, the state to be estimated is
a scene, and the output of that scene is a light-field. Systems and control theoretical
concepts are used in this thesis to derive estimation techniques that include mathe-
matical guarantees of performance and accurate sensor modelling and calibration.

The primary contributions are divided into two main parts. The first part of this
thesis focuses on contributions to the understanding of light-field geometry. This
part proposes a novel projection model for light-field cameras that relates points in
front of the camera to 3D features in the 4D light-field. This is followed by a method
for estimating disparity, including the derivation of necessary and sufficient condi-
tions for estimating depth from first-order properties of light-field data. In order to
verify the correctness of the point-projection model, a novel calibration procedure is
proposed that outperforms comparable methods on a variety of light-field cameras
and test data.

The second part of this thesis proposes the use of observers for scene reconstruc-
tion. An integral part of any scene reconstruction method is the choice of represen-
tation of the scene. The two most common methods of representation are explicit
and implicit scene representations. In the former case, the scene is represented as
the image of a function, whereas in the latter case the scene is represented as a level
or superlevel set of a function. This thesis proposes an observer for both the explicit
and implicit cases, and in each case asymptotic convergence is proven analytically
and demonstrated experimentally. In the explicit case, an observer is derived that
updates scenes in a manner that minimises a photometric error derived on the light
field data, and a theoretical proof of asymptotic convergence for this system is pro-
vided. For the implicit case, an observer is proposed that estimates scenes for a
variety of implicit scene representations. It is proven that this observer exhibits con-
vergence to the true scene in finite-time, even if the underlying scene is drawn from
an infinite-dimensional class of scenes. It is shown that the way in which a state is
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2 Introduction

updated depends not only on the sensor pose and the data produced by the sen-
sor, but also on the way in which the scene is represented, and that some choices of
representation result in better noise reduction properties.

1.1 Motivation and Contributions

Scene reconstruction is one of the most studied topics in computer vision and robotics,
with applications ranging from surveying to surgery. Studies of this problem vary in
terms of approach to the estimation task, the sensors used, and the representations
of the scene used.

The study of filtering and observer methods for depth estimation has progressed
substantially in the last decade [50, 124, 60, 8, 6, 28]. However, the literature on
observer methods for scene reconstruction focuses primarily on two main types of
scene representations: point clouds, as in [50, 60, 28], and depth maps, as in [124, 6, 8].
The typical way observers are applied to point cloud representations is to exploit
the inherent tracking property of observers to predict where an image feature will
appear in a subsequent measurement, given an estimate of the camera motion. An
error is then applied between the predicted image feature location and the measured
feature location at a later time, and the world feature location is updated in such a
way as to minimise that error. Point cloud representations are sparse, meaning that
much of the structure of the scene being estimated is lost, and although there are
techniques for generating dense reconstructions from sparse representations [48, 47],
these methods are typically not performed in real-time. As already mentioned, the
primary alternative to point cloud representations in the filtering literature are depth
map or disparity map representations. Such representations of scenes are dense,
but local, meaning that they only provide estimates of the portion of a scene that is
visible at a given time. In such methods, tracking of individual features is usually
not performed. Instead, an update of the entire depth map is predicted based on
camera motion and corrected based on new data.

This thesis proposes alternative observer-based approaches to scene reconstruc-
tion. The first method proposed in this thesis, discussed in Chapter 4, uses a point
cloud representation, but without the need for tracking individual points. Instead, a
time-varying vector field is computed that depends on the camera pose and current
measurement of the scene. This vector field determines the velocities of individual
points in the scene estimate in a way that guarantees that those point estimates con-
verge to the true scene. The derivation of this observer requires careful examination
of the underlying sensor geometry, and the techniques used in the theoretical anal-
ysis may be applicable to other scenarios where convergence of a state estimate to a
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limit set is desired rather than convergence to a single state.

The second observer design presented in this thesis, discussed in Chapter 5, uses
an implicit representation of a scene rather than an explicit representation. An im-
plicit representation of a scene consists of a test to determine whether a given point
is contained within the scene or not, rather than a method for constructing samples
of points in the scene as with an explicit method such as a point cloud. Implicit rep-
resentations of scenes have been used for several decades [80]. In computer vision, a
common technique is known as Poisson surface reconstruction [48], in which dense
surfaces are reconstructed from points and surface normals by finding a function
that has zero-crossings at each point with a gradient in the directions specified by
the normals. As such, this method is a technique for converting a set of point-normal
pairs into a dense surface, rather than taking image data and producing a dense
surface. An alternative method commonly used in robotics is known as occupancy
mapping [105]. Occupancy mapping methods usually represent scenes in terms of
assignments of values to voxels. As the number of parameters used in such map-
pings grows by O(n3) where n is the side resolution of the voxel grid, techniques
such as octrees are often necessary to store such representations in memory. The
second observer derived in this thesis takes a more abstract approach by instead es-
timating the parameters of the implicit function used to represent the surface. In
doing so, many different scene representations may be considered including voxels,
curvelet representations, and neural network representations of the implicit function.
Addtionally, theoretical guarantees of convergence are provided that show that this
kind of observer may in principle exhibit finite-time convergence to the true scene,
even if the underlying representation is infinite-dimensional.

The imaging sensor used throughout this thesis is known as a light-field camera.
Recently, inexpensive and lightweight light-field cameras have been made available
to consumers. Because such light-field cameras are new technologies that are expe-
riencing wider usage and have potential in mobile devices, robotics, and automated
inspection, their theoretical properties and geometric models deserve to be studied
in their own right. Although there have been investigations that examine the theoret-
ical properties of light-field cameras and their variants [74, 26, 83], there is still much
work to be done on exploring the theoretical guarantees such cameras can offer and
the relationships between the various camera models that are used in the literature.

Much of the literature on light-field photography is explored from a practitioner’s
perspective, particularly in the area of depth-estimation where much of the recent
progress has been in the use of regularisation or machine-learning techniques [82, 96].
Such techniques achieve success by implicit assumptions on the scene classes that
generate light-field data, rather than by exploring light-field geometry. In particular,



4 Introduction

these techniques constitute assumptions on what kind of scenes can be estimated,
for example by excluding scenes with highly varying geometries in the case of reg-
ularisation or by only estimating scenes for which the relation between the scene
geometry and measured light-field is described by a neural network function. While
the success of these techniques often justifies these implicit assumptions, and because
these techniques are increasing in popularity, the pure theoretical questions concern-
ing sensor geometry are becoming increasingly ignored. Such questions are adressed
in this thesis.

This thesis contains numerous theoretical contributions to the study of light-field
geometry. The first is the development of a projection model that is of particular
use in scene reconstruction tasks. Typically, light-field cameras are modelled by
mapping rays of light to a 4-dimensional coordinate representing a lenslet and a
pixel [56]. It is expected, then, that the set of all rays that pass through a point in
space projects to a set of lenslets and pixels. Analysis of the geometry of light-field
cameras reveals that this set takes the form of a disc-like object that in this thesis is
called a ‘plenoptic disc’. As a disc, it relies on 3 parameters: a centre and a radius. It
is shown that the projection that maps points to plenoptic disc parameters is bijective,
and so identification of plenoptic disc features within a light-field image allows for
the precise estimation of the location of the point corresponding to that disc in front
of the camera. This is very unlike the situation for a conventional camera where 3D
points project to 2D objects, and it is this property that makes depth estimation from
a single light-field image possible.

This thesis applies the extraction of these plenoptic disc features to camera cali-
bration. The calibration of light-field cameras pertains to the identification of model
parameters which are used in subsequent tasks such as scene reconstruction, pose
estimation, and SLAM. There have been many different approaches to light-field
camera calibration in recent years [22, 9, 75]. Point projection models offer some ad-
vantages over ray projection models due to massive redundancies in the data used
to estimate plenoptic discs. Because of this, calibration techniques based on point
projections are more resistant to noise and systematic errors in the underlying data,
meaning that plenoptic disc features may be identified with more accuracy than ray-
based features. This insight was used to develop a light-field camera calibration
technique that was then compared against several competing ray projection calibra-
tion techniques and found to have state-of-the-art performance when compared with
these methods.

Related to the concept of plenoptic discs, is the concept of disparity, which is a
quantity proportional to the radius of these discs and is related to depth through the
calibration parameters of the camera. One of the primary advantages of light-field
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cameras over stereo cameras is the ability to estimate disparity with simple image
processing operations such as image convolutions rather than through more com-
plex feature-matching techniques. As such, there exist extremely computationally ef-
ficient techniques for estimating high-resolution dense depth maps with a light-field
camera. Disparity estimation is a popular subject of study amongst the light-field
literature, with several new papers on the topic published in recent years [45]. While
these techniques have steadily increased in accuracy when applied to synthetically-
generated benchmark data [37], the theoretical questions surrounding the limits of
depth estimation have remained open. It has been observed in the light-field lit-
erature that non-Lambertian scenes and poorly textured scenes pose difficulties to
depth estimation techniques [45]. While it is well-known in the computer vision lit-
erature that Lambertian and textured scenes are important, previous work has not
proven this importance. The final contribution of this thesis is a theorem that states
roughly that if a depth estimation technique that uses first-order light-field data is
capable of estimating the depth of the simplest class of scenes – planar scenes that
are fronto-parallel to the camera – then, under certain other mild conditions, that
depth estimation technique will only ever correctly estimate depth for scenes that
are Lambertian and textured.

In summary, the contributions of this thesis are as follows:

• A novel projection model that relates points imaged by the camera to plenoptic
disc features present in the raw camera data.

• A mathematical proof of the necessary and sufficient conditions that a scene
colouring must satisfy in order for depth to be estimated from first-order light-
field data.

• Derivation of a feature estimator for plenoptic disc features of checkerboards.

• A calibration method based on this geometry that outperforms existing state-
of-the-art techniques in terms of accuracy and robustness.

• Derivation of a geometric observer for point cloud representations of scenes
with theoretical guarantees of convergence.

• Derivation of an observer for infinite-dimensional implicit scene representa-
tions, such as curvelets or neural networks, that provably converges in finite-
time.

Many of these contributions were previously reported in the following individual
papers:
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1. S. G. P. O’Brien, J. Trumpf, V. Ila, and R. Mahony, Calibrating Light-Field Cam-
eras Using Plenoptic Disc Features, 2018, International Conference on 3D Vision
(3DV), 286-294. [79]

2. S. G. P. O’Brien, J. Trumpf, V. Ila, and R. Mahony, A Geometric Observer for Scene
Reconstruction Using Plenoptic Cameras, 2018, IEEE Conference on Decision and
Control (CDC), 557-564. [77]

3. S. G. P. O’Brien, J. Trumpf, V. Ila, and R. Mahony, Estimation and Geometry of
Disparity-Fields from Raw Light-Fields, 2019, (Preprint) [78]

4. S. G. P. O’Brien, K. Ashton, J. Trumpf, An Observer for Infinite Dimensional 3D
Surface Reconstruction that Converges in Finite Time, 2020, 21st International Fed-
eration of Automatic Control World Congress (IFAC), 4947-4954 [76].

1.2 Literature Review

Scene reconstruction is a topic with three major components. The first component
concerns how a scene may be effectively represented as a mathematical object, the
second involves what information about a scene can be gathered from sensor mea-
surements, and the third involves effective ways to combine sensor measurements
taken over time into a single coherent scene estimate in the chosen representation.
As such, this section is divided into three subsections: one that reviews different
standard sensor geometries that have been used in past decades to estimate scenes,
one that reviews different techniques for representing a scene estimate, and one
that reviews techniques that produces estimates from sensor data. The terms ‘3D
reconstruction’, ‘simultaneous localisation and mapping’ (SLAM), and ‘structure-
from-motion’ (SfM), all share similar meanings and have been studied extensively by
many different communities over several decades, and numerous surveys and books
of these topics and their variants have been published [93, 81, 11, 25, 92, 18, 103].
Because it is so expansive, it is beyond the scope of this thesis to review all of this
literature, and so the interested reader is referred to one of the available surveys and
texts on this topic. The following sections review recent and historical work.

1.2.1 Scene Reconstruction

Scene reconstruction is a broad area of research that has been studied throughout
history by many different disciplines. Historically, the task of reconstructing scenes
from visual measurements was known as photogrammetry, a term that was first used
in 1867 by the architect Albrecht Meydenbauer, who used the then novel technology
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of photography for surveying purposes [71]. Although this topic has developed
dramatically since then, all of the following methods are at least one of the following:

1. local, meaning that they only represent the portion of the scene that is currently
being measured,

2. sparse, meaning that the scene is represented as a discrete set of points,

3. offline, meaning that they only operate once all data is collected,

4. resource-intensive, meaning that they quickly encounter memory or processing
limits as the scene becomes larger, or the computational resources available
become smaller

5. situational, meaning that they only work in very controlled scenarios outside of
which it is difficult to guarantee that they work.

Closed-Form Methods

Closed-form solutions are the earliest types of scene reconstruction methods dis-
cussed in the literature, with classical work on computer-aided scene reconstruction
developed by the neurologists Marr and Poggio in 1976 [66] in a paper that also
contains an early reference to the concept of disparity. This work was followed in
1981, when the psychologist Longuet-Higgins published a paper detailing what is
now known as the 8-point algorithm [58].

Closed-form solutions typically separate scene reconstruction into two main tasks:
the correspondence problem, whereby a one-to-one correspondence between points in
two or more different perspectives must be constructed, and the triangulation prob-
lem, whereby depth must be obtained from these two perspectives of the same point.
Typically, this problem takes the form of a system of linear equations for which there
is an exact solution given perfect data, and which can still be solved in the least-
squares sense in the case of imperfect data. Even though it has been observed that
such solutions minimise the algebraic error and not a geometric error that respects the
camera geometry, these techniques can often achieve good results [34]. Since closed-
form methods tend to rely on the relation between feature points visible in at least
two views, as with a stereo camera, these methods tend to be sparse and local.

Optimisation Methods

Optimisation methods are often used to refine the results obtained using closed-
form methods. With an optimisation method, scene reconstruction becomes a task of
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cost-minimisation, where some cost function is constructed that it is assumed that the
true scene will minimise given the measurement data, and an optimisation routine
is performed in order to find the parameters of the scene that minimise this cost
function.

A classical optimisation-based approach to scene reconstruction is bundle adjust-
ment, which has been widely studied [107]. In bundle adjustment, the reprojection
error which is an error that has as data the obtained 2D feature point projection
locations in each image, or some other geometric error is minimised, and has as pa-
rameters the 3D locations of feature points on the scene, as well as the intrinsic and
extrinsic camera parameters. These parameters are varied until the predicted location
of the image features are close to the measured location of the image features.

Many of the following methods could be considered subtypes of optimisation
methods, or use explicit optimisation techniques to refine their initial results. Since
solving high-dimensional optimisation problems is often computationally expensive,
optimisation methods tend to be resource-intensive and offline, and most implemen-
tations of these methods also tend to be sparse.

Model-Fitting Methods

Model-fitting techniques are methods that obtain scene reconstructions when the
problem is under-specified, such as from reconstructions from single monocular im-
ages. While optimisation is often used in such methods, a distinction should be
drawn between the methods that depend on strong assumptions on the scene model
as in this subsection, and methods that only depend on assumptions on the camera
model as in the previous subsection.

Examples of such methods include depth from monocular cues. A monocular cue
is some feature within an image that contains depth information if an assumption
is made of the texture of the scene or the lighting conditions present in the environ-
ment. One such method is shape-from-shading [38], whereby the depth of a point in a
scene can be estimated from a single image under Lambertian texture conditions by
solving the brightness equation, a partial differential equation describing the apparent
brightness of a point on the scene. It is now understood that this PDE does not have
a unique solution, but that with further constraints applied to the location of the
lighting source, the reflectance model, and the camera parameters the problem can
be solved [88].

Another technique known as photometric stereo uses a stationary camera and sta-
tionary object but a moving lighting source [120]. Under a Lambertian reflectance
model, the brightness of a point on the scene will depend on the angle between the
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normal vector of that point and the vector pointing from that point to the lighting
source. Because of this, it is possible to obtain the overall shape of a scene from a
single perspective under different illumination conditions.

One futher method that is used is shape-from-texture [118], whereby scene infor-
mation is reconstructed from knowledge of the colouring applied to that scene, and
its apparent distortion through a perspective projection.

Model-fitting methods tend to be situational and require a careful experimental
setup or specific lighting conditions, offline, and local – as these methods are typically
used to estimate depth maps.

Voxel-Based Methods

Voxel-based methods are methods whereby the scene estimate is discretised into a
finite-resolution voxel grid, and the task is to determine which set of voxels are
contained within the scene and which are not.

Voxel-based methods include space-carving which is a technique used for station-
ary objects [53]. In space carving, it is initially assumed that every voxel in the total
voxel grid is occupied. Then, given an image of the object to be estimated, voxels
from the overall grid are removed if that voxel appears to lie in the background of
the image. Of course, it can be seen that such an approach will only ever estimate
the visual hull [55] of an object unless further model constraints are applied.

Another voxel-based method is occupancy grid mapping, whereby each voxel in
the scene is assigned a probability of being occupied or not [105]. This probability
is updated based on an inverse measurement model, which is essentially a pose and
measurement dependent conditional probability distribution which is integrated into
the current occupancy mapping estimate at every timestep.

Space carving methods tend to be offline and situational and require a careful
experimental setup to ensure the foreground can be separated from the background
in images. Because voxel methods also divide the scene into a discrete voxel grid,
they are also sparse.

Learning-Based Methods

There has been an explosion of research into learning-based methods for 3D re-
construction in the last decade due to the success of neural networks for solving
computer vision problems. A recent paper surveying learning-based techniques for
scene reconstruction states that 149 such methods have been published between the
years 2015 and 2019 [30], a recent example of which is given by Mescheder et al.[70].
Learning-based methods are essentially a type of model-fitting, where the model
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used is constructed implicitly from previously obtained experimental data rather
than explicitly based on a theoretical model. These techniques have been studied
extensively in recent years by the machine learning community. In that community,
methods consist of learning a function f that takes as input an image I and produces
an implicit representation f (I, ·) : R3 → R, and as such the function learned is not
an implicit representation of a scene but a parametrised implicit representation of a
scene class where the parameter is an image.

While practitioners may argue otherwise, it could be argued that these methods
are situational as it is very difficult to analytically prove that they work far beyond the
data they are trained on. These methods are typically resource-intensive, requiring
the use of powerful GPUs for training. Usually these methods are used to estimate
depth-maps or the structure of objects they currently see, making them local.

1.2.2 Filtering and Observer Methods

A final class of techniques that have been applied in the literature involve control
theoretical techniques. In contrast to most of the other methods listed, filtering and
observer methods are designed to be online, non resource-intensive, and typically
come with analytical proof of their convergence behaviour based on rigorous foun-
dations [54, 3, 10]. However, all methods in the literature for the purpose of scene
reconstruction use either sparse or local representations of the scene.

Of the sparse, feature-based methods, earlier works were based on the theory of
perspective systems, which model the way that feature points appear to change due
to motions of a pinhole camera. Seminal work in this area includes that of Chen and
Kano [15, 16]. The observers in those papers are based on an internal model principle,
where the innovation is analysed using Lyapunov methods. This work was followed
by Dahl et al.[19] which continued the work in perspective systems, performing an
observability analysis for the system, and exploits the algebraic structure of the sys-
tem dynamics that can be expressed in block triangular observer form allowing for
the relevant design techniques to be applied [111]. The study of perspective vision
systems is still ongoing, with a recent work using contraction analysis to design these
systems [28]. Other recent work includes that of Keshavan et al.[50] which uses Lyan-
punov techniques for the design and analysis of the resulting observer when the
underlying motion parameters of the system are unknown. Other work involves the
design of Kalman filtering methods [60], however these techniques involve the trans-
formation of the nonlinear system state into a linear time-varying state. More recent
techniques are based on the internal-model principle and propose gradient-descent
based techniques [130]. Recent developments adopt a more geometric and unified
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approach to the SLAM problem, involving the use of equivariant observer theory
which instead represent the state of the system as an element of an underlying sym-
metry group of the combined pose and point-cloud in order to design an observer
on a single geometric object [62, 109]. However, the resulting representations of the
scene are still finite-dimensional and sparse in these methods.

The only alternative in the control theory literature to point-cloud representations
are local depth-map estimation techniques. Techniques based on Kalman filtering
methods date back to the late eighties [68]. These techniques continue to be studied,
and in the last decade a number of new techniques have been published. A recent
observer design exploiting the invariance of spherically-defined depth maps to rota-
tion were proposed by Zarrouati et al.[124]. More recent work includes that of Becker
et al.[6] that provides a second-order filtering approach to the problem combined
with spatial regularisation of the estimated depth maps. Since then, second-order
minimum energy filtering methods have been proposed for this problem by Berger
[8] that have built upon the theoretical work of Saccon et al.[91].

While observer and filtering techniques for the purpose of scene reconstruction
continue to be studied, none of these techniques have so far estimated dense and
global representations of scenes. Additionally, the adaption of sparse or local ob-
server techniques to novel sensor technologies is still relatively unexplored.

1.2.3 Sensing Modalities

There are many different types of sensor that produce data from which scene infor-
mation can be extracted. These sensors can be divided into two main categories: pas-
sive sensors, and active sensors. As there are many different types of sensors that can
be used for scene reconstruction, we will limit this discussion only to those sensors
that have been widely researched by the computer vision and robotics communities,
and avoid sensors that are more typically used in medical imaging, surveying, and
geology communities, such as MRI, CT, ultrasonic, and radar. All of the following
sensor technologies are regularly used in both computer vision and robotics commu-
nities, and several surveys with details about these sensors are available [106, 11].

Monocular

A monocular camera is a standard visual imaging sensor that is now found on many
consumer devices. Monocular cameras are the most widely studied and used sensor
in both computer vision and robotics, with most computer vision texts devoting the
majority of their contents to the data produced by these sensors. The standard model
of a monocular camera is that it records the colour and direction of the rays of light
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that pass through the optical centre of its aperture. This model is known as the
pinhole camera model and defines a perspective projection, which maps 3D points to
2D points [33]. Because of this, depth information is not present within a single
image produced by a monocular camera unless model-fitting techniques are applied.
However, a sequence of images of the same object from many perspectives often does
contain depth information.

All of the techniques of the previous section have been used to produce scene
reconstructions from monocular image data. There are two main ways of obtaining
scene reconstructions from sets of monocular data: methods which use ordered se-
quences of images and methods that use unordered sets of images. When ordered
sequences of images are used, typically the motion of the camera from one frame to
the next is either estimated using optic flow tracking methods, or is estimated using
inertial measurements. When the data consists of an unordered set, a global opti-
misation on a reprojection error on all of the images is typically used as in bundle
adjustment methods.

Stereo

A stereo camera consists of two cameras spaced a known distance apart from one
another. The most standard configuration for the relative orientations and intrinsic
calibration parameters for stereo systems is that these parameters are equal, how-
ever there has been research on cameras that can change their orientation and focal
settings to focus on particular objects, as is the case with human eyesight.

Classical work on binocular vision systems typically involves solving a corre-
spondence problem, then computing a fundamental matrix for the system using the
8-point algorithm which provides a constraint on where a feature appearing in one
image can appear in a second image [58]. This is usually followed by a refinement
of the feature-matching step taking into account the fundamental matrix estimate,
and estimation of the essential matrix which provides a constraint on the normalised
image coordinates. With the essential matrix and image feature coordinate data, a
system of linear equations can be constructed which can be solved for camera pose
and 3D feature coordinates. These estimates are often refined using an optimisation
on the reprojection error.

Trifocal

A trifocal camera is a camera that images a scene from three different perspectives
rather than two as with a stereo camera. The primary advantage of such a camera is
the redundancy of the sensor data that can be used to improve scene reconstruction
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estimates, as well as, for the case of non-colinear arrangements of the three cameras,
the ability to better handle certain degenerate scenarios where disparity cannot be
effectively estimated due to the aperture problem. The relationship between three
cameras that are modelled by perspective projections is given by the trifocal tensor,
which plays a similar role to the fundamental matrix in a stereo camera [31].

Multi-view

Multi-view reconstruction methods typically either refer to reconstruction of a scene
due to a moving camera (see Section 1.2.3) or to the reconstruction of a scene using
a camera rig or pushbroom camera. A pushbroom camera is a sensor that consists of
more than three optically similar co-linear cameras with the same orientation [32]. A
camera array is a sensor consisting of a large number of fixed cameras with known
poses imaging a scene from multiple perspectives, and scene reconstruction using
this technology has been extensively studied [90, 115, 56, 122, 127, 116]. Camera
arrays serve as a precursor to modern lenslet-based light-field cameras.

Sonar

Although passive sonar exists, and is used in military applications, active sonar is
the more common variant in computer vision and robotics. Sonar operates on the
same time-of-flight principle as lidar, but uses sound as a medium. Scene reconstruc-
tion using sonar has been achieved by a variety of communities including robotics,
geology, surveying, and medical imaging. In robotics, sonar is often used in conjunc-
tion with occupancy mapping methods, and occupancy grid mapping was classically
tested with this sensor [105, 104]. Sonar is an actively researched topic in marine en-
gineering as light rapidly attenuates in underwater conditions.

Structured Light

Structured-light techniques are methods in which a projector is used to illuminate
a scene in a way that allows the correspondence problem to be solved with a high
degree of accuracy [72]. This technology relies on the fact that a projector has the
same geometry as a monocular camera, but that the projection is applied in reverse.
Because of this, standard stereo techniques can be applied even though the ‘stereo
camera’ consists of a projector and a single monocular camera. Most techniques
project a sequence of images onto the scene in order to uniquely encode each point
on the scene with a binary sequence of colour values. Structured light is the method
used by the Kinect sensor, and because of the low-cost and ease of use of this sensor,
this technique is widely used amongst robotics communities.
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Lidar

Lidar systems are systems that provide estimates of the distance of a point on a
scene in a range of directions by emitting a laser pulse and measuring the time it
takes for the pulse to be reflected back to a reciever. The primary advantage of lidar
is that the sensor provides a direct measurement of distance that does not depend
on the texture of the scene, rather than a measurement from which distance may be
inferred and disrupted due to poorly-textured regions. Lidar is a well-understood
sensing technology [69], with wide applications in robotics tasks such as SLAM [11].

1.2.4 Light-Field Cameras

F. Ives, Parallex Stereograms A. Gershun, The Light Field
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Perwass and Weitzke,
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Mario Bettini, Apiaria Universae
Philosophiae Mathematica

1642

G. Lippman, Integral
Photography

Figure 1.1: Timeline of Light-Field Research, citing [40, 57, 27, 2, 56, 61, 74].

The primary difference between a light-field camera and a multi-view camera
system is that light-field cameras image light from much more densely sampled per-
spectives, and because of this, are capable of estimating the differential properties
of a light-field. Not only are light-field cameras capable of estimating this differ-
ential information, but they are capable of doing so using simple image processing
operations. Since it is known that light-field gradients are highly correlated with
depth, this means that depth can be estimated from light-field data very efficiently,
without necessitating the use of more costly reconstruction methods such as bundle
adjustment. Typically, these sensors are modelled as cameras that record not only
the direction from which a ray of light originated, as a monocular camera does, but
also record the point on the aperture of the camera through which the ray passes.
As these sensors are the primary sensors that are used in this research, more recent
literature is covered in Chapter 2. However, a brief history of these sensors will be
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provided here.

Arguably one of the earliest depictions of a light-field camera was produced in
1642 by the mathematician Mario Bettini in his work Apiaria Universae Philosophiae
Mathematicae1, see Fig. 1.9. Optics, and the ray theory of light, has an older his-
tory than this, dating back into antiquity with studies by Euclid, Ptolemy, and al-
Haytham. Investigations into perspective geometry continued all throughout the
Renaissance, primarily motivated by art [5]. Many centuries passed before the physi-
cist Frederic E. Ives, in 1903, patented a device for recording parallax stereograms
using a single focus lens by placing a screen in front of a photosensitive film in or-
der to record two separate perspectives of a scene [40]. This work was followed by
that of Gabriel Lippman who in 1908 published a paper describing a similar method,
which he termed ‘integral photography’, whereby images could be formed by an array
of lenslets each producing their own image of a scene from slightly different per-
spectives [57]. It was decades before the term ‘light-field’ was introduced by Andrey
Gershun in 1939 in a text that provided the first rigorous treatment on the subject
[27]. Much later, in 1991, the term ‘plenoptic’ was coined by Adelson and Bergen
[1], and in 1992 the first lenslet-based light-field camera was constructed in the sem-
inal work of Adelson and Wang [2]. Investigations into rendering light-fields from
gantry setups followed in 1996 by Levoy and Hanrahan in work that also simplified
the 7-dimensional plenoptic function of Adelson and Wang into the 4-dimensional
two-plane parametrisation which is now standard [56].

While the concept of a light-field camera has emerged in various forms through-
out history, it was not until 2005 that light-field cameras could be made small enough
to be used by hand, in work by Ng et al.[74], the lead author of which went on to
found Lytro, formerly2 a manufacturer of lenslet-based light-field cameras. Before
Lytro, however, Raytrix became the first manufacturer of lenslet-based light-field
cameras with its founding in 2010, whereas Lytro was founded in 2012. Raytrix pro-
duces cameras whose designs are reminiscent of the work of Georgiev and Lums-
daine [26]. The camera design in that paper sacrifices the angular resolution of a
light-field camera in order to obtain better spatial resolution by moving the microlens
array further away from the imaging sensor than the focal length of the lenslets.

1The translation of this work is: Beehives of Universal Mathematical Philosophy, and was a textbook
on assorted mathematical topics [5]. The text surrounding the Bettini’s illustration reproduced within
Fig 1.1 in that work describes its use as an optical illusion multiplying the apparent number of people
present in front of it. While this is a remarkable depiction of what we would now call a light-field
camera, it is unlikely that more modern insights into this construction were known to Bettini.

2Lytro ceased operations in 2018.
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1.2.5 Scene Representations

As with the previous literature sections, it is beyond the scope of this thesis to survey
all methods that have been used to represent scenes. An additional difficulty arises
with reviewing scene representation methods, however, in that these methods are
often not studied in isolation. Research describing new techniques for representing
scenes are rarely published unless they also provide a new technique for solving the
scene estimation problem using that representation. Nonetheless, numerous surveys
and books exist that detail many of the more common scene representation methods
[119, 95, 4, 12, 51].

Explicit Methods
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Figure 1.2: An explicit representation of a scene is a ‘mapping to’ the scene. In this
figure a base space N is given, and the representation ρ maps each point ni in N to a
point Pi on the scene X ⊂ M. On the left, a sparse explicit representation of a scene
is depicted as a point cloud, whereas on the right a dense representation of the scene
is given as a parametrised surface.

An explicit scene representation is a method that is defined by a map from some
parameter space to the scene. For an explicit method, given some points in the
scene or some set of parameters of the scene, there is a simple way of constructing a
sample of a point that lies in the scene. However, given a particular point in space,
it may be difficult to determine whether that point is in the scene or not. An explicit
representation is called sparse if its domain is discrete, and dense if its domain is
continuous.

Point-clouds are typically seen as an example of a sparse explicit scene represen-
tation, as they represent the scene explicitly as a set of points. A point cloud simply
consists of a list of points X = (Pi)

N
i=1. Another example of a scene representation

is a triangle mesh. A triangle mesh is a tuple consisting of a point cloud X and
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a list of faces F = ((j1, j2, j3)i)
M
i=1 where the entries j1, j2, and j3 are required to be

distinct integers between 1 and N. If (j1, j2, j3) is an entry in F then the triangle with
vertices Pj1 , Pj2 , and Pj3 is in the scene. However, it is more difficult to test whether
an arbitrary point P ∈ R3 is in the triangle mesh or not. To do this we need to deter-
mine whether it lies on any of the triangles in the triangle mesh, and the only way to
do this is by iterating over each of the faces. Both point clouds and triangle meshes
have been used in computer graphics for many decades, and are usually discussed in
textbooks on computer vision [102]. Often rendering of other surface representations
first involves converting those representations into a triangle mesh through a process
such as the marching cubes algorithm [59].

An example of a dense explicit scene representation is a parametrised surface.
A parametrised surface is a mapping from some other parameter space into R3.
Such surfaces are constrained by the topology of the domain. Nonetheless, such
surfaces, depending on very few parameters, are among the most widely used meth-
ods in computer graphics and industrial design. A foremost example of a class
of parametrised surfaces are those generated by B-splines, and in particular non-
rational uniform basis splines (NURBS) [85].

A related but distinct type of explicit representation method is a surfel-based
method. With a surfel-based method, a set of pre-generated surfaces, called surfels,
are treated as primitives and are embedded into R3 to represent the scene [84]. The
parameters of a surfel-based representation usually include the type of surfel used,
and the pose of the surfel, but may also include parameters that involve scaling of
the patch along various axes or rigid constraints between patches. A common type
of surfel-based method represents a surface in terms of a set of discs.

Implicit Methods

An implicit scene representation is a method that consists of a test to determine
whether a particular point is in the scene or not. For an implicit method, given a
point in space it is simple to determine whether that point is in the scene or not,
however it may be difficult to construct a sample of a point that lies in the scene. Just
as is the case with explicit scene representations, an implicit scene representation is
called sparse if its domain is discrete and dense if its domain is continuous.

For every point-cloud X there is a polynomial3 in R[x, y, z] such that the roots of
that polynomial are precisely X. This implies that every point-cloud representation
can be represented implicitly as the roots of a polynomial, however in practice it
is more efficient to simply iterate over every point in the point cloud to determine

3For example, one such polynomial is fX(Q) := ∏P∈X ||P−Q||2.
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Figure 1.3: An implicit representation of a scene is a ‘mapping from’ the scene. In
this figure a base space M is given, and the representation χ maps each point Pi in
M to a point ni in some image space N. The scene is then the set of points P such
that χ(P) satisfies some criterion, such as χ(P) ≥ 0. On the left, a sparse explicit
representation of a scene is depicted as an occupancy grid map, whereas on the right
a dense representation of the scene is given as an extended characteristic function.

whether a given point is in it.

However, this example illustrates the usual way in which an implicit scene rep-
resentation is defined. Implicit scene representations are typically given as level,
sublevel, or superlevel sets of a specified function χ : R3 → R. We call such a func-
tion χ an extended characteristic function. When χ is precisely 0 outside of the scene
and precisely 1 on the scene, it is known as the characteristic function of the scene.
Techniques for using level-set methods has an extensive literature [80], however the
role of the function space and representation in scene reconstruction has not been
completely explored.

Voxel-based methods are examples of sparse implicit methods because their do-
mains are discrete. Typically, what is defined by a voxel-based method is either
a characteristic function defined on a finite 3D grid of points, as in space-carving
methods [53], or a conditional probability distribution defined on a grid of points.
In the latter scenario, this approach is known as occupancy grid mapping [105], and
has been used in robotics for decades.

The various approaches to implicitly defined surfaces involve different choices of
parametrisations of the class of extended characteristic functions χ used. Common
types of functions include distance functions, which map a point to the distance of
the closest point on the scene, signed distance functions [64], which do the same
except there is a notion of whether a point is ‘inside’ in which case the value is
negative or ‘outside’ the scene in which case it is positive.
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1.3 Problem Formulation

In this section, a theoretical framework for using light-field measurements to solve
the scene estimation problem is introduced. Although the subsequent chapters are
self-contained, this section provides a broader perspective on the work contained in
those chapters.

This section begins with introducing the relationship between light-fields and
scenes. Measurements of light-fields are called images, and their formation is given
by the assignment of sensor elements to rays.

1.3.1 Scenes and Light-Fields

X

Q

P
η

η

η′

L(P, η)

β(Q, η)

β(Q, η′)

λ(P, η)

Figure 1.4: A light-field generated from a scene X. The distance λ(P, η) of the scene
X from point P in direction η is shown, and the point that lies at this distance in this
direction is shown as Q. Under the ray constancy assumption, L(P, η) = β(Q, η).
Under the Lambertian assumption β(Q, η) = β(Q, η′) for all η′ ∈ S2.

A coloured scene is a pair (X, β) where X is a closed subset of R3 and β is a map
called the colouring4 that accepts as input a point Q ∈ X and a direction η ∈ S2 and
returns as output a colour c ∈ C , where C is a colour space (typically taken to be the
unit cube [0, 1]3 representing RGB values). A set of coloured scenes is denoted X and
is called a coloured scene class. The set X is called a scene and the set of all possible
scenes is denoted X.

A coloured scene determines a function L(X,β) the light-field generated by the
coloured scene (X, β), whose domain consists of a subset of the set of all rays (when
it is clear from context, the subscripts (X, β) are omitted), and whose codomain is C .
A ray is a pair (P, η) ∈ R3 × S2. The set of rays in R3 × S2 that forms the domain

4In some communities, this map is known as a surface light-field.
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of the light-field L(X,β) is precisely those rays (P, η) for which there exists a positive
real number α such that P + αη ∈ X, and is called the environment (determined by
the scene X), denoted by ΣX (when clear from context, the subscript X is omitted).
The intuition behind these defintions is that they capture the idea of a scene X being
viewed from a point P in direction η. Because X is a closed set, the smallest such α

for which P + αη ∈ X is a function of the pair (P, η), that is λX(P, η) = α for a map
λX : Σ → R+. Intuitively, the value λX(P, η) is the shortest distance that must be
travelled from point P in direction η before the scene is intersected. The map λX is
canonically known as a range map (again, X is omitted when clear from context).

While a light-field L is simply a map from the set of rays that intersect the scene X
to a colour space, the way in which a coloured scene determines a light-field depends
on the sensor used and the context in which it is used. The most common constraint
is that for all rays (P, η) in the environment Σ, we have that

L(P, η) = β(P + λ(P, η)η, η),

that is the colour seen from point P in direction η is determined by the colour of
the closest point on the scene as seen from direction η. As a consequence of this
constraint, we have that

L(P, η) = L(P + αη, η)

for all α ≤ λ(P, η). This captures the intuitive idea that the colour of a light ray
viewed from P in direction η is given by the colour emitted by the closest point
on the scene along this ray. This assumption, which is rarely explicitly stated5 we
will call the ray-constancy assumption. Another classical assumption is the Lambertian
assumption that β(P, η) = β(P, η′) for all P ∈ X and η, η′ ∈ S2, i.e. that the apparent
colour of a point does not depend on which direction it is viewed from. Together, the
ray-constancy assumption and the Lambertian assumption are the two most classical
assumptions in computer vision.

1.3.2 Images

The problem of visual scene reconstruction is that of estimating the scene X from
samples of the light-field L. Samples of a light-field typically take the form of an
image. An image is a function I : S → C whose domain S is called the sensor plane.
For example, in a monocular camera, the sensor plane S consists of a finite grid of
points in R2 and elements of this grid are called pixels. However, note that for ana-

5This assumption is usually only made explicit in its absence. In underwater settings, it is usually
not assumed that the colour of light is constant along rays as it is here, as light-attenuation is a much
more significant effect in that environment than in air.
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Figure 1.5: An example of a backprojection model. A scene X is shown together
with the spatial part of the sensor bundle S0. Independent of these objects is a
sensor plane S. The ray (P′, η′) assigned to the backprojection ψφ(ξ, s) is a rigid body
transformation of the ray (P, η) assigned to the backprojection ψ(1, s) of the sensor
element s ∈ S.

lytical purposes it is sometimes advantageous to assume a continuous sensor model
rather than a discretised model, so that sensor elements are points in a rectangle
in R2. The set of all possible images obtainable by that camera model is known as
the image space and is a subset of the set of functions C S. In application, often con-
straints on the image space are imposed because a randomly selected image from C S

is overwhelmingly likely to be of random noise. It is the fact that real images have
additional structure, and may be represented with far fewer parameters than is nec-
essary to parametrise all of C S, that is exploited by image compression algorithms.
These constraints on an image space often take the form of regularity assumptions
on the image space. Points on a sensor plane are related to rays through a camera
model. A camera model describes the relationship between images obtained by a
camera and a light-field.

A backprojection model is a function ψφ : Ξ× S → Σ that depends on intrinsic pa-
rameters φ, which are parameters of the projection model that are constant for a par-
ticular camera, and takes as arguments an extrinsic parameter ξ ∈ Ξ which is typically
a pose, that is Ξ ⊂ SE(3), and a sensor element s ∈ S. In this work, ξ will always be a
pose, although other extrinsics are possible. However, to be mathematically correct,
the set of possible poses will need to be restricted to the cases where ψφ(ξ, s) ∈ Σ,
and as such the domain Ξ may depend on the scene X. The backprojection model
is defined by taking a fixed subset S0 ⊂ Σ, called the sensor bundle, that depends
on the intrinsic parameters φ, and letting ψφ(1, ·) : S→ S0 be a bijective map, where
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1 is the identity of SE(3). A backprojection model satisfies ψφ(ξ, s) = ξ · ψφ(I, s),
where the action of a pose ξ with translational part τ and rotational part R on a ray
(P, η) is given by ξ · (P, η) = (RP + τ, Rη). An image-formation model6 is the function
µ := L ◦ ψ : Ξ× S → C . For a fixed pose ξ ∈ Ξ, the function I = µ(ξ, ·) is the image
of the scene as produced by the given image-formation model at the specified pose.

1.3.3 Projections

X

πφ(ξ, (P, η))

S

s

ψφ(ξ, s)

(P, η)
V(φ,ξ)

α

(P ′, η)

Figure 1.6: An example of a ray-projection model. A scene X is shown together
with the set of rays V(φ,ξ) that are visible to the camera. Independent of these objects
is a sensor plane S. The ray (P, η) is forward-projected to the sensor element s =
πφ(ξ, (P, η)). This sensor element is back-projected to the ray (P′, η) = ψφ(ξ, s) on
the sensor bundle. The original ray is given by (P, η) = (P′ + αη, η), for some non-
negative α, or alternatively (P′, η) = (P− αη, η).

Several errors defined in the next sections cannot be defined properly without
some mechanism for mapping rays and features to sensor elements, i.e. a forward-
projection model that is compatible with the back-projection model. Given calibra-
tion parameters ξ and φ, and given (P, η), there exists an s ∈ S and an α ≥ 0 such
that ψφ(ξ, s) = (P− αη, η) then s is said to be imaging (P, η). The set V(φ,ξ) of all rays
(P, η) ∈ Σ for which there exists an s ∈ S that is imaging (P, η) is called the visible
set. A ray-projection model is a map πφ : Ξ × V(φ,ξ) → S such that s = πφ(ξ, (P, η))

is always a sensor element imaging (P, η), i.e. such that if s = πφ(ξ, (P, η)) and
(P′, η) = ψφ(ξ, s) then there exists an α ≥ 0 such that (P′, η) = (P− αη, η) (see Fig.
1.7).

6It should be noted that there is another hidden assumption here: that the camera actually captures
the true colour of the scene. When it is not safe to assume this, colour-calibration of the camera must be
performed to relate measured colours of rays to known colours of rays.
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More generally, a feature-projection model is a map that sends a ‘feature’ to the
collection of sensor elements corresponding to that feature. A feature is a set of rays
that is given by a finite number of parameters. For example, a point is a feature
and corresponds to the set of rays that pass through that point. Other examples
include lines, rectangles, and planes. Typically, features are described by sets of
points. Explicitly, a feature-projection model is a map Πφ : Ξ× FΣ → FS where FΣ is a
finite-dimensional ‘feature space’ parametrising some specific type of world-features
in the environment Σ, and FS is a finite-dimensional feature space parametrising
image-features that are sets of sensor elements corresponding to the world-features.

An important type of feature-projection model is a point-projection model. A
point-projection model is a map that sends a point to all of the sensor elements that
map to a ray that passes through that point. Specifically, let F(φ,ξ) be the projection
of the set V(φ,ξ) into R3 under the projection (P, η) 7→ P. Then a point-projection model
is a map Πφ : SE(3)× F(φ,ξ) → FS such that for every sensor element s in the image-
feature parametrised by Πφ(ξ, P), if (P′, η) = ψφ(ξ, s) then there exists an α ≥ 0 and
an η ∈ S2 such that (P′, η) = (P− αη, η).

The development of accurate sensor models is essential for scene reconstruction
tasks. Sometimes, as with light-field cameras, it is possible to extract scene geometry
information from the measurements of the light-field produced by that scene, but
only under specific conditions on the class of scenes to be estimated. These questions
will be examined in more detail in Chapter 2, and the following section introduces
the precise meaning of ‘scene class’.

1.3.4 Representations

In order for a scene reconstruction to be implementable on a computer, the scene
must be representable by a finite number of parameters, even though the potential
number of parameters that may be used in a specific representation is unbounded.
This is a problem however, because the set of closed subsets of R3 is not countable,
as the set of scenes must be. For this reason, every implemented scene estimation
method entails assumptions about the scene on top of those used for the sensor and
light propagation models. These assumptions take the form of a scene class X, that the
scene estimates are constrained to lie within. This assumption has two components
to it: the inclusion-relation of the estimate to the true scene, and whether the true
scene is a member of the scene class. Firstly, it may be the case that only a subset
of the scene is estimated, as with a point-cloud, or that a superset of the scene is
estimated, or that precisely the scene is estimated. Secondly, it may be the case that
the scene estimate does not belong to the same scene class as the true scene, but that
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Figure 1.7: An example of a scene representation. A scene class X is shown together
with a parameter space Θ. A parameter θi ∈ Θ is mapped by the representation ρ to
a scene Xi in the scene class.

for any desired degree of accuracy, there is a scene estimate X̂ ∈ X that approximates
the true scene X to that degree of accuracy (the notion of accuracy will be made
formal later).

Distinct from the choice of scene class X is how to parametrise this scene class.
A scene class representation is a surjective mapping ρ from some set of admissible se-
quences (θi)

∞
i=0 of real or complex numbers to the scene class X. The set of admissible

sequences Θ is known as the parameter space. If the representation is injective, it is
called faithful. If there exists some n ∈ N such that for every i > n, the map ρ does
not depend on θi, the representation is finite-dimensional, otherwise it is infinite-
dimensional. The (n-th) truncation of a scene representation is a map which takes a
sequence (θi)

∞
i=0 and sets all but the first n parameters to 0, leaving the first n entries

unchanged. The choice of representation does not in itself constitute an assumption
on the true scene X, as it is already assumed to reside in the scene class X that the
representation maps to. However, if the representation used in an implementation
is always truncated, as must be done in any real-world application when the repre-
sentation is infinite-dimensional, a different choice of representation will result in a
different scene class.

Ideally, a representation should be a continuous map. However, in order to define
continuity of this map, a topology on both the scene class X and parameter space Θ

must first be specified. Typically, the parameter space is taken to be either finite,
in which case it inherits a Euclidean topology, or consists of `P sequences for some
P ∈ N, in which case it is a metric space. Defining a topology for the scene class
X without reference to the representation involves more technicalities, but may be
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done. However in some situations, it suffices to have X coinduce its topology from
the representation ρ, and the open sets of X consist of the sets O ⊂ X such that
ρ−1(O) is open in Θ.

1.3.5 Distances and Errors

dH(X1, X2)

X2

X1

dm(X1, X2)

Figure 1.8: An illustration of two measurable compact scenes of nonzero measure,
X1 whose boundary is shown in black and X2 whose boundary is shown in red. The
largest minimum distance between any two points in the two scenes is known as
the Hausdorff distance dH(X1, X2) and is shown in blue in this example. The total
measure of the symmetric difference between the two sets, illustrated in orange, is
dm(X1, X2).

It is also useful in an optimisation setting to define some metric, or if that is not
possible, some notion of ‘distance’ on the scene class X. At this point it should be
briefly noted that any set of non-empty bounded subsets of a metric space can be
made into a metric space by using the Hausdorff distance as a metric [39]. Intuitively,
the Hausdorff distance between two sets is the largest distance between any two
points in either set. Explicitly, if M is a space with metric d, and X1 and X2 are two
bounded subsets of M, the Hausdorff distance dH is given by:

dH(X1, X2) := max( sup
P1∈X1

inf
P2∈X2

d(P1, P2), sup
P2∈X2

inf
P1∈X1

d(P1, P2)).

The first argument of the ‘max’ function is the largest distance between a point in
X1 and the set X2, and the second argument is the largest distance between a point
in X2 and the set X1. Note that if the first argument is 0, then X1 ⊆ X2 and if the
second argument is 0 then X2 ⊆ X1. Alternative classical notions of convergence
of sets include Wijsman convergence [114], which extends the notion to unbounded
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sets, and Kuratowski convergence [49].

An arguably more important measure of distance between sets – and one that is
used more intensively in this work – comes from their measures. The reason that
we state that this notion of distance is more important in this work than Hausdorff
distance comes from an optimisation perspective. Attempting to minimise Hausdorff
distance between two sets will only ever focus on the outlier points in the sets at each
optimisation step, whereas these outliers are ignored in a measure-derived distance.

If (M, A , m) is a measure space and X ⊂ A is a scene class consisting of mea-
surable sets of finite and non-zero measure (under measure m), and if X1 ∈ X and
X2 ∈ X, then we can define the distance dm(X1, X2) between X1 and X2 as the mea-
sure of the symmetric difference of these sets:

dm(X1, X2) := m((X1 \ X2) ∪ (X2 \ X1)).

Note that this distance requires the sets to be of non-zero measure. Further, this
suggests that this distance is only affected by the portions of the scene that have
volume. Denoting X̃ as the closure of the interior of X, it can be observed that

dm(X1, X2) = dm(X̃1, X̃2).

We will call X̃ the erosion7 of X. If X = X̃, the set X is called eroded. Eroded sets are
closed sets that do not contain portions that could be considered surfaces, curves, or
points in space unless those portions are contained in a volume. When the scene class
X consists only of eroded (or open8) and bounded sets, the pair (X, dm) is a metric
space. Because all point clouds erode into the empty set, this notion of distance is
not applicable in that case. Note that dm may also be expressed as an integral. If χ1

and χ2 are the indicator functions of the sets X1 and X2, then we have that

dm(X1, X2) =
∫

M
|χ1(x)− χ2(x)| dx.

The two notions of distance introduced are the only definitions used in this work
that do not rely on the extrinsic structure of scenes. An additional notion of distance
comes from the representation of the scene. If θ1 are the parameters of X1 and θ2 are
the parameters of X2 under a faithful representation ρ, and if Θ is a normed space,
then the distance between X1 and X2 is given by ||θ1 − θ2|| .

These distance measures are useful when investigating the theoretical properties
of a scene reconstruction. However, these distances rely on complete knowledge of

7This term is inspired by a morphological operation of the same name used in image processing.
8Because a scene is a closed set, eroded is used in this work.
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both of the scenes being compared. In scene reconstruction tasks, the true scene is of
course unknown, and so any attempt to minimise the distance between an estimate
and a scene directly cannot be implemented. Instead, we rely on minimising errors.
An error is a measure of the difference between the outputs of a coloured scene.
There are two main types of errors: photometric errors, and reprojection errors. An
error that is fundamentally defined between objects that inhabit the sensor plane S
of a sensor is known as a reprojection error. When the error consists of a difference
between objects in the image space I , the error is known as a photometric error.

1.3.6 Calibration

S

ξ

fΣ
1 = Q1

X

ξ̂

fΣ
2 = Q2

fS2 = s2
f̂S2 = ŝ2

f̂S1 = Πφ̂(ξ̂, Q1) = ŝ1

fS1 = Πφ(ξ,Q1) = s1

||f̂S2 − fS2 ||

φ

φ̂

Figure 1.9: An illustration of a standard process for calibration of a monocular cam-
era. Both the world-feature points Q1 and Q2 and the image-feature points s1 and
s2 corresponding to them are known. The intrinsics φ and extrinsics ξ of the cam-
era need to be estimated. Given the known locations of the points Q1 and Q2, we
can, given an estimate (φ̂, ξ̂) of the calibration parameters, produce the image-feature
point estimates ŝ1 and ŝ2. The difference between the estimated image features and
known image features determines an error function that may be minimised with
respect to the calibration parameter estimate.

Calibration is the task of estimating from a sequence of images {It : t ∈ T} the in-
trinsic parameters Φ and extrinsic parameters ξt of the camera associated with each
image. The pair (Φ, {ξt : t ∈ T}) is known as the calibration parameters associated
with the images. Usually, the focus of calibration is on obtaining the intrinsic pa-
rameters rather than the extrinsic parameters because the intrinsic parameters are
constant across all images obtained with a given camera model as long as the optical
settings of the camera are held constant. However, unless the extrinsics of the cam-
era are carefully controlled and measured independently, these parameters will also
need to be estimated during calibration.
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When the calibration task involves estimating the extrinsics, there are two main
approaches: calibration from a structured scene, and calibration from an unstruc-
tured scene. Calibration from a structured scene is a procedure whereby parameters
of the scene corresponding to the images It are known beforehand and are used in
the calibration procedure. Calibration from an unstructured scene is also known as
autocalibration, and is a procedure whereby no information about the scene being
imaged is known beforehand and treated as a prior in the calibration task.

A typical method of camera calibration involves the use of a structured scene
consisting of a finite number of feature points. The most common type of structured
scene used in camera calibration is a checkerboard, and the identified features in this
setting are usually the corners of the checkerboard. These scenes are used because
there are dedicated feature-extraction algorithms that are able to accurately identify
the corners of a checkerboard. Thus, from a structured scene, we are able to estimate
from each image It a set of image-features { f S

(i,t)}n
i=1 that correspond with known

coordinates of n world-features { f Σ
i }n

i=1. These estimates of the image-features are
usually treated as data because the feature-extraction techniques are often highly
reliable when lighting and other factors are controlled.

There is often a closed-form solution for most of the calibration parameters from
the pairing of image-features and world-features when some of the other parame-
ters are held constant at known values. This closed-form solution is refined and the
other parameters of the backprojection model are estimated by performing an opti-
misation procedure that minimises reprojection error. This task is as follows: given
an estimate Φ̂ of the intrinsics and an estimate ξ̂t of the extrinsics for each image,
we compute the expected image-features f̂ S

(i,t) corresponding to each of the world-
features f̂ Σ

i by using a feature-projection model f̂ S
(i,t) = ΠΦ̂(ξ̂t, f Σ

i ). The optimisation
is performed by varying the parameters Φ̂ and {ξ̂t : t ∈ T} so that the reprojec-

tion error ∑t∈T

∣∣∣∣∣∣ f̂ S
(i,t) − f S

(i,t)

∣∣∣∣∣∣2 is minimised. This error is an `2 reprojection error,
although other types of reprojection errors have been used to minimise the influence
of outliers in the image-feature data.

This general framework is explored further and applied to light-field cameras in
Chapter 3.

1.3.7 Scene Reconstruction

By scene reconstruction we mean a method of producing an estimate X̂ of the true
scene X from a set of measured input-output pairs {(ξt, It) : t ∈ T}, where It :=
µ(ξt, ·) : S → C , and T ⊂ R is some index set that may either be continuous or
discrete. If the scene X is estimated perfectly, so that X̂ = X, and if the colouring β
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is also estimated perfectly, new images I of the scene can be generated from novel
perspectives that were not in the original dataset that would be equal to real images
captured from those perspectives. It should be emphasised that generation of arbi-
trary images of a scene is possible only if the total state (X, β) is estimated, rather
than only the partial state X.

When the poses ξt from which the image data {It : t ∈ [0, T]} were generated
is unknown, the problem of simultaneously estimating ξt and X is known as Vi-
sual Simultaneous Localisation and Mapping (VSLAM). More generally, the problem of
estimating both the poses ξt and the scene X from some sequence of sensor measure-
ments {µt : t ∈ [0, T]} is known as Simultaneous Localisation and Mapping (SLAM)9.
Solving a VSLAM problem always requires stronger constraints than solving a (vi-
sual) scene reconstruction problem10. Most SLAM implementations represent scenes
with a discrete point cloud. At this level, there is no mathematical difference between
the definition of VSLAM and structure-from-motion (SfM) other than that a VSLAM
method typically requires the set of input images to be ordered and SfM does not. In
practice, VSLAM algorithms may have more importance assigned to computational
efficiency.

This thesis focuses on scene reconstruction, where the poses of the camera are
estimated using techniques separate from those used to estimate the scene. In par-
ticular, Chapters 4 and 5 develop different techniques for estimating scenes using
light-field measurements using both explicit and implicit representation methods, re-
spectively. The methods developed in those chapters are both instances of observers,
which are introduced in the following section.

1.3.8 Observers

A dynamical system is a triple S = (T, W, B), where T is called the time axis, W

is called the signal space, and B is a subset of WT called the behaviour [86]. The
behaviour consists of all the possible ways in which the system may evolve over
time. For this work we will assume that W = W1 ×W2 and that both W1 and W2

are metric spaces. We will also use the following notation: if W is a finite product of
some other signals so that W = ∏N

i=1 Wi, then for w = (w1, · · · , wi, · · · , wN) ∈ W,
πi(w) = wi. A (global and asymptotic) observer for ω2 ∈ W2 from the variable
ω1 ∈ W1 is a dynamical system O = (T, W1 ×W2, O) satisfying the following. For

9There are community differences on the definition of SLAM. Some believe that a technique should
only be called SLAM if an offline optimisation procedure known as loop closure takes place to account
for odometry drift.

10For example, certain scenes with repetitive patterns cannot be estimated in VSLAM but can be
reconstructed if poses are known.
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Figure 1.10: A standard observer design is given adding the dynamics of an internal
model, shown left, which updates a point estimate based on its known dynamics,
together with an innovation term, shown middle, which minimises the error in the
estimate in response to system measurements. The resulting observer dynamics are
shown right.

any b ∈ B and any11 w0
2 ∈W2 there exists an o ∈ O such that:

1. π2(o(0)) = w0
2,

2. For all t ∈ T, π1(o(t)) = π1(b(t)),

3. limt→∞ d(π2(b(t)), π2(o(t))) = 0.

Intuitively, the first condition is a globality condition meaning the desired property
of a system trajectory does not depend on its initial conditions, the second condition
states that the observer dynamics may depend on variable w1 representing measure-
ments of either the inputs or outputs of the system to be observed, and the third
condition is an asymptotic convergence condition that specifies the desired property
of the observer. The internal model principle states that if O is an observer for w2 from
w1 then B ⊆ O. There is active research to determine the classes of systems for which
the internal model principle holds [108].

In practice, observers and systems are typically governed by differential equations
and are time-invariant. Usually such a dynamical system is governed by equations
of the form

ẋt = f (xt, ut) (1.1)

yt = g(xt, ut), (1.2)

where ut ∈ U is some known function called the input, yt ∈ Y is some variable
that is measured by a sensor and is called the output, and xt ∈ X is a collection of
variables that represent the relationship between the input and output at a particular

11For many situations global convergence of the state estimate to the state is not achievable. In such
situations weaker notions than global convergence are necessary.
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time called the state. The set U is known as the input space, and the set Y is known as
the output space, and both are usually treated as Euclidean spaces or subsets of them.
The set X is known as the state space and is usually a manifold. We assume that the
function f has nice enough properties to guarantee existence and uniqueness of the
function xt whenever any unknown initial condition x0 is provided. A state observer
is a second dynamical system of the form

˙̂xt = h(x̂t, ut, yt), (1.3)

that satisfies

lim
t→∞

d(x̂t, xt) = 0 (1.4)

no matter what the initial condition x̂0 or input signal ut is, except perhaps on some
submanifold of zero measure. The variable x̂t ∈ X is known as the state estimate, but
it is common to refer to this variable as the observer itself.

Often, observers are constructed from knowledge of the dynamics f of the system
and the construction of an error function. An error function is a function

ε : X×Y×U → R+

for which, given any input-output pair (ut, yt) the function

ε(·, yt, ut) : X → R

has exactly one local minimum, which is at xt, and ε(xt, yt, ut) = 0. A common
type of observer is a gradient observer. A gradient observer is an observer where the
function h in (1.3) satisfies

h(x̂t, ut, yt) := f (x̂t, ut)−∇1ε(x̂t, yt, ut) (1.5)

for some differentiable error function ε. Here ∇1ε(x̂t, yt, ut) refers to the gradient
with respect to the first argument alone, so that this object is an element of Tx̂t X. A
gradient observer always satisfies the internal model principle.

In order to model a given dynamical system, it is often easier to first model the
state of that system as inhabiting a general system. A system is a pair (W, B) where
W is a set of easily-definable objects, and B is simply a subset of W called the
behaviour of the system. Once a system is defined, a dynamical system is usually
characterised by a certain set of parametrised paths in the more general system,
subject to some constraints. For the case of scenes, given intrinsic camera parameters
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φ, a light-field system is a pair (X× I × SE(3), B), where the behaviour B consists of
the subset of elements ((X, β), I, ξ) ∈ X× I × SE(3) such that:

1. ξ ∈ ΣX, and

2. I = µ(ξ, ·) = L(X,β) ◦ ψφ(ξ, ·),

where L(X,β) is the light-field generated by the coloured scene (X, β), cf. Sections
1.3.1 and 1.3.2.

A light-field dynamical system is a triple (T, X× I × SE(3), D), and at time t the
‘input’ into the system is the pose ξt ∈ SE(3), the ‘output’ is the image It ∈ I and
the state is a coloured scene (X, β) ∈ X. Typically, a light-field dynamical system is
characterised by paths in a light-field system parametrised with respect to time T,
and so the behaviour D is given by the set of functions w ∈ WT such that wt ∈ B ,
where B is the behaviour of a light-field system. Other constraints on the system
such as continuity of w with respect to t may also be applied.

1.4 Thesis Structure

This thesis examines the scene estimation problem from the perspective of systems
theory and observer design. The primary sensor used in this thesis, which will be
examined in detail in Chapter 2, is the light-field camera. The remainder of this
thesis is divided into two parts.

In Part I, the geometry of the sensor model that is used in the scene estimation
task is examined in detail. The sensor used in this work is the light-field camera, and
its geometry, and projection model is examined in detail in Chapter 2, and is based
on the works [79] and [78]. The projection model derived is not the standard ray-
projection models provided in other works but a point-projection model. The relation
between the parameters of this point-projection model and a ray-projection model is
provided. A solution to the depth estimation problem using light-field camera data
is also derived, and necessary and sufficient conditions for this estimation method
are provided. Chapter 3 uses this camera model to derive a calibration procedure for
estimating the parameters of the camera model derived in Chapter 2. The resulting
calibration procedure produces better results than previous methods on a variety of
metrics and these results were published in [79].

Part II of this thesis investigates the design of observers for estimating scenes
from light-field data using both an explicit and implicit representation of scenes.
Chapter 4 is based on previously published work [77] where an observer is designed
that estimates scenes using an explicit point cloud representation. The observer is
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tested in simulation and the asymptotic convergence of each point in the point cloud
estimate to a point on the scene is proved analytically. The resulting proof requires
significant topological considerations to avoid edge cases, as the trajectories of points
depend on the motion of the camera and the update function is a switching system.
In Chapter 5 an observer is designed that instead uses an implicit representation on a
variety of different function spaces, published in [76]. Not only is this representation
a dense representation of the scene, the assumptions of the scene are weaker than in
the explicit case, and the convergence is strengthened from asymptotic to finite-time.
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Sensor Models and Calibration

35





Chapter 2

Plenoptic Geometry and Disparity
Estimation

This chapter develops the sensor model for the light-field camera that is partially
based on the findings in [79] and [78], although some of the work in this chapter is
new at the time of writing. An accurate sensor model is essential to relate the output
produced by a sensor to the output of the system that the sensor is measuring. In
this thesis, the system that is being measured is a scene together with the colouring
defined on it (in this thesis this pair is called a coloured scene), the output of this system
is the plenoptic function, the sensor measuring this output is a light-field camera, and
the output of the sensor is a raw light-field. This chapter provides a projection model
for the camera that maps points on the scene to ‘plenoptic disc features’ that can be
readily estimated from the raw light-field images. This projection model depends on
a number of parameters, and a method for estimating these parameters in provided
in Chapter 3.

Before feeding a sequence of raw light-fields directly into an observer framework,
it is worth considering how much information about the scene is already contained
in a single light-field, and whether there are efficient techniques for extracting this
information. Such considerations lead naturally to the concept of disparity. Disparity
estimation can be performed efficiently on light-field data by exploiting the natural
geometry that arises in this data, and an efficient technique for estimating disparity
is provided in Section 2.5.

2.1 Background

Understanding of light-field geometry has evolved in recent decades. There are two
main types of projection models for a light-field camera: a point projection model
and a ray projection model. It is the fact that points do not map to individual rays
through the projection model that distinguishes light-field cameras from monocular

37



38 Plenoptic Geometry and Disparity Estimation

cameras.

Early work on light-field geometry typically adopted a ray projection model that
related rays of light in front of the camera to the data produced by the camera. The
seminal work in this area introduced the standard two-plane parametrisation of light-
fields in which one plane defines the perspective from which an image is taken, and
another plane to specify a pixel within that image [56]. This projection model was
developed further by Dansereau et al. [22] by the introduction of camera matrices
reminiscent of those present in traditional works on monocular and stereo camera
calibration [33].

In this chapter, a point-to-feature projection model is treated as the elementary
relation between the output of a coloured scene and the data produced by a light-
field camera. Because the aperture of a light-field camera is circular, these features
will also be circular. This observation was first noted in [83], but the projection model
in that work was ray-based and point depths were computed by minimising an error
function over the set of rays that have been determined to pass through the same
point. The advantage of the point-to-feature projection model is clear in 3D recon-
struction tasks where the goal is to estimate the location of points on a scene. The
point projection model for light-field cameras is invertible, unlike with a monocular
camera where the primitive is a perspective projection and depth information is lost.

Verifying that a model of the camera is plausible is typically conducted by cali-
bration. Calibration, discussed in more detail in Chapter 3, is the task of minimising
the error between real data generated by a sensor and the prediction of what the data
should be given a sensor model. The minimisation is conducted with respect to the
parameters of the chosen model for that sensor, and these parameters are called the
calibration parameters of the model.

Because a light-field camera images a scene from a large number of slightly-
varying perspectives, it is possible to estimate depth without feature-matching by
instead estimating the infinitesimal change in an image due to an approximately
infinitesimal change in perspective. This allows for a dense estimate of depth. The
use of light-field cameras for the purpose of depth estimation was first considered
by Adelson and Wang [2]. That work contains several major contributions, including
the first design of a lenslet-based light-field camera wherein an array of lenslets are
placed in between an imaging sensor and a focus lens. A second major contribution
of that work was the observation that the disparities of points on the recorded images,
and hence their depths, could be obtained by calculating light-field gradients.

Estimating depth from light-fields is a well-established area of research [37, 117,
42, 46, 112, 129, 99, 110, 97, 96, 20]. A good survey of the state-of-the-art is given by
Johannsen et al. [45], and the rapid development of this area has led to the release of
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several benchmarking datasets and toolkits in recent years [37], [113].
The conventional framework for light-field based disparity estimation is based

on constructing cost-volumes. A per-pixel cost function is constructed that attains
its minimum at correct disparities. A cost-volume is constructed by varying the
disparity hypothesis over some range of values. An optimal surface within this
cost volume is determined by minimising an energy functional, that may depend
on other parameters as in graph-cut based approaches. Approaches that follow this
framework are robust and accurate. However the construction of the cost-volume is
a computationally expensive procedure and many of the more accurate methods can
take over half-an-hour to compute a single disparity map, as reported by the authors
of those methods on the benchmark [37].

Learning-based approaches are computationally faster [96], although this is only
the case when training time is not taken into account. A recent method reports 6
days required for training on optimised hardware [96]. There are also no theoretical
guarantees that a training-based method will generalise well to situations radically
different from the data it was trained on.

This chapter presents several contributions to the understanding of light-field
geometry including:

1. A novel projection model that relates points imaged by the camera to plenoptic
disc features present in the raw camera data, as previously reported in [79].

2. The discovery of a partial differential equation that all disparity maps must
satisfy, as previously reported in [78].

3. A mathematical proof of the necessary and sufficient conditions that a colour-
ing must satisfy in order for depth to be estimated from first-order light-field
data.

2.2 Physical Camera Model

In this section, we formulate a projection model of the camera based on its physical
optics.

2.2.1 Projection Through a Thin Lens

In this sub-section we express all points in the body-fixed frame C of the camera.
A point P expressed in this frame has coordinates (Px, Py, Pz). We model the focus
lens positioned in front of the micro-lens array (MLA) as a thin lens. For thin lenses,
every point P on one side of the lense corresponds to another point Q, for which all
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Figure 2.1: A point P with image point Q is shown. Two lenslets ` and `′ are shown
with the pixels p and p′ of the perspective projections of the point Q through each
respective lenslet.

the rays of light passing through P pass through Q and vice-versa (see Fig. 2.1). The
point Q is called the image point of P. For points P in front of the camera, so that
Pz > 0, we have that the image point Q satisfies

1
F
=

1
Pz −

1
Qz , (2.1)

where F is the focal length of the focus lens. Because the image point Q always lies
on a line passing through P and the optical centre, we can determine the position of
Q to be given by

Q =

(
F

F− Pz

)
P. (2.2)

2.2.2 Projection Through a Micro-Lens Array

Figure 2.2: (Left) A raw light-field image of a scene. Zoomed portions of this raw
data are highlighted to show the image consisting of thousands of densely-packed
lenslet images each consisting of hundreds of pixels. (Right) An image extracted
from the raw data.

Lenslet-based light-field cameras are constructed by positioning a micro-lens ar-
ray between a focus lens and an imaging plane. The raw data of a light-field cam-



§2.3 Point Projection Model 41

era appears as an hexagonal array of smaller circular subimages stitched together
(Fig. 2.2). A subimage in the raw data is the image produced by a single lenslet `.
The pixel image coordinates (pu, pv) of a pixel p are counted positively from the top left
corner of the raw light-field image. We assign to each lenslet ` lenslet image coordinates
(`u, `v) ∈ R2 given by the image coordinates of the apparent centre of the lenslet on
the raw image.

Lenslets ` and pixels p are also represented by their physical coordinates expressed
in the body-fixed frame C of the camera, denoted ` = (`x, `y, `z) and p = (px, py, pz),
respectively. We assume that the MLA is parallel to the main focus lens of the camera,
so that all the lenslets have a constant displacement `z = −D, and so ` = (`x, `y,−D),
see Fig. 2.1.

The physical coordinates ` of the optical centre of the lenslet are related to its
lenslet image coordinates (`u, `v) by the equation

` =

(
Su D

D + d
(`u − cu), Sv D

D + d
(`v − cv),−D

)
. (2.3)

In this equation, Su and SV are the physical scales of the MLA in metres per pixel
in the u and v directions respectively, (cu, cv) are the pixel coordinates of the optical
centre of the camera, and d is the distance between the MLA and the imaging plane.
When Su = Sv, we instead use the parameter S. The parameter D+d

S is often re-
ferred to as f in other papers [75, 9], and in the literature is called the “focal length”
of a pinhole camera model for the lenslet. However, the physical meaning of this
parameter should not be confused with that of the focal length of a thin-lens.

Under the assumption that pixels are at a constant distance d from the micro-lens
array, the physical coordinates of a pixel p with image coordinates (pu, pv) are given
by

p = (Su(pu − cu), Sv(pv − cv),−D− d) . (2.4)

Given physical coordinates ` of a lenslet and an image point Q, the location of
the pixel that images Q through the lenslet ` is found by determining where the line
passing through Q and ` intersects the pixel plane (Fig. 2.1). Using a similar-triangles
argument, p is given by

p =
d

D + Qz (`−Q) + `. (2.5)

The image coordinates of p are then found by solving (2.4) for (pu, pv).
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Figure 2.3: A plenoptic disc corresponding to a point P is entirely determined by the
parameters w and ρ. A straight line passing through the optical centre of the focus
lens and the image point Q is shown, and where this line intersects the pupilar plane
is the plenoptic disc centre w. A lenslet on the boundary of W is labelled `. The
pixel p in the subimage of ` that images Q appears on the boundary of the subimage
of `. The radius ρ can be calculated from the aperture A using a similar-triangles
argument. The figure also shows the subimage radius r.

2.3 Point Projection Model

In this section, we use an idealised model of a plenoptic camera that has a lenslet
positioned at every point of the lenslet plane and a pixel at every point of the pixel
plane. This model is used to derive a feature type that is unique to plenoptic cameras,
namely plenoptic disc features. These features are similar in nature to ‘circles of
confusion’ in conventional photography [87], although this term can also refer to
a certain type of optical aberration [41]. Furthermore, we show that our plenoptic
disc feature parametrisation is 3-dimensional and these features are in one-to-one
correspondence with positions of points in the body-fixed frame of the camera. We
call the function that maps points to these features the plenoptic projection.

In such a model, a point P is projected to a set of lenslet-pixel pairs (`, p), where
p is the projection of the image point Q through the lenslet `, as given by (2.5).
However, if the subimages of each of the lenslets are circular and equal in radius, the
set of lenslet-pixel pairs contains no more information than the set W of lenslets ` for
which the point P is visible to lenslet `. We call the set W the plenoptic disc of a point
P.

If the subimages of each of the lenslets are circular, the plenoptic disc will be
circular, and thus can be represented entirely by an ideal centre with physical coor-
dinates w = (wx, wy,−D) and a signed radius ρ. This is because the set of lenslets `

for which a virtual point Q projects into the subimage of ` forms a disc in the pupilar
plane, see Fig. 2.3.
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The relationship between an image point Q and the plenoptic disc data is as
follows. Let A be the physical aperture radius of the circular focus lens of the camera.
A lenslet physical coordinate ` is on the boundary of the set W if there is a line
passing from ` through Q such that the intercept of this line with the focus lens has
length A, see Fig. 2.3. By similar triangles, we find that

ρ =
D + Qz

−Qz A. (2.6)

The physical centre of W is given by

w = − D
Qz Q. (2.7)

Since the physical radius ρ is related to a radius R in the raw image by the relation
ρ = S D

D+d R, then using A = D
d Sr, where r is the lenslet subimage radius expressed

in pixels, together with (2.6) and (2.1), we find that

1
Pz =

D− F
DF

− d
r(D + d)D

R, (2.8)

where P is the real point corresponding to the image point Q. The parameters D−F
DF

and − d
r(D+d)D , are equal to −K1

K2
and − 1

rK2
, respectively, using the notation of [9].

Because a physical camera may have different scales Su and Sv for the pixels this
will result in two different parameters f u = D+d

Su and f v = D+d
Sv . We obtain the

relation of a point P and the plenoptic disc data (wu, wv, R) as

P = − rK2

rK1 + R

(
wu − cu

f u ,
wv − cv

f v , 1
)

. (2.9)

The parameters f u, f v, cu, cv, K1 and K2 are the intrinsics we estimate for from
plenoptic disc data. They are sufficient to provide point estimates using (2.9). This
relation is bijective, and determining the plenoptic disc data (wu, wv, R) determines
entirely the point P corresponding to it, and vice-versa, if the extrinsics and intrinsics
of the camera are known. The projection of a point P to the triple (wu, wv, R) is called
the plenoptic projection, denoted Π, and is given by

Π(P) =
(
− f u Px

Pz + cu,− f v Py

Pz + cv,− rK2

Pz − rK1

)
. (2.10)

In summary, we model a plenoptic camera in terms of a projection that sends
a point P to a triple (wu, wv, R), called the plenoptic disc data, where (wu, wv) are
lenslet coordinates, called the plenoptic disc centre, and R is a signed radius called the
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plenoptic disc radius.
Because the triple (wu, wv, R) can be determined purely from raw light-field data,

we can use this feature data, together with knowledge of the true positions of the
feature points they correspond to, to estimate the intrinsics and extrinsics of the
camera using (2.10).

2.3.1 Plenoptic Point Projection Matrix

Note that the plenoptic point projection may be equivalently expressed by a matrix
equation. Define the matrix H as:

H :=


− f u 0 cu 0

0 − f v cv 0
0 0 −rK1 −rK2

0 0 1 0

 . (2.11)

Then, Equation (2.10) is equivalently stated as:
wu

wv

R
1

 =
1
Pz H


Px

Py

Pz

1

 . (2.12)

Note that H is invertible:

H−1 :=


− 1

f u 0 0 cu

f u

0 − 1
f v 0 cv

f v

0 0 0 1
0 0 − 1

K2r −K1
K2

 . (2.13)

2.3.2 Distortion Model

We model the effect of plenoptic disc distortion with a first-order approximation

(wu, wv) = (1 + k1δ2)((wu
d , wv

d)− (cu, cv)) + (cu, cv) (2.14)

where (wu, wv) are the undistorted plenoptic disc coordinates and (wu
d , wv

d) are the
distorted coordinates and δ is the distance in pixels from the distorted plenoptic
disc centre to the optical centre δ =

∣∣∣∣(wu
d , wv

d)− (cu, cv)
∣∣∣∣. This one-parameter lens

distortion model corrects the majority of the observed distortion in the raw Lytro
images, however higher-order radial distortion models can also be used.
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2.4 Ray Projection Model
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Figure 2.4: A cross-section of a plenoptic camera. A ray of light σ passes through the
plane of constant distance B at point b and enters the aperture of the camera at point
a. The ray σ is refracted by the focus lens to a ray ρ. The refracted ray passes through
the lenslet ` and is imaged by pixel p.

There are two ways of formulating the projection model for plenoptic cameras.
One way, is to note that every point in front of the camera is in one-to-one correspon-
dence with a set of lenslet-pixel pairs with a certain geometry, known as a plenoptic
disc. Another way is to model the camera as mapping rays of light to individual
lenslet-pixel pairs. The choice of projection model depends on the application, and
in this formulation, we will use the latter model.

We first assign coordinates to rays σ expressed in the body-fixed frame of the
camera, see Fig 2.4. We model rays of light as lines in R3. If a ray passes through
the aperture plane A of the camera, then we assign coordinates to this ray σ given
by the intersect a = (ax, ay, az) of the ray with the aperture plane A , and the intersect
b = (bx, by, bz) of the ray with a second plane B parallel to A situated at some
constant distance B from A , see Fig. 2.4. Because these planes have constant z-
components, as az = 0 and bz = B, the coordinates we assign to the ray σ are given
by (axy, bxy) := ((ax, ay), (bx, by)).

The effect of the focus lens of the camera is that this ray σ is refracted to another
ray ρ that passes through some lenslet with position ` = (`x, `y, `z) in the MLA
and is measured by some pixel with position p = (px, py, pz) in the pixel array, see
Fig 2.4. Similary as before, because the lenslets and pixels have constant depths
`z = −D, and pz = −D − d, we represent the coordinates of the refracted ray ρ by
(`xy, pxy) := ((`x, `y), (px, py)). The relation of the pair (axy, bxy) with the lenslet-pixel
pair (`xy, pxy) is entirely determined by the intrinsics of the camera.

The aperture-intersect axy of the ray ρ is equal to the aperture-intersect axy of the
ray σ. This intersect is found by finding where the line passing through ` and p
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intersects A , and has solution

axy = `xy +
D
d
(`xy − pxy) (2.15)

by a similar-triangles argument. To express this in terms of lenslet and pixel image-
coordinates, we substitute some earlier identities. Considering only ax for now, we
have:

ax = `x +
D
d
(`x − px)

=
D + d

d
`x − D

d
px

=
(D + d)D

d

(
`x

D
− px

D + d

)
=

K2

f u

(
f u`x

D
+ cu − f u px

D + d
− cu

)
=

K2

f u (`
u − pu).

As the derivation for ay is similar, we have that

axy = K2

(
`u − pu

f u ,
`v − pv

f v

)
. (2.16)

To determine the coordinate b of the ray σ, we first need to choose the distance B
that separates the plane B from A . There are two choices of B in particular that are
important, B = FD

F−D , which results in the simplest conversion formula from image
coordinates to two-plane coordinates, and B = 1, which can simplify theoretical
analysis. The factor FD

F−D is an important factor that repeatedly emerges in work on
plenoptic cameras. Its physical meaning is the depth of the image of the lenslet plane
through the thin-lens. In either case, we need to find one point other than a that the
ray σ also passes through, as this will determine the ray entirely. The image point
of any point on the ray ρ will be a point on σ. In the case that B = FD

F−D , we may
simply calculate the image point of the lenslet `xy, because this point lies on the ray
σ at distance FD

F−D . Therefore, when B = FD
F−D , we have that:

bxy =
F

F− D
`xy. (2.17)

In terms of image coordinates, we may use Equation 2.9, noting that the plenoptic
disc radius corresponding to image points on the lenslet plane is equal to 0. There-
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fore, when B = FD
F−D , we have that:

bxy = −K2

K1

(
`u − cu

f u ,
`v − cv

f v

)
. (2.18)

Let us denote the bxy given by Equation (2.18) as bxy
0 . For an arbitrary B, we find the

intersect of the ray that passes through both axy and bxy
0 with the plane B at distance

B from the aperture plane A . The line defined by this ray, when parametrised by
depth, is given by

σ(z) := axy + z
K1

K2
(bxy

0 − axy),

and the intersect at B is simply

bxy = axy + B
K1

K2
(bxy

0 − axy).

Therefore, considering for the sake of simplicity only bx for now, by substituting in
Equations (2.16) and (2.18) we have:

bx = K2

(
`u − pu

f u

)
+ B

K1

K2

(
−K2

K1

`u − cu

f u − K2
`u − pu

f u

)
= (K2 − BK1)

(
`u − pu

f u

)
− B

`u − cu

f u

=
K2 − BK1 − B

f u `u − K2 − BK1

f u pu +
B
f u cu.

A similar equation holds for by.
These relations are expressed as matrix equations through the use of homogenous

coordinates. In doing so, we obtain an essential matrix similar to what was derived
in Dansereau et al.[22], that is related to the intrinsic parameters of Bok et al.[9] by:


ax

ay

bx

by

1

 =



K2
f u 0 −K2

f u 0 0

0 K2
f v 0 −K2

f v 0
K2−BK1−B

f u 0 −K2−BK1
f u 0 B

f u cu

0 K2−BK1−B
f v 0 −K2−BK1

f v
B
f v cv

0 0 0 0 1




`u

`v

pu

pv

1

 . (2.19)

2.5 Disparity

The radius of a plenoptic disc is entirely determined by a property called disparity.
Disparity is a quantity that is assigned to a lenslet-pixel pair that is in one-to-one
correspondence with depth. This quanitity determines the set of lenslet-pixel pairs
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that are imaging the same point on a scene.

In the previous section, we introduced the image coordinates of lenslets and pixels.
However, some derivations are made easier with a different choice of parametrisa-
tion. In this section, instead of parametrising a lenslet in terms of its apparent centre
pixel location in the raw image, which is a parametrisation in units of pixels, we
parametrise it in units of lenslets. As unused symbols are in short supply, we use
bold-face symbols for these coordinates, and because it will be necessary to differen-
tiate these coordinates, for the sake of readability superscripts will not be used either,
unlike with the previously introduced lenslet-pixel coordinates. The lenslet coordinates
(s, t) of a lenslet in this formulation are given by (s, t) = 1

2r (`
u− cu, `v− cv), where r is

the subimage radius. The coordinates (s, t) are in units of lenslets. Furthermore, the
coordinates of a pixel are expressed relatively to the lenslet whose image that pixel
is a part of. The pixel offset coordinates (u, v) are given by (u, v) = (pu, pv)− (`u, `v).
The (s, t, u, v) coordinates are called a lenslet-pixel pair and define a ray in space:
the ray that passes through the lenslet with coordinates (s, t), and through the pixel
with coordinates (u, v) in the pixel plane of the lenslet with coordinates (s, t).

Now, suppose that there is some surface X in front of the camera, and that for
every point P ∈ X we assign some quantity F(P). Suppose furthermore that we
define a function f on the two-plane coordinates by setting f (s, t, u, v) equal to F(P),
where P is the first point on the scene that the ray parametrised by (s, t, u, v) passes
through. It is clear that for every point P ∈ X, there is a ray passing through it from
every direction. Therefore, there is a subset of two-plane coordinates that necessarily
have the same f value.

This subset is entirely determined by three parameters, two for the apparent posi-
tion of the point P in the central-aperture image, and one for a quantity known as dis-
parity, which we denote here as δ. Disparity δ is defined here as the quantity assigned
to a lenslet-pixel pair (s, t, u, v) such that if the ray given by (s, t, u, v) passes through
a point P, then so do all the rays with coordinates (s + δ∆u, t + δ∆v, u + ∆u, v + ∆v)
for all pixel displacements (∆u, ∆v). Because disparity is a quantity that converts
a pixel displacement to a lenslet displacement, its units are in lenslets per pixel
(lens/pix).

Since all of the aforementioned rays pass through the same point on the scene,
we therefore have the relation

f (s + δ∆u, t + δ∆v, u + ∆u, v + ∆v) = f (s, t, u, v), (2.20)

for any ∆u and ∆v and δ = δ(s, t, u, v). In particular, this defines a level set, and the
gradient of f is orthogonal to this level set. By expressing (∆u, ∆v) = Kω for some
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ω ∈ S2, K > 0 we therefore obtain that

δω · ∇s,t f + ω · ∇u,v f = 0 (2.21)

which, for any ω ∈ S2, has the solution for δ as

δ = −ω · ∇u,v f
ω · ∇s,t f

. (2.22)

When the original scene function F is given by colours of points, the resulting
function f we denote as L and is a Lambertian light-field. The purpose of our for-
mulation is to emphasise the definition of disparity as a property of the level sets of
functions defined on the two-plane parametrisation, formed by propogating another
function through space along straight lines.

2.5.1 Disparity Field Estimation

Figure 2.5: Disparity map of raw image given by convolutions. In zoomed box, edges
of lenslet microimages can be seen where gradients become unreliable.

To estimate the gradients of the light-field ∇L = (∇sL,∇tL,∇uL,∇vL) along each
of the cardinal directions s, t, u, v, we use 4-dimensional sobel operators. These op-
erators are constructed in the following way. To estimate the gradient of L along the
s axis, we first construct 4 4D arrays h′s, ht, hu, hv of dimensions (3, 3, r, r), where r
is the diameter of a lenslet. The array h′s is 0 everywhere except along the central
s axis of the array, where it contains the coefficients (−1, 0, 1) of a finite-difference
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approximation. Similarly, along each of the central t, u, and v axes of the arrays ht,
hu, and hv respectively, are the values of a triangle filter (1, 2, 1). The 4D sobel filter
kernel Hs in the s direction is given by Hs := h′s ∗ ht ∗ hu ∗ hv. Equivalent processes
are done for the other Sobel filter kernels Ht, Hu, and Hv. Finally, reshaping the
resulting arrays into 2D matrices gives image kernels that estimate these gradients
on raw light-field image data.

The resulting convolution kernels will be used on convolutions on the raw images
to compute light-field gradients in each of the cardinal directions of the light-field,
and so the gradient ∇L of the lightfield can be approximated at every lenslet-pixel
pair. The accuracy of a disparity field using (2.34) depends on the magnitude of the
demoninator of the quotient. Hence, we take ω = ∇s,tL. An initial disparity estimate
can then be computed by

δ0 = − (Hs ∗ L, Ht ∗ L) · (Hu ∗ L, Hv ∗ L)

||(Hs ∗ L, Ht ∗ L)||2
(2.23)

Here, the convolutions are taken over all three colour channels, so that, for example

Hs ∗ L =
(

Hs ∗ LR, Hs ∗ LG, Hs ∗ LB
)

,

where LR, LG, and LB are the red, green and blue colour channels, respectively. It
should be noted that this technique is essentially the same method as described by
Adelson and Wang [?]. However, this initial estimate can be improved in regions of
low texture by using the result of

δ0 = − (Hs ∗ L̃σ, Ht ∗ L̃σ) · (Hu ∗ L̃σ, Hv ∗ L̃σ)∣∣∣∣(Hs ∗ L̃σ, Ht ∗ L̃σ)
∣∣∣∣2 , (2.24)

where L̃σ is the original lightfield blurred by some gaussian kernel with standard
deviation σ. The result of (2.23) is replaced by the result of (2.24) in the regions
where ||(Hs ∗ L, Ht ∗ L)|| is beneath some threshold τ, and

∣∣∣∣(Hs ∗ L̃σ, Ht ∗ L̃σ)
∣∣∣∣ < ||(Hs ∗ L, Ht ∗ L)|| .

The purpose of the latter condition is to avoid replacing disparities near occlusion
boundaries, because here the gaussian blurred images have high norm in the lenslet
directions.
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2.5.2 Disparity Accumulation

Figure 2.6: Epipolar image of a disparity field near an occlusion boundary. Near dis-
parities are shown in red, whereas far disparities are shown in blue. Disparities are
propogated to the centre sub-aperture image using flow lines of Burgers’ equation.
Shown in the yellow arrows is the vector field (δ, 1).

While the initial depth estimates are fast, they are often noisy. A method of supress-
ing this noise and generating an estimate of confidence is derived here.

Using the method in the previous section, we obtain a disparity map δ(s, t, u, v)
that assigns a disparity to every lenslet-pixel pair. Remember that true disparity is
independent of the texture of the scene, and so Eq. (2.34) holds for any texture of
the scene that satisfies the Lambertian property. This means that for a fixed scene
and fixed camera the true disparity δ is constant even if the colouring applied to the
scene varies. Therefore, if we set each point on the scene to have a colour equal to
the disparity associated with that point, we obtain the equation

δ(s, t, u, v) = −ω · ∇uvδ(s, t, u, v)
ω · ∇stδ(s, t, u, v)

, (2.25)

which holds for any ω ∈ S2. These equations are equivalent to

δ · Dsδ + Duδ = 0 (2.26)

δ · Dtδ + Dvδ = 0. (2.27)

These equations are geometric constraints that necessarily hold for any disparity
map δ. Equations (2.26) and (2.27) are well-known in the partial differential equation
literature as inviscid Burgers’ equations. These equations are known to model shock-
waves and in this setting, the discontinuities of this map occur precisely along the
apparent location of occlusion boundaries in the light-field. As a consequence of
these equations, we also obtain an analogue of Eq. (2.20)

δ(s + δ∆u, t + δ∆v, u + ∆u, v + ∆v) = δ(s, t, u, v). (2.28)

This equation is used to accumulate disparity estimates from the entire raw light-field
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image to the disparity estimate for the central sub-aperture view δ(s, t, 0, 0). This is
done in the following way. For each lenslet-pixel pair (s0, t0, u0, v0) in the raw light-
field image, calculate the intersect of the line that passes through (s0, t0, u0, v0) with
slope δ(s0, t0, u0, v0) with the plane {(s, t, 0, 0) : (s, t) ∈ R2}. The lenslet coordinates
of this intersect (si, ti) is given by

(si, ti) = (s0 − δu0, t0 − δv0) . (2.29)

Thus, for each lenslet-pixel pair (s0, t0, u0, v0), there is an associated lenslet (si, ti)

whose central pixel should have disparity δ(s0, t0, u0, v0). Of course, from the initial
disparity estimate in Section 2.5.1, there is already a disparity assigned to this lenslet-
pixel pair, and many other lenslet-pixel pairs will also be assigned to this lenslet that
all have different disparities associated to them. Thus, for each central lenslet (si, ti)

we obtain a set {δk}
K(si ,ti)

k=1 of disparities that have been propogated to this lenslet. The
number K(si ,ti) is the number of disparities in this set and depends on (si, ti), and
also implicitly on the disparity map δ.

We produce an accumulated estimate of disparity from these sets {δk}
K(si ,ti)

k=1 by
taking the median µ(si ,ti) of these sets. Furthermore, the standard deviation σ(si ,ti) of
each set provides a confidence measure of this accumulated estimate.

We can also construct a cost-volume V(si, ti, δ) from the sets {δk}
K(si ,ti)

k=1 by fitting
probability distributions to their histograms and setting V to be equal to the log-
likelihood of these probability distributions.

2.5.3 Sufficient Conditions for Depth from Light-Field Gradients

In this section, we show that depth measurements may in principle be perfectly
estimated using light-field data. To show this, we require an assumption on the
colour distribution of our light-field measurement.

Assumption 1. The light-field L : L × P → [0, 1]3 is differentiable and satisfies

||∇µs,t(s, t, u, v)|| > 0

for all (s, t, u, v) ∈ L × P .

This assumption is fulfilled for Lambertian scenes whose colouring has non-zero
gradient everywhere. The existence of such a colouring for any given (smooth) scene
surface is guaranteed by a theorem of Hirsch [36], and an example for a scene con-
tained in the unit cube [0, 1]3 is given by assigning to each point P on the scene
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the colour P. The following proposition proves correctness of depth estimates from
light-field data given this assumption.

Proposition 1. Let φ = (K1, K2, f u, f v, cu, cv) be the intrinsic parameters of a light-field
camera without lens distortion. Use Assumption 1 and define the function δ : L → R+ as

δ(s, t) := −∇s,tµ(s, t, 0, 0) · ∇u,vµ(s, t, 0, 0)

||∇s,tµ(s, t, 0, 0)||2
. (2.30)

Then, the function λ : L → R defined as

λ(s, t) := − K2

K1 + δ(s, t)

is equal to the depth of the first point on the scene surface that lies along the ray with coordi-
nates (s, t, 0, 0).

Proof. In Section 2.3, it was shown that the depth of a point P with π(P) ∈ L ex-
pressed in body-fixed coordinates C of the camera is given by

CPz = − K2

K1 +
R(P)

r

, (2.31)

where R(P) is the plenoptic disc radius of P, and r is the subimage radius. Now,
observe that: (

u1 − u2

v1 − v2

)
=

r
R(P)

(
s1 − s2

t1 − t2

)

holds for all pairs of lenslet-pixel coordinates (s1, t1, u1, v1) and (s2, t2, u1, v2) imaging
the same point P. Comparing this to the defining equation(

∆s
∆t

)
= δ(P)

(
∆u
∆v

)

for the disparity δ(P) of P, it follows that

δ(P) =
R(P)

r

and hence Equation (2.31) can be rewritten as

CPz = − K2

K1 + δ(P)
. (2.32)
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The light-field measurement µ : L × P → [0, 1]3 is constant on the level set

{(s + δ(Q)∆u, t + δ(Q)∆v, ∆u, ∆v) : (∆u, ∆v) ∈ R2},

where Q is the first point on the scene surface ∂X that lies along the ray with coor-
dinates (s, t, 0, 0). The gradient of µ is nonzero by Assumption 1 and orthogonal to
this level set at (s, t, 0, 0). By expressing (∆u, ∆v) = ρω for some ω ∈ S2, ρ > 0 we
therefore obtain that

δ(Q)ω · ∇stµ + ω · ∇u,vµ = 0 (2.33)

which, for any ω ∈ S2, has the solution

δ(Q) = −ω · ∇uvµ

ω · ∇stµ
. (2.34)

Letting ω = ∇s,tµ(s, t, 0, 0), we obtain (2.30), and the result follows by substituting
into Equation (2.32).

2.5.4 Necessary Conditions for Depth from Light-Field Gradients

In the previous section, a proof that depth may be estimated from light-field gradi-
ents for a lenslet-based light-field camera if the scene is Lambertian and textured was
given. In this section, we prove under some additional assumptions that it is actually
neccessary that the scene is textured and Lambertian. For the sake of simplicity, this
proof only considers the two-dimensional setting, and assumes that the colouring
of the scene is monochromatic. We begin by first defining some of the objects and
properties that will be used in this proof.

A

Ba

Pz QP

P

η

0

1

Q

z z + 1

b

z

b = 0
a

Figure 2.7: A two-plane camera together with a planar scene Pz at depth z. The
direction component of the colouring has been reparametrised to match the geometry
of the camera.
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Definitions

We define the camera in terms of a two-plane parametrisation. Such a construction
was shown to be possible in Section 2.4. To do this, we first define the set A :=
[amin, amax] ⊂ R and, when A is given, the pupilar plane A := {(a, 0) ∈ R2 : a ∈ A}.
Then, we define the set B := [bmin, bmax] ⊂ R and, when a ∈ A and B are given,
the retinal plane Ba := {(b + a, 1) ∈ R2 : b ∈ B}. The parameter a determines the
point (a, 0) on the aperture that a ray is seen, and the parameter b ∈ B determines
the direction of that ray. Define the map η : B → S1 as η(b) := (b,1)

||(b,1)|| . Then the
physical ray corresponding to coordinates (a, b) ∈ A× B is ((a, 0), η(b)). This defines
the simplified camera geometry that will be used in this section, and is illustrated in
Fig. 2.7.

We will assume that the scene class X used in this proof consists of scenes (X, β)

where X ⊂ R2 and β : X× S1 → R. This corresponds to two-dimensional scenes with
monochromatic colourings. As defined in Chapter 1, X is the set of scene geometries.
However, in this section we will also make use of the set of possible colourings of a
given scene. This is given by defining for each scene X ∈ X, the cross-section

BX := {β : X× S1 → R | (X, β) ∈ X}

consisting of the set of colourings β such that (X, β) ∈ X. Throughout this section,
we will make use of planar scenes, defined as follows.

Definition 1. A planar scene is given by

Pz0 := {(x, z) ∈ R2 | z = z0}

for some z0.

Note that we may also parametrise the colourings of planar scenes in terms of the
two-plane parametrisation. Such a reparametrised colouring will be denoted β.

Definition 2. Define for each (Pz, β) ∈ X the map β : R2 → R as β(p, q) := β((p, z), η(q)).

Because we will use the assumption that we may view a scene from potentially
any angle, it may be the case that the measured light-field generated by a scene (X, β)

has as its domain only a subset of A× B. This is because we do not assume that the
camera is contained within the environment of the scene. Furthermore, because in
Theorem 2 we implicitly assume that ∇L(a, b) exists, we will also need to restrict the
lenslet-pixel pairs to those for which this is true.

Definition 3. For each (X, β) ∈ X, the set SX is the subset of lenslet-pixel pairs (a, b) ∈
A× B such that:
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1. ((a, 0), η(b) ∈ ΣX and (a, 0) 6∈ X.

2. ∇L(a, b) exists.

3. ∇γ(a, b) exists.

The set SX is the subset of coordinates (a, b) ∈ A × B for which the ray corre-
sponding to that coordinate is in the environment of the scene X, and the light-field
and depth map is differentiable there. In particular, this excludes lenset-pixel pairs
pertaining to rays that intersect occlusion boundaries. Using this domain, we may
safely define for each (X, β) ∈ X, the depth-map γX : SX → R that returns the depth
of the nearest point on X along the ray ((a, 0), η(b)). Additionally, we define for each
(X, β) ∈ X, the light-field L(X,β) : SX → R as

L(a, b) := β (a + λX (a, η(b)) η(b), η(b)) ,

where λX(a, η(b)) is the range of the scene along ray ((a, 0), η(b)) (see also Section
1.3.1). Note that for a given scene the domain of the depth-map and light-field of
that scene are equal. The subscripts in these definitions will be dropped when clear
from context.

For differentiable colourings, a surface ray being Lambertian is equivalent to the
angular derivative of the light-field at that ray being 0. Thus, in this section we call
a coloured scene (X, β) Lambertian if every surface ray (P, η) satisfies D2β(P, η) = 0.
It is this property, along with the following, that will be shown to be neccessary
conditions of extracting depth from light-fields. A coloured scene (X, β) is said to
be spatially textured if every surface ray (P, η) satisfies D1β(P, η) 6= 0. Addition-
ally, a coloured scene (X, β) is said to be textured if every surface ray (P, η) satisfies
Dβ(P, η) 6= 0.

This section uses the assumption that for certain motions, a scene may be moved
rigidly along that motion. The way in which a rigid-body motion acts on a scene is
defined as follows.

Definition 4. Define for each ξ ∈ SE(2) and each (X, β) ∈ X the set

ξ · X := {P ∈ R2 : P = ξ · P′, f. s. P′ ∈ X},

and the function
ξ · β(P, η) = β(ξ−1 · (P, η)).

Finally, we define the notion of visibility and viewability of a surface ray. A
surface ray is visible if it currently being imaged, or equivalently that it lies in the
visible set of the camera (see Section 1.3.3).
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Definition 5. A surface ray (P, η0) of a scene X is said to be visible if there exists an
(a, b) ∈ SX such that

P = (a + bγX(a, b), γX(a, b))

and
η0 = η(b).

A surface ray is viewable if the scene may be moved in some way that makes it
visible.

Definition 6. A surface ray (P, η0) of a scene X is said to be viewable if there exists a rigid
body motion ξ such that

ξ · P = (a + bγξ·X(a, b), γξ·X(a, b))

and
ξ · η0 = η(b).

Note that the varying domain of γξ·X implicity restricts which surface rays are viewable.

Finally, as we can only state anything about those rays that are viewable, we pro-
vide the following definition of “effectively Lambertian” and “effectively textured”.

Definition 7. A coloured scene is effectively Lambertian if every viewable ray is Lamber-
tian, and effectively textured if every viewable ray is textured.

Assumptions

To prove the necessary conditions on colourings required for depth from light-field
gradients, several assumptions will be made. Some of these assumptions are possibly
consequences of the other assumptions. The first is that the scene class contains
the class of planar scenes. This assumption may potentially be either weakened or
removed entirely.

Assumption 1. Assume the scene class X satisfies: for each z > 0 the planar scene Pz at
depth z is in X.

The following assumption states that the scene class is invariant to changes in con-
trast of the colourings. This assumption is reasonable because otherwise we would
require a choice of precise contrast parameters on the camera recording the light-
fields and merely scaling the colour values would break the method.

Assumption 2. Assume the scene class X satisfies: for all (X, β) ∈ X, we have (X, k · β) ∈
X for each k 6= 0.
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The third assumption is that the colour assigned to a surface ray at some point on
the scene does not depend on the colour assigned to a surface ray at another point
on the scene.

Assumption 3. Assume the scene class X satisfies: for every planar scene Pz ∈ X where
z > 0, and all (P, η, c), (P′, η′, c′) ∈ Pz × S1 ×R such that P 6= P′, there exists a colouring
β ∈ BPz such that β(P, η) = c and β(P, η′) = c′.

The fourth assumption is that each scene in the scene class may be moved freely
and that the result is still in the scene class.

Assumption 4. Assume the scene class X satisfies: for all ξ ∈ SE(2) if (X, β) ∈ X then
(ξ · X, ξ · β) ∈ X.

The fifth assumption is very likely to be a consequence of the previous assump-
tions. It states that for every planar scene in the scene class and every surface ray
of the scene, there is a colouring on that planar scene such that the derivative of the
colouring at that ray is non-zero.

Assumption 5. Assume the scene class X satisfies: for all z > 0, P ∈ Pz, η ∈ S1, there
exists a β ∈ BPz such that Dβ(P, η) 6= 0.

Therorem and Proof

The following theorem states that the existence of some method that takes light-field
gradients and returns depth implies that the scene being imaged is textured and
Lambertian under the previous assumptions. Note that this theorem only applies
to the estimation of depth directly from light-field gradients. However, there may
be other maps that estimate depth under more relaxed conditions if higher-order
differential information is used, or if global properties of the light-field are taken
into account.

Theorem 2. Let X be a scene class satisfying Assumptions 1 - 5. Suppose that there exists a
function F : R2 → R such that for every (X, β) ∈ X, whenever (a, b) ∈ SX we have that

F(DaL(a, b), DbL(a, b)) = γ(a, b),

where γ(a, b) is the depth of the scene along the ray ((a, 0), η(b)). Then every scene (X, β) ∈
X is effectively textured and effectively Lambertian.

This proof requires the following lemmas.

Lemma 3. For any z > 0 and any a ∈ A, and any b ∈ B, and any v ∈ R \ {0} there exists
a β ∈ BPz such that ||DL(a, b)|| = v for the light-field L generated by β.
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Proof. By Assumption 5 and Eq. (2.35), for given any z > 0 and any a ∈ A, and any
b ∈ B, we have that there exists a colouring β ∈ BPz such that ||DL(a, b)|| = v0 6= 0.
By Assumption 2, for all v 6= 0, v

v0
· β ∈ BPz , therefore, by Eqs. (2.36) and (2.37), the

light-field L′ generated by v
v0

β ∈ BPz satisfies ||DL′(a, b)|| = v.

The following lemma is an immediate consequence of Assumption 4. It is simply
used to define special notation for the translation of a scene.

Lemma 4. An immediate consequence of Assumption 4 is that the scene class X satisfies: if
(Pz, β) ∈ X then for all x′ ∈ R and z′ > 0, (Pz′ , β ◦ τ(x′,z′)) ∈ X where τ(x′,z′)((x, z), η) =

((x′, z′), η). (Every translation of a coloured plane in the scene class to a location in front of
the camera is in the scene class.)

There are several steps on the path to proving Theorem 2. The first involves
directly relating the light-field to the colouring of a planar scene.

Proposition 5. For any z > 0, any Pz ∈ X, any β ∈ BPz and any a ∈ A, b ∈ B, the
reparametrised colouring β satisfies equations (2.35), (2.36), and (2.37).

Proof. To see this, choose any z > 0 and consider the scene Pz and the cross-section
BPz . Any surface ray (P, η) ∈ Pz that points away from the plane P0 may be
parametrised by (u, v) ∈ R2 explicitly through the invertible map (u, v) 7→ ((u, z), η(v)).
Therefore, for any β ∈ BPz , we have for the L generated by β and the reparametrised
colouring β

L(a, b) = β(a + bz, b). (2.35)

Therefore, for any β ∈ BPz , we have for the L generated by β and the reparametrised
colouring β

DaL(a, b) = D1β(a + bz, b). (2.36)

Therefore, for any β ∈ BPz , we have for the L generated by β and the reparametrised
colouring β

DbL(a, b) = D1β(a + bz, b)z + D2β(a + bz, b). (2.37)

The next step of the proof involves establishing that each planar scene in the scene
class is textured.

Proposition 6. All viewable rays of planar scenes in X are spatially textured, meaning that
if (Pz, β) ∈ X, D1β(p, q) 6= 0 for all z > 0, and all (p, q) ∈ R2.

Proof. By Lemma 3 We have that for any fixed choice of z, there exists a colouring
β such that DL(a, b) = (D1β(a + bz, b)z + D2β(a + bz, b), D1β(a + bz, b)) 6= (0, 0).
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Therefore, at least one of the following is therefore true: either D1β(a + bz, b)z +
D2β(a+ bz, b) 6= 0 or D1β(a+ bz, b) 6= 0. Assume D1β(a+ bz, b)z+D2β(a+ bz, b) 6= 0
and D1β(a + bz, b)z = 0. Then F(0, D2β(a + bz, b)) = z. Then, due to Lemma 3,
k · β ∈ BPz for all k 6= 0, and we have that for all v ∈ R \ 0, there exists a β ∈ BPz

such that D2β(a + bz, b) = v, we have that F(0, v) = z for all v. However, this same
argument will hold for some other planar scene at any other depth z′ > 0, which
would imply that we would also have F(0, v) = z′ for all v by the same argument.
Therefore, D1β(a+ bz, b) 6= 0. Therefore β is spatially textured at every visible surface
ray of Pz. Therefore, since all rigid body motions of the scene are in the scene class,
β is spatially textured for any viewable (p, q) ∈ R2.

The third step in the proof is establishing the Lambertian property for planar
scenes.

Proposition 7. All viewable rays of planar scenes in X are Lambertian, meaning that if
(Pz, β) ∈ X, D2β(p, q) = 0 for all z > 0, and all (p, q) ∈ R2

Proof. Showing that any planar scene must be Lambertian requires additional steps.
The aim is to show that there exists a function g : R → R such that for all a, b, z >

0, β ∈ BPz , D2β(a + bz, b) = g(D1β(a + bz)) and then prove that this function is infact
identically 0. However, this itself first requires proving the weaker statement that
there exists a h : R2 → R such that h(D1β(a + bz), z) = D2β(a + bz) for all a, b, z.
Suppose for a contradiction that such a function h did not exist. Then, there are two
colourings β1, β2 ∈ BPz0

such that:

D1β1(a + bz0, b) = D1β2(a + bz0, b),

D1β1(a + bz0, b)z0 + D2β1(a + bz0, b) 6= D1β2(a + bz0, b)z0 + D2β2(a + bz0, b),

for at least one choice of z0 > 0, a ∈ A, b ∈ B. For shorthand, we will use the notation

x0 = D1β1(a + bz0, b) = D1β2(a + bz0, b),

yi = D2βi(a + bz0, b),

wi = x0z0 + yi.

(2.38)

By multiplying such chosen β1, β2 ∈ BPz0
by a suitable k 6= 0, we may assume without

loss of generality that x0 > 0. Now, assume without loss of generality that w2 > w1.
Then y2 > y1 and w2 = x0z0 + y2 > y2 > y1 because x0z0 > 0. Therefore, defining
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z1 := w2−y1
x0

> 0, we have

w2 = x0z0 + y2

= x0z1 + y1.
(2.39)

Because z1 > 0, we may translate the colouring β1 to

β′1 := β1 ◦ τ(bz1,z1) ∈ BPz1
,

ie. β
′
1(a + bz1, b) = β1(a + bz0, b). Now, referring to Eqs. (2.39) and (2.38), we have

that the reparametrised colouring β
′
1 satisfies

w2 = D1β2(a + bz0, b)z0 + D2β2(a + bz0, b)

= D1β
′
1(a + bz1, b)z1 + D2β

′
1(a + bz1, b)

and
x0 = D1β

′
1(a + bz1, b) = D1β2(a + bz0, b).

Therefore, we have that there exist x0, w1, w2 > 0 such that w1 6= w2, and F(x0, w1) =

F(x0, w2) = z0. This implies that F(x0, w2) = z1 6= z0. But this is a contradiction since
F(x0, w2) = z0. Therefore, there exists a function h : R2 → R such that h(D1β(a +
bz, b), z)) = D2β(a + bz, b) for all z > 0, a ∈ A and b ∈ B.

So, we have concluded that for planar scenes at depth z, h(D1β(a + bz, b), z)) =
D2β(a + bz, b) for some function h. It remains to show that such a h does not depend
on z. Suppose that Dβ(a + bz, b) = (x, y). Then h(x, z) = y. Let z′ 6= z, and z′ > 0.
Then β′ := β ◦ τ(bz,z) ∈ BPz′ and Dβ

′
(a + bz′, b) = (x, y). Therefore, if h(x, z) = y for

some z > 0, h(x, z′) = y for all z′ > 0. Therefore, defining g(x) := h(x, 1) gives the
result.

Finally, we show that g(x) is identically 0 therefore obtaining the result that
D2β(p, q) = 0 for all reparmetrised colourings β generated from planar scenes (Pz, β).
At this point, we have for all z > 0, β ∈ BPz , k 6= 0, P ∈ Pz, Q ∈ Qz :

g(k · D1[β(p, q)]) = g(D1[kβ(p, q))])

= D2[kβ(p, q)]

= kD2β(p, q)

= kg(D1β(p, q)).

Therefore, g is linear and there exists a c ∈ R such that g(x) = c · x. Now, For all
z > 0 and all P ∈ Pz and all Q ∈ Qz and all β ∈ BPz , we have g(D1β(p, q)) =
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cD1β(p, q) = D2β(p, q), for some c ∈ R Therefore, every β ∈ BPz is a solution of the
transport equation cD1β(p, q)− D2β(p, q) = 0. Therefore, from a standard result of
transport equations [23], for every β ∈ BPz there is some function f : R → R such
that β(p, q) = f (p + cq). Therefore, for every β ∈ BPz , β is constant along the lines
{(s,−cs) : s ∈ R} ⊂ Pz ×Qz. However, if c 6= 0, this contradicts our assumption that
every BPz contains at least one β such that β(p, q) 6= β(p′, q′) if p 6= p′. Therefore,
c = 0, and so for any z > 0, P ∈ Pz, Q ∈ Qz, β ∈ BPz , we have D2β(p, q) = 0, and so β

is Lambertian.

At this point we have proven that every colouring of a planar scene in the scene
class is textured and Lambertian. It remains to show that the same is true for every
other scene in the scene class.

Proof. (Theorem 2)
To show that these conclusions of Propositions 6 and 7 are true of any other

scene in the scene class, we will make use of the fact that if sgn(x) = sgn(w) then
F(x, w) = w

x . To show this, we first note that for any planar scene Pz, we have that
F(D1β(a + bz, b), D1β(a + bz, b)z + D2β(a + bz, b)) = z, and D2β(a + bz, b) = 0. Now
note that for any a, b, and any z > 0 and any x 6= 0 there exists a β ∈ BPz such that
D1β(a + bz, b) = x, because D1β(a + bz) 6= 0 and k · β ∈ BPz for all k 6= 0. Therefore,
the function F satisfies

F(x, x · z) = z (2.40)

for every x 6= 0 and every z > 0. Therefore, we must have that sgn(x · z) = sgn(x)
because z > 0. Therefore, for every point in the set

{(x, w) ∈ R2 | x 6= 0, sgn(x) = sgn(w)},

the function F satisfies F(x, w) = w
x .

Finally, let us use the notation (X′, β′) for a general scene in the scene class. We
can now show that for a given (X′, β′) ∈ X, if the light-field L′ generated from this
coloured scene satisfies F(DbL′(a, b), DaL′(a, b)) = γ(a, b), then β′ is textured and
Lambertian. We have for a general scene that

DaL′(a, b) = D1β
′
(a + bγ′(a, b), b) + D1β

′
(a + bγ′(a, b), b) · b · D1γ′(a, b), (2.41)

DbL′(a, b) = D1β
′
(a + bγ′(a, b), b) · (γ′(a, b) + bD2γ′(a, b))

+ D2β
′
(a + bγ′(a, b), b).

(2.42)

For any given (X′, β′) ∈ X and for any given viewable surface ray (P′, η′) ∈ X′ × S1,
there exists a ξ ∈ SE(2) and a z0 > 0 such that: the embedded tangent space TPX of
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X = ξ · X′ at P = ξ · P′, satisfies
Pz0 = TPX,

and
ξ · (P′, η′) = (a + bz0, η(b))

for some (a, b) ∈ A× B. Let X = ξ · X′, β = ξ · β′, P = ξ · P′, η = ξ · η′, γ = ξ · γ′ for
a ξ ∈ SE(2) and z0 > 0 satisfying the previous property. For the ray parametrised
by (a, b) ∈ A × B that corresponds to the surface ray (P, η) = ((a + bz0, z0), η(b)),
we have that Dγ(a, b) = (0, 0). Therefore, by using Eqs (2.41) and (2.42), for such an
(a, b), we have that

DaL(a, b) = D1β(a + bγ(a, b), b), (2.43)

DbL(a, b) = D1β(a + bγ(a, b), b)γ(a, b) + D2β(a + bγ(a, b), b). (2.44)

There are now two cases: either

∣∣D2β(a + bγ(a, b), b)
∣∣ ≥ ∣∣D1β(a + bγ(a, b), b)γ(a, b)

∣∣
or

∣∣D2β(a + bγ(a, b), b)
∣∣ < ∣∣D1β(a + bγ(a, b), b)γ(a, b)

∣∣ .

Suppose the former case that
∣∣D2β(a + bγ(a, b), b)

∣∣ ≥ ∣∣D1β(a + bγ(a, b), b)γ(a, b)
∣∣ .

Let {(Xz, βz)}z>0 be the family of scenes given by freely translating (X, β) freely
along the line parametrised by (a, b) so that

(Xz, βz) := τ(bz,z)(X, β).

We have that for each (Xz, βz),
γ(a, b) = z

yet
D2βz(a + bγ(a, b), b) = D2β(a + bγ(a, b), b)

and
D1βz(a + bγ(a, b), b) = D1β(a + bγ(a, b), b).

Therefore, for all z > 0 we have
∣∣D2βz(a + bz, b)

∣∣ ≥ ∣∣D1βz(a + bz, b)z
∣∣ . But because

Dβz(a + bz, b) is invariant to z, the only solution is that D1βz(a + bz, b) = D2βz(a +
bz, b) = 0. But then F(0, 0) = z for all z, but this is a contradiction because F is a
function. Therefore

∣∣D2β(a + bγ(a, b), b)
∣∣ < ∣∣D1β(a + bγ(a, b), b)γ(a, b)

∣∣ .
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Therefore, the only possible case is that D1β(a + bγ(a, b), b) 6= 0 since γ(a, b) > 0.
This implies that sgn(DaL(a, b)γ(a, b)) = sgn(DbL(a, b)), and so

F(DaL(a, b), DbL(a, b)) =
DbL(a, b)
DaL(a, b)

.

Therefore,

γ(a, b) = γ(a, b) +
D2β(a + bγ(a, b), b)
D1β(a + bγ(a, b), b)

,

which implies that
D2β(a + bγ(a, b), b) = 0.

Therefore, the surface ray (P, η) is textured and Lambertian. Note that the fact that
rigid body transformations of the scene do not alter these properties for the trans-
formed ray (P′, η′), following directly from the fact that ξ · β(ξ · P′, ξ · η′) = β(P′, η′)

for all (P′, η′) ∈ X × S1. Because rigid body motions of scenes will not alter these
properties, (P′, η′) is a textured and Lambertian surface ray of (X′, β′) as well.

2.6 Conclusion

In this chapter, a thorough investigation of light-field cameras, their history, and their
respective geometry was provided. These investigations resulted in a point-to-disc
projection model that is invertible, and will be used in Chapter 3 to perform calibra-
tion. These investigations were followed by examining the concept of disparity and
a method of estimating disparity from raw light-field data, by taking into account
the partial differential equation that disparity fields satisfy. Theoretical derivations
of necessary and sufficient conditions have been provided that under certain mild
assumptions, any depth estimation technique relying on light-field gradients alone
must assume that the scene being imaged is textured and Lambertian. These proofs
will apply to equivalent scenarios in the general structure-from-motion problem. Ex-
tensions to this work are described in Chapter 6.



Chapter 3

Plenoptic Camera Calibration

This chapter proposes a new method for estimating calibration parameters of plenop-
tic cameras by minimizing the nonlinear plenoptic reprojection error. The plenoptic
disc features defined in Chapter 2 are in a natural one-to-one correspondence with
physical points in front of the camera. We exploit the intrinsic geometry of plenoptic
cameras in a novel projection model that relates the plenoptic disc features to physi-
cal points. The resulting calibration quality, as quantified by mean reprojection error
and 3D reconstruction error, outperforms recently published results. The work in
this chapter is based on the paper [79].

3.1 Background

Calibration estimation is a fundamental problem in computer vision. Accurate cali-
bration, both intrinsic and extrinsic, is essential for the generation of metrically cor-
rect1 scene reconstructions, as well as being crucial in other preprocessing tasks. Due
to the complexity of the lenslet geometry of plenoptic cameras, existing multi-camera
calibration methods are not directly effective and there is a growing literature aimed
at developing effective models for calibration [125, 101, 128, 126, 44, 35, 100, 43, 9, 75,
7].

Most existing calibration techniques, for both plenoptic and other sorts of cam-
eras, consist of three main steps and are based on estimating a projective transforma-
tion that models the camera for a ray-based model of light. The first step takes in as
data raw images, and estimates the locations of features in these images generating
a list of correspondences between frames. The second step is initialisation, generat-
ing an initial estimate of the calibration parameters. A cost function, typically mean
reprojection error, is then minimised in the third, optimisation step.

This chapter proposes a new calibration method for plenoptic light-field cameras

1By ‘metrically correct’ we mean that the the distances between points in the scene reconstruction
are equal to the distances between the corresponding points on the scene being measured.

65
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Figure 3.1: A zoomed view of a raw light-field image taken by a Raytrix R42 camera.
In the large red circle is a plenoptic disc containing the set of lenslets that can see
a specific feature. The yellow dots highlight the detected feature. Subimages corre-
sponding to different lenslet types are shown in the blue circle in different colors.

that outperforms existing methods on the key performance measures of mean repro-
jection error and 3D reconstruction error. The first step of most existing calibration
methods requires matching of subimage feature points between subimages, and data
association between these image points between different lightfields (image frames)
of a known target. As there can be dozens of subimages in which a given feature
is visible per frame (see Fig. 3.1), the identification of subimage features becomes
an onerous task [75]. This process is made more difficult by the fact that the differ-
ent focal lengths used for multi-focus light-field cameras [61] mean that many of the
subimages are out-of-focus for each of the images. Furthermore, since each subimage
has a small resolution there is limited information available to make highly accurate
feature extraction, especially when a feature point approaches the edge of a subim-
age. Reliable and robust extraction of accurate subimage feature points for lightfield
calibration is a key limitation to existing calibration methods. Our proposed method
avoids this problem by exploiting the geometric point projection model proposed in
Chapter 2 in order to extract the plenoptic disc features corresponding to the corners
of a checkerboard. This feature type has similarities to a feature type suggested by
Dansereau et al.[22], however that paper does not use such feature types for calibra-
tion.

Exploiting this feature parametrisation, together with the simplified 3-intrinsic
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parameter model originally proposed by Bok et al.[9], vastly simplifies the optimisa-
tion problem used in the final step. The initialisation procedure is based on the work
by Bok et al.[9], reformulated to use our plenoptic disc features. The cost function
minimised in our final step is a plenoptic reprojection error, that minimises distance
between the coordinates of the plenoptic disc features used as data and the expected
coordinates of these features given camera parameter estimates.

The mean reprojection and reconstruction errors that we obtain from this ap-
proach outperform state-of-the-art results [9, 75]. In summary, the main contribu-
tions in this chapter are:

• Derivation of a feature estimator for plenoptic disc features of checkerboards.

• A calibration method based on this geometry that outperforms existing state-
of-the-art techniques in terms of accuracy and robustness.

3.1.1 Previous Work

Seminal work in the calibration of lenslet based plenoptic cameras was published
in 2013 [22, 44]. Dansereau et al. used the Lytro plenoptic camera and derived a
camera rectification formulation that allowed a simple optimisation algorithm for
image calibration. A similar approach is undertaken more recently in Zhe et al.[43].
An advantage of this approach is that the resulting calibration optimisation tends to
be more robust, however, the parameters identified are less directly associated with
physical parameters of the camera. Moreover, the approach is less well suited to
multi-focal light-field cameras.

Johannsen et al. [44] formulated a general reprojection model in terms of the
physical parameters of a Raytrix camera. This work considered a relatively simple
model of lens distortion and required careful initialisation of the optimisation to con-
verge. Strobl et al. [100] recognised the fragility of the calibration optimisation and
proposed a step-wise calibration approach where first the focal length and optical
centre of the main lens is determined (as well as some distortion parameters) before
the internal offset of the Micro-Lens Array (MLA) from the sensor and main lens
respectively are determined. Sun et al. [101] use a similar approach, where they
hand determine the ratio of MLA distance to sensor with respect to MLA distance
to the image plane for a specific point, allowing them to effectively identify the rel-
ative focal length of the main lens separately form the calibration process. Another
recent contribution is proposed by Zeller et al.[125, 126]. Although the focus of these
papers is on visual odometry, they require a calibrated camera to provide metric
reconstructions. The depth calibration proposed in Zeller et al.[126] uses a separate
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optimisation process. Another direction stemming from this approach has lead to the
consideration of more sophisticated models of the lens distortion and non-planarity
of the MLA. Heinze et al. [35] consider more sophisticated models of the distortion of
the main lens. Zhang et al. [128] consider a detailed model of the lenslet array geom-
etry that calibrates for non-planarity of the array. Lenslet based plenoptic cameras,
however, are constructed with careful attention to the coplanarity of the lenslet array
and the image plane [74], and for cameras such as the Raytrix R42, this additional
complexity is not required.

All the above papers require matching of point features across multiple images
and multiple subimages. Although many of the methods use standard feature ex-
traction methods to automate the matching process, there are necessarily errors in
the identification and data association of these features. Bok et al. [9] introduced
novel line features to improve the automation and accuracy of the feature identi-
fication. More recently Nousias et al. [75] developed corner based features along
with an end-to-end calibration process. Both these papers have achieved improved
performance through automation and accurate identification of feature correspon-
dences. These papers provide a good benchmark for the evaluation of the present
work, particularly since they minimize a mean reprojection error criterion as we do.

3.2 Plenoptic Camera Calibration

Calibration of a plenoptic camera has three main blocks, see Fig. 3.2: the first is a
feature estimation block. In this chapter, we estimate the plenoptic disc data corre-
sponding to corners of a checkerboard (cf. Sections 2.3 and 3.2.1). The second block
is an initialisation block, that produces a calibration parameter estimate (cf. Section
3.2.2). The third block is a non-linear optimisation routine that refines the initial
estimate produced by the second block (cf. Section 3.2.3).

Feature Calibration
Estimation Initialisation

Calibration
Optimisation

Light-field

Data

Feature

Data

Initial

Parameters

Optimal

Parameters

Figure 3.2: A block diagram of a generic calibration method.

3.2.1 Feature Estimation

We propose a novel plenoptic feature estimation method that avoids problems as-
sociated with identifying features in the low-resolution subimages by instead using
higher-resolution sub-aperture images [29] that are computed from raw light-field
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Figure 3.3: The centre (wu, wv) and radius R of a plenoptic disc W is shown on a
raw light-field image, cf. also Fig. 3.5. The three lenslets in W are labelled by their
lenslet coordinates (`u

1 , `v
1), (`

u
2 , `v

2), (`
u
3 , `v

3) that are in the centres of the subimages of
these lenslets. The pixels (pu

1 , pv
1), (pu

2 , pv
2), and (pu

3 , pv
3) within the subimages of each

of these lenselets corresponding to the same feature point are depicted. These pixels
have offsets (u1, v1), (u2, v2), and (u3, v3) from the subimage centre, repectively.

data. Other papers [9, 75] extract features from the low-resolution subimages. An
additional advantage of the proposed method is lower memory usage. Our high-
resolution Raytrix data is ill-suited for the method proposed by Bok et al.[9], as the
template size used in that paper grows geometrically with subimage radius, resulting
in that algorithm failing to terminate in our experiments.

We assume that the calibration grid consists of M interior corners, and that a
corner point has body-fixed-frame coordinates Pi indexed by i = 1, . . . , M. The first
step of calibration is estimation of the plenoptic disc feature data (wu

i , wv
i , Ri) as

defined in Section 2.3, corresponding to each of the corner points Pi of the calibration
grid for the given raw light-field image. This step is repeated for each raw light-field
image.

The feature estimation process starts by obtaining a set of N sub-aperture images
Ik indexed by k = 1, . . . , N by selecting from each lenslet subimage the pixel with
constant offset (uk, vk) from the subimage centre and stitching the resulting image
together. Because the lenslets are arranged in an hexagonal lattice, generating a
rectangular sub-aperture image from the constant offset pixels of each subimage
requires interpolation. The dimensions of the subimage are U

r and V
r , where U × V
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is the dimension of the raw light-field image and r is the lenslet subimage radius.

For the interpolation, the colour Ik(qu, qv) assigned to pixel (qu, qv) in the sub-
aperture image Ik is given by finding the three nearest lenslet coordinates (`u

1 , `v
1),

(`u
2 , `v

2), and (`u
3 , `v

3), of lenslets in the subimage to r(qu, qv). Then, r(qu, qv) is ex-
pressed as a convex sum of these coordinates so that r(qu, qv) = α1(`

u
1 , `v

1)+ α2(`u
2 , `v

2)+

α3(`u
3 , `v

3), where α1 + α2 + α3 = 1. Then we assign the colour to pixel q that respects
this convex sum, so that Ik(qu, qv) = α1L(`u

1 + uk, `v
1 + vk) + α2L(`u

2 + uk, `v
2 + vk) +

α3L(`u
3 + uk, `v

3 + vk).

Running a standard checkerboard detector on each of the resulting sub-aperture
images Ik gives a list of detected checkerboard corner features Fk = {(qu

i,k, qv
i,k)}M

i=1

appearing in the image. Note that the set Fk of point features is indexed by the offset
index k, whereas individual point features within Fk are indexed by both the point
index i and the offset index k.

Scaling any detected corner feature (qu
i,k, qv

i,k) ∈ Fk by r gives the lenslet coordi-
nates (`u

i,k, `v
i,k) of the lenslet `i,k for which Pi is visible in the subimage of `i,k with

offset (uk, vk) from the subimage centre (`u
i,k, `v

i,k). As Pi is visible in the subimage of
`i,k, Pi projects to some pi,k defined by equations (2.2) and (2.5). This pixel has pixel
coordinates (pu

i,k, pv
i,k) = (`u

i,k, `v
i,k) + (uk, vk), because qi,k was found in a sub-aperture

image generated with constant offset (uk, vk).

Therefore, from a raw light-field image we can obtain a collection of lenslet-pixel
pairs {((`u

i,k, `v
i,k), (pu

i,k, pv
i,k))}M,N

i=1,k=1 corresponding to the N corners as seen in M sub-
aperture images.

Now, for any two of these obtained lenslet-pixel pairs ((`u
i,k, `v

i,k), (pu
i,k, pv

i,k)) and
((`u

i,k′ , `
v
i,k′), (pu

i,k′ , pv
i,k′)) corresponding to some Pi, we note that(

pu
i,k − pu

i,k′

pv
i,k − pv

i,k′

)
=

(
1 +

r
Ri

)(
`u

i,k − `u
i,k′

`v
i,k − `v

i,k′

)
. (3.1)

Note that when (uk′ , vk′) = (0, 0), we have (`u
i,k′ , `

v
i,k′) = (wu

i , wv
i ), because a point fea-

ture will appear in the centre of the subimage of the plenoptic disc centre. Therefore,
(3.1), with (uk′ , vk′) = (0, 0) provides a linear system of equations that can be used to
estimate the plenoptic disc feature data (wu

i , wv
i , Ri) by solving

(
−1 0 − uk

r `u
k

0 −1 − vk
r `v

k

)
wu

i

wv
i

Ri

1

 = 0, (3.2)

where there are 2 rows in the data matrix for each offset index k for which the corner
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Pi is successfully detected in the sub-aperture image Ik. In practice, we only use sub-
aperture images Ik for which all M checkerboard corners are successfully detected.

In summary, the method for obtaining the plenoptic disc feature data estimates
for a single raw light-field image is as follows:

1. For each pixel offset (uk, vk), generate the sub-aperture image Ik.

2. For each sub-aperture image Ik, run a standard corner detector to obtain a set
of sub-aperture image features qi,k.

3. Compute the corresponding lenslet-pixel pairs ((`u
i,k, `v

i,k), (pu
i,k, pv

i,k)).

4. Using the lenslet-pixel pairs corresponding to a given point feature Pi, find the
least-squares estimate of (wu

i , wv
i , Ri) by solving (3.2).

These steps are applied to every raw light-field image in the dataset.

3.2.2 Calibration Initialisation

Initialisation parameters are found by deriving a linear system of equations that
perfect data from a single light-field image must satisfy, and solving the system for
gathered data in a least-squares sense. Let ξ j ∈ SE(3) denote the pose of the camera
with respect to the fixed frame O when it captures the raw light-field image frame j.
Let OPi be the position of the corner of a checkerboard expressed in the coordinates
of the fixed frame O. At frame j, the corner Pi has coordinates Pi,j in the body-fixed
frame of the camera. Using (2.10) with f u = f v = f , we obtain the relations

wuPz
i,j + f Px

i,j = 0 (3.3)

wvPz
i,j + f Py

i,j = 0 (3.4)

(rK1 + R)Pz
i,j + rK2 = 0. (3.5)

Denoting ξ−1
j = (Ωj, cj) with Ωj the rotational part and cj the translational part

corresponding to the location of the optical centre of the camera for frame j, we have
Px

i,j

Py
i,j

Pz
i,j

 =


Ω11

j Ω12
j Ω13

j

Ω21
j Ω22

j Ω23
j

Ω31
j Ω32

j Ω33
j




OPx
i

OPy
i

OPz
i

+


cx

j

cy
j

cz
j

 . (3.6)
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Substituting the expressions for Pi,j into (3.3) - (3.5), we obtain the system


wu

i,j 1 0 0

wv
i,j 0 1 0

Ri,j 0 0 1

⊗ (OPx
i

OPy
i 1
)



Ω31
j

Ω32
j

cz
j

− f Ω11
j

− f Ω12
j

− f cx
j

− f Ω21
j

− f Ω22
j

− f cy
j

rK1Ω31
j

rK1Ω32
j

rK2 + rK1cz
j



= 0. (3.7)

Here, ⊗ denotes the Kronecker product. For each frame j, this system is solved
for the vector which satisfies the equation in a least sqaures sense. Extracting the
initial intrinsics and extrinsics from the resulting singular vectors follows the same
procedure as in Bok et al.[9].

3.2.3 Calibration Optimisation

The plenoptic disc feature data estimates are used as data in a non-linear optimisation
routine, where the intrinsics and extrinsics of the camera are the parameters being
estimated. Initial parameter estimates are given using the linear solution obtained in
Section 3.2.2. The separate f -parameters f u and f v are initialised with the same f
given in the initialisation step, the initial estimate of the optical centre (cu, cv) is the
centre of the light-field image, and the initial lens distortion parameter k1 is 0.

The error function that is minimised in this routine comes from (2.10), and (3.6),
where the plenoptic disc feature data (wu

i,j, wv
i,j, Ri,j) have been estimated using the

method discussed in Section 3.2.1, and world-frame point locations OPi are known.
Let φ = (K1, K2, f u, f v, cu, cv, k1) be the intrinsics of the camera, Ξ = (ξ j)

T
j=1 be the

list of extrinsics of the camera where T is the total number of frames used, and Υ =

((wu
i,j, wv

i,j, Ri,j, OPi,j))
M,T
i,j=1,1 be the known data. We minimise the plenoptic reprojection

error, given by
ε(φ, Ξ; Υ) = ∑

i,j
(Πφ(Pi,j)− (wu

i,j, wv
i,j, Ri,j))

2 (3.8)

where Pi,j = ξ−1
j

OPi, given by (3.6), and Πφ denotes the plenoptic projection (2.10)
with lens distortion modelled by (2.14), and parameters given by the intrinsics φ.
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Little is currently known of the analytical properties of (3.8). In practice, minimis-
ing this error using standard optimisation techniques such as Levenberg-Marquardt
gives good results. However questions such as whether the estimates tend to a global
minimum – or even whether a unique global minimum exists at all – given the initial
estimate provided by solving (3.7) are good candidates for future investigations.

3.3 Results

In this section we compare the proposed calibration algorithm to existing state-of-
the-art methods [9, 22, 75]. Our code is publicly available2.

3.3.1 Experimental Data

For our obtained datasets, a Raytrix R42 camera was used with a Kowa LM35SC
35mm focus lens [52]. The approximate focus distance was set to 0.25m, 0.5m, and
1m. We call these datasets R-A, R-B, and R-C, respectively.

A standard checkerboard was used as a calibration grid for the various experi-
ments. As at shorter focal distances, the camera needed to be closer to the calibration
target, the grid sizes for datasets R-A, R-B, and R-C were 4mm, 6mm, and 15.5mm, re-
spectively. These datasets contained 24, 22, and 18 images, respectively. For datasets
R-A and R-C the checkerboards contained 15 by 10 feature points. For dataset R-B,
the checkerboard contained 6 by 8 feature points. The obtained resolutions of the
raw light-field images were 7716 pixels (width) by 5364 pixels (height). De-bayering
and colour-correction was conducted upon capture using Raytrix software.

Lenslet types were identified in the raw light-field images using a standard method.
Since the pinhole models for each lenslet type are identical, we consider only cali-
bration for the lenslet types where the calibration grid is in best focus. Exploiting
the multi-focal arrangement would likely improve the feature-extraction process but
was not considered in this work.

We also compared results on the datasets given by Dansereau et al.[22]. In those
datasets, referred to here as L-B, L-D, and L-E, a Lytro camera was used. These
datasets were chosen because each used a different focal distance and contained
light-fields at a wide variety of poses and raw light-field images of varying degrees
of focus.

The cells in Table 3.1 for Nousias et al. [75] comparing against the Lytro datasets
were left blank in Table 3.1 because the small resolution of the Lytro subimages
produces poor results for the feature-detection method of Nousias et al.[75]. As the

2Available at: https://github.com/sgpobrien/PlenCalToolbox
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method proposed in Nousias et al.[75] relies on detecting features in subimages, it is
expected that their method would not fare well with these datasets. It is noted that
the focal lenses of Lytro cameras have far higher lens distortion than the focal lenses
used by Raytrix cameras. Since the method in Nousias et al.[75] does not model lens
distortion, comparing on Lytro data would be an unfair comparison. As dataset R-A
also contained many in-focus lightfields where features are not visible in subimages,
we did not compare against the method of Nousias et al.[75] on this dataset.

As the method proposed by Dansereau et al. [22] relies on a particular formatting
of the raw light-field images, it does not produce estimates for the Raytrix datasets,
and as such the corresponding cells in Table 3.1 are left blank. On our version of
Matlab, running the code of Dansereau et al.[22] on dataset L-D resulted in an excep-
tion being thrown to do with inconsistent orientations of the detected checkerboard,
so these cells are left blank. For the same formatting reason, comparison of Bok et
al. [9] on the Raytrix datasets was not conducted. We did not run the code of Bok
et al.[9] on the dataset L-D because, as the authors note in that paper, their feature
detection method does not work for in-focus light-fields, of which there are many in
dataset L-D.

3.3.2 Performance Measures

The aim of these experiments was to test the accuracy of our calibration under a
variety of conditions. However, the sparsity of Table 3.1 indicates that there is no
standard performance measure to verify calibration methods for plenoptic cameras.
Comparisons were made difficult by the wide variety of types of errors reported be-
tween each of the calibration methods. Our method calculates the widest variety of
errors, rather than only the error being optimised. Note that any method that op-
timises a given error should have a natural advantage when that error is used as a
performance measure. As such, we compare against a variety of errors rather than
our optimised plenoptic reprojection error. Mean 3D reconstruction error (M3DE)
is calculated by taking the average of the distances of point estimates from the ac-
tual points and dividing by the depth of the actual point in the estimated camera
coordinate system. Note that plenoptic cameras allow single-image 3D reconstruc-
tions, making this a sensible measure. Mean reprojection error (MRE) is the average
of the distances between extracted subimage corner feature coordinates and repro-
jected corner feature coordinates on the raw image, an example of which is given in
Fig. 3.5. Mean sub-aperture reprojection error (MSRE) is the average of distances be-
tween extracted feature coordinates in sub-aperture images and reprojected feature
coordinates onto those sub-aperture images.
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As the code provided by each of the other methods [75, 22, 9] does not produce
3D reconstructions we derived several methods based on the projection models used
in these papers and the obtained feature data of these methods. For Nousias et al.[75],
the reconstruction method finds the point that best fits their projection model, given
a set of lenslet-pixel pairs known to correspond with that point. The reconstruction
method used for Dansereau et al. [22] is based on calculating for all the lenslet-pixel
pairs corresponding to a point P, the ray corresponding to that lenslet-pixel pair and
finding the point that minimises the sum of distances to all of these rays. We were
unable to find a reliable reconstruction method for the data obtained by Bok et al. [9].

The MSRE method used for Dansereau et al. [22] in Table 3.1 is based on solving
their projection model given known ideal checker positions and pixel offsets for the
unknown lenslet coordinates, which has a direct solution in their projection model,
then applying their distortion model.

3.3.3 Discussion

In Table 3.1 we show the results of our calibration method compared against other
existing state-of-the-art methods. Our method runs on the widest variety of datasets,
and most consistently produces the smallest errors. The code we compared our
method to were supplied by Nousias et al. [75], Dansereau et al. [22], and Bok et al.
[9].

In Table 3.1 we compare each of the methods on different performance measures
where it was possible to do so with the feature data produced by these methods.
We first compared the methods on the measure of M3DE. As we were not able to
provide reconstructions for the method of Bok et al. [9], this column is left blank.
On this metric our method outperforms all the other methods except on dataset L-E,
where the method of Dansereau et al. [22] performs better. This is likely due to their
method implementing better preconditioning and higher-order lens distortion. One
of our reconstructions together with extrinsics is shown in Fig. 4.4. The high M3DEs
for Nousias et al. [75] are likely due to a flaw in their implementation discussed in
the following paragraph.

In Table 3.1 we then compare our method with the method of Nousias et al. [75]
on the measure of MRE. Although it was not possible to calculate this error using
the feature data provided by the other methods [22, 9], our results for this measure
are still shown. One likely factor affecting the accuracy of Nousias et al. [75] is
preconditioning. It is noted that appropriate centering and scaling of parameters is
often essential in order for Matlab-based optimisation algorithms to converge [67].
The algorithm implemented in Nousias et al.[75] does not implement any centering
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Table 3.1: Table of error results. Best results per row are shown in bold. Measures
that could not be computed are left blank.

Dataset Ours Nousias Dansereau Bok
[75] [22] [9]

Mean 3D Reconstruction Error (%)
R-A 0.5206
R-B 0.4482 28.5775
R-C 1.4274 53.7746
L-B 1.8642 2.0419
L-D 4.2736
L-E 8.7459 5.9599

Mean Reprojection Error (pixels)
R-A 0.9743
R-B 0.2619 2.0104
R-C 0.3832 4.6925
L-B 0.3467
L-D 1.2443
L-E 0.2802

Mean Sub-aperture Reprojection Error (pixels)
R-A 0.5750
R-B 1.0751
R-C 0.6588
L-B 0.3427 0.1775 1.3125
L-D 0.3061
L-E 0.3514 0.7383 0.3552

or scaling, and the results for [75] reported in Table 3.1, can be improved for each
of the datasets using both our feature data and scaling factors. These scaling factors
did not significatly improve their results when using their feature data, however,
suggesting that there may also be inaccuracies in their feature estimation step. A
comparison between the intrinsics obtained using our method versus Nousias et al.
is shown in Table 3.2. The accuracy of our feature estimation step and reprojections
are demonstrated in Fig. 3.5.

In Table 3.1 we compare our results to the other methods on the measure of MSRE.
Although it was not possible to calculate this error using the feature data of Nousias
et al. [75], our results for these datasets are still shown. Our method outperforms
the other proposed methods on this metric with the exception of dataset L-B, where
it is beaten by Dansereau et al. [22], likely due to their higher-order approximation
of lens distortion. Note that although the MSRE is smaller than ours for this cell, its
M3DE is larger, demonstrating the non-transitive relation between these measures.
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Table 3.2: Intrinsic Parameters for Dataset R-B.

Var. Ours Nousias
K1 −13.1706 −10.23
K2 1.14× 104 1.13× 104

f u 3.21× 104 3.18× 104

f v 3.21× 104 3.18× 104

cu (pix) 2675 2681
cv (pix) 4415 3857

k1 −1.7× 10−10 0
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Figure 3.4: Calibration grid reconstruction and poses for dataset R-B. Camera faces
forwards along blue axis.

3.4 Conclusion

In this chapter we develop a feature-extraction process to estimate the plenoptic discs
associated with the corners of a checkerboard for use in plenoptic camera calibration,
based on the geometry derived in Section 2.3. Our method produces both superior
mean reprojection errors onto the raw light-field images and better mean reconstruc-
tion errors.

To the authors’ knowledge, the proposed calibration implementation is the first
that successfully and reliably runs with both Raytrix and Lytro data with only minor
preprocessing required.

Along with better performance, our method provides a novel projection model
that allows an easy translation between plenoptic disc features and physical 3D
points, making it better suited for 3D reconstruction than ray-based approaches.
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Figure 3.5: An example of a plenoptic disc feature and plenoptic reprojection of a
point on a raw light-field image from dataset R-B. In the cyan circles are the lenslet
coordinates (`u, `v) within a plenoptic disc W shown with red boundary and a repro-
jected plenoptic disc shown with yellow boundary. The red dots are the estimated
subimage features corresponding to the plenoptic disc feature, and the yellow dots
are the reprojected features.



Part II

Observers and Scene
Reconstruction

79





Chapter 4

An Observer For Estimating an
Explicit Scene Representation

This chapter proposes an observer for estimating point-cloud representations of scenes
from a sequence of measurements acquired by a light-field camera. The observer is
based on a gradient-descent methodology. A rigourous analysis of stability of the
observer error is provided, and the observer is tested in simulation, demonstrating
convergence behaviour. The work in this chapter was previously published in [77].

4.1 Introduction

In this chapter, we develop an observer for estimating a dense depth maps of an en-
tire scene provided the camera motion and using light-field measurements as inputs.
We follow a general design philosophy for observers by including dynamics of the
depth map as an internal model and using the gradient of a disparity map as an
innovation term. To the authors understanding, there is no prior work on applying
the observer based approach to depth estimation using plenoptic camera data. The
use of a moving camera combined with a dynamic observer is found in simulation to
relax observability conditions, so that the knowledge of the motion of the light-field
camera allows for the estimation of scenes that would not be observable using static
depth estimation techniques due to insufficient texture on the scene. For such scenar-
ios, points on the estimated scene will remain stationary until such a time when the
camera is viewing these points in front of sufficiently textured regions of the scene.
In this way we ensure that every point of the estimated scene converges to a point on
the actual scene as long as we can guarantee that each point on the scene estimate is
viewed at some time in the future.

In Section 4.2, we introduce additional light-field concepts specific to this chap-
ter. In Section 4.3, we formulate the dynamics assigned to point estimates by the
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observer. We then discuss in Section 4.4 details of the numerical implementation of
the observer, and show its behaviour for a simple simulated scenario.

4.2 Notation and Terminology

X

ΞC

L O

P

`

η(`)
λ(`)

ξ

Figure 4.1: Illustration of the various notation used in this Chapter. Shown is a point
P on a scene X defined by the boundary of the spatial environment Ξ. The camera
pose ξ is defined with respect to reference frame O, and the camera reference frame
is C. A lenslet ` on the lenslet plane L is shown, and the ray that passes through the
center of the lenslet ` is (c, η(`)). The distance of the scene X from c in direction η(`)
is λ(`).

In this section we develop the geometric framework used to derive the photo-
metric error term minimised by the observer. Although much of the notation and
terminology used in this chapter was introduced in Chapters 1 and 2, some addi-
tional concepts specific to this chapter need to be introduced.

Previously, in Section 1.3.2, we had defined the set Ξ to be the set of possible
extrinsic parameters of the camera. However because we do not impose restrictions
on the rotational part of the pose of the camera, it is useful in this chapter to define
the spatial environment Ξ as the set of possible positions of the camera, so that it is a
subset of R3 rather than of SE(3). This means that the possible extrinsic parameters
of the camera, given by position-rotation pairs, are elements of Ξ× SO(3). All scenes
X in this chapter are assumed to be given by the boundaries of spatial environments
so that X = ∂Ξ so that the camera is moving within the scene and looking outward.
As in previous work on light-field cameras [20], we model the focus lens of the light-
field camera as a thin-lens with focal length F. The pose ξ of the camera is given with
respect to a fixed reference frame O, and itself defines a body-fixed reference frame
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C of the camera. The translational part of the pose is denoted c and is the position of
the optical centre of the lens. The rotational part of the pose is denoted R (see Fig. 4.1).
We define the camera as facing in the positive z-direction in the coordinate system C,
and call the unit-vector pointing in this direction ν.

In Section 1.3.2, we had also introduced the concept of a sensor plane S , and in
Section 2.4 specified the geometry of this plane for a light-field camera. Remember
that for a light-field camera, the sensor plane consists of a lenset plane, or pupilar
plane, L , and a pixel plane, or retinal plane P , so that S = L ×P . It is useful to define
a map ηξ : L → S2 as the directional component of the ray that passes through both
the optical centre of the camera and the lenslet `. In this chapter, we also treat range
maps slightly differently to what was previously introduced in Section 1.3.1. Instead
of assigning ranges to every ray in the environment, we instead associate a range
λξ(`) to every lenslet. We define λξ(`) as the distance from the optical centre c of the
camera to the nearest point on the scene X in direction η(`). When it is clear from
context the subscript ξ will be dropped from both η and λ (see Fig. 4.1).

Similarly to the range map λ, it is convenient to define a “virtual” range map
λ′ : R+ × L → R which defines the “virtual scene” ι(X). The algebra describing the
perspective projection through each lenslet ` is simplified by expressing the distance
of an image point ι(P) as its distance to the lenslet, see Fig. 4.2. Because of this, we
define the virtual distance δ = λ′(∆, `), corresponding to a real distance ∆ = λ(`)

where ` ∈ L is a lenslet, to be the distance of the point on the virtual scene ι(X)

from the lenslet ` in direction η(`). Note that λ′(∆, `) can be negative, unlike the real
distance ∆. With that, the virtual distance δ corresponding to distance ∆ is given by

δ = λ′(∆, `) =
F · (∆η(`) · ν))
F− (∆η(`) · ν) − ` · η(`). (4.1)

Given a point Q ∈ R3 and a specified plane P, we define for any point P ∈ R3 that
satisfies P · x < 0 for all x ∈ P (meaning that Q is between P and P), the projection
πP

Q(P) as the point of intersection of the line passing through both Q and P with P.
We omit P from the notation whenever the meaning is clear from context.

We define the map φ as φ(`′, δ, `) := π`′(`+ δη(`)) where the plane P is taken to
be the retinal plane P of the lenslet `′ (See also Section 2.2.2). The map φ is derived
via a similar triangles argument and is explicitly given by1

φ(`′, δ, `) =
d

δη(`) · ν (`
′ − `− δη(`)) + `′, (4.2)

1Note that equation (4.2) is equivalent to what was previously derived as (2.5) by substituting
Q = `+ δη(`) and δη(`) · ν = D + Qz.
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where d is the distance between the pupilar plane and the retinal plane, see Fig. 2.1.
Given that each lenslet has the same limited subimage radius r (cf. Section 2.3), not
all lenslets will have a given image point ι(P) visible in their subimages.

The set W(∆, `) is the set of lenslets `′ ∈ L for which ||φ(`′, λ′(∆, `), `)− p`′ || < r,
where ||·|| denotes the Euclidean norm, i.e. the set of lenslets for which the image
point ι(P) = `+ λ′(∆, `)η(`) is visible.

4.2.1 Photometric Errors Associated With Distance Maps

P

X

L

`
p`

`′ ι(P )

ι(P̂ ) P̂

∆̂

∆
δ̂

δ

p1
p2

C

Figure 4.2: A true distance ∆ is shown together with an incorrect distance estimate
∆̂. These distances correspond to virtual distances δ and δ̂, respectively. The ray with
coordinates (`′, p2) has the same colour as the ray with coordinates (`, p`), but the
ray with coordinates (`′, p1) does not.

Now, we have developed the framework necessary to state the photometric error
which will be minimised by the observer. Suppose that the camera is positioned
somewhere in the spatial environment Ξ with pose ξ, that the true distance of the
scene in direction η(`) is ∆ = λ(`), and that we have a distance estimate ∆̂ and the
light-field image L.

The ray which passes through both the lenslet ` and the point ∆ · η(`) is the
same ray of light which passes through ` and ∆̂ · η(`) for any distance estimate ∆̂.
Therefore, if the distance estimate ∆̂ is accurate, we should expect that all other rays
passing through the point ∆̂ · η(`) have the same colour, assuming a Lambertian
constraint on the colouring β, see Fig. 4.2.

Therefore, the sum of absolute differences between the colours of all other rays
passing through ∆̂ · η(`) and the central ray associated with ` – that is the ray pass-
ing through both ` and the optical centre of the camera – should be minimised by
accurate distance estimates.

We define the square of the absolute difference in colour between a central ray of
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ι(P̂2)

L

W2 W1

ι(P̂1)

C

∆̂2

∆̂1

P̂1

P̂2

Figure 4.3: The plenoptic discs W1 = W(∆̂1, `) and W2 = W(∆̂2, `) corresponding to
distance estimates ∆̂1 and ∆̂2 where ∆̂1 < ∆̂2.

a lenslet ` ∈ L and a ray passing through both another lenslet `′ ∈ L and a point
estimate ∆̂ · η(`) as the following pairwise lenslet error function e

e(`′, ∆̂, `) :=
∣∣∣∣L(`, p`)− L(`′, φ(`′, λ′(∆̂, `), `))

∣∣∣∣2 ,

where ||·|| denotes the Euclidean norm.

Because in practice, a plenoptic camera only has lenslets positioned on a subset
L∗ ⊂ L that is non-empty, bounded, convex and open relative to L , we will only
update depths assigned to lenslets ` on this set L∗. However, we will assume that
we have light-field information available to us outside of this set in order to ensure
differentiability properties of the error function. In practice, this means that for any
bounded, convex and relatively open subset of lenslets there is a maximum distance
for which we can ensure the local error function defined below is continuously dif-
ferentiable.

Let Q̂z = ι(∆̂η(`)) · ν, be the z-component of the image of a point estimate P̂ of
distance ∆̂ corresponding to a lenslet `. We propose that given a lenslet `, a distance
estimate ∆̂, and a light-field image L, the following local error function ε should be
minimised by accurate estimates of the distance:

ε(∆̂, `) :=
(

1 +
D
Q̂z

)−2 ∫
W(∆̂,`)

e(`′, ∆̂, `)d`′. (4.3)

The purpose of the factor before the integral is to counteract the effect of the varying
size of the plenoptic disc W(∆̂, `) which will otherwise result in smaller errors for
smaller distance estimates, regardless of the correctness of these estimates, See Fig.
4.3.

It is the gradient of this error function with respect to estimated depth which will
be used to update point estimates.
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4.3 Observer Derivation

In this section, we use the error function ε(∆̂, `) defined in the previous section to
derive an observer based on the gradient of this error map. The trajectories of point
estimates given by this observer are shown in the appendix to have limit points on the
scene X, given some assumptions on the scene X, colouring β, and camera trajectory
ξt.

Because the scene is stationary in reference frame O, it is easiest to express the
dynamics of point estimates in this reference frame, as it makes the internal model
term trivial, since for points P on the scene Ṗ(t) = 0 in frame O. Therefore, the
internal model term in the observer will also be trivial for all point estimates.

Because we are now expressing the various maps used in this derivation in frame
O, we index several of the functions and variables which are dependent on time by t.
These include the camera’s pose ξt expressed in O, the pupilar plane Lt and subset
L∗t as subsets expressed in O, the camera’s optical centre ct, the direction map ηt,
and the light-field Lt.

For a given point P̂ ∈ R3 expressed in the fixed coordinate frame O, let `t =

πξt(P̂), then we define2

vt(P̂) :=

−∇1ε(P̂ · ηt(`t), `t)η(`t), `t ∈ L∗t ,

0, otherwise.
(4.4)

The observer updates a point estimate with starting position P̂0 according to the
time-varying vector field vt, so that

˙̂Pt := vt(P̂t). (4.5)

The piecewise definition of vt reflects the fact that we are only updating depths
for lenslets ` ∈ L∗t . Note that it is assumed that it is possible to compute the gradient
term in (4.4) exactly. This is purely for the sake of theoretical analysis. The effect of
numerical error and sensor noise in the method is the topic of future work. Nonethe-
less, the method is shown to provide accurate point estimates in simulation, despite
numerical error in the gradient computations see Section 4.4. A proof of convergence
of solutions of (4.5) to the true values is given in Section 4.5.

2For a differentiable function f : Rn → Rm, we define ∇1 f (x1, ..., xn) to be the gradient of f with
respect to its first argument alone, evaluated at (x1, ..., xn).
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4.4 Simulation

The observer derived in the previous section was verified in simultation for a simple
scenario. In order to do this, synthetic light-field data was generated. In our simula-
tions, light-field data was represented by a large m×M by n× N resolution image
where m × n is the resolution of the subimage produced by a single lenslet `, and
M× N is the number of lenslets.

The light-field camera is modelled as a rectangular array of lenslets positioned
in front of a rectangular array of pixels. The colour assigned to a pixel p in the
subimage of lenslet ` is generated using ray-tracing. The pixel location is where the
ray passing through p and ` is refracted to and can be calculated using Eq. (2.1). The
colour assigned to the lenslet-pixel pair (`, p) is then given by the colour β(P) of the
point P on the 3D scene where the refracted ray corresponding to (`, p) intersects the
scene.

In the current implementation, the scene estimates are represented using a point-
cloud. Since we are only using a discrete number of lenslets and pixels, an appro-
priate discretisation of the point-estimate update in (4.5) must be calculated. The
choice used in this chapter is as follows. For a given point-estimate P̂t at time t,
the perspective projection πξt(P̂t) of the point-estimate onto the plane of distance D
behind the optical centre ct is first calculated. We then determine whether πξt(P̂t)

lies in L∗t . If not, it is assigned 0 velocity. Otherwise, if the projection is found to
lie within the bounds of L∗t , we find the nearest lenslet ` to πξt(P̂t) and assign to P̂t

the velocity −∇1ε(P̂t · ηt(`), `)ηt(`) in accordance with (4.4). Once all velocities have
been assigned to all points, we update the point estimates with these velocities using
some positive gain K.

4.4.1 Results

In this simulation, the scene is a sphere and colour was assigned to every point on
its surface based as a function of its Euclidean coordinates in O.

The camera followed a path determined by a Lissajous figure and was made to
always face outwards from the sphere. This path ensured that each point on the
scene is viewed from slightly different perspectives multiple times, which assists
with minimising the accumulation of numerical error which may occur from using
the same frame multiple times. A practical application that allows essentially free
design of camera trajectories is 3D scanning of environments for the purpose of map
or model building. In the following simulation, the camera follows such a trajectory
lasting 5000 frames.

The initial scene estimate is given by a surface generated from subdividing the
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Figure 4.4: Actual scene with colouring (left), and final scene estimate at frame 5000
(right).
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Figure 4.5: Transient response of the average distance of each point estimate from
the scene for various gains up to frame 5000.

faces of an icosahedron [121]. The total error graph in Fig. 4.5 shows that with a well
chosen gain the observer converges to the scene with a small steady-state error after
around 2000 frames, which corresponds to 10–20 iterative updates of each point of
the scene. The total error of a scene estimate is given here as the sum of the squares
of the distances of each vertex on the scene estimate to the actual scene.

Since the field of view of the camera is small compared to the total area of the
scene, a large number of frames are required in order to ensure convergence of the
entire scene. A comparison of the scene shown side-by-side with the real scene is
given in Fig. 4.4.

Choice of gain and camera trajectories were seen to be important factors when
running the proposed algorithm on more challenging scenes. Too large a gain can
result in overshoot, causing point estimates to oscillate or diverge, whereas too small
a gain results in very slow convergence. A necessary condition for practical conver-
gence of each point estimate to the scene appears to be that each point on the scene
is repeatedly updated and repeatedly viewed from different perspectives, including
perspectives that increase the visual contrast in a neighbourhood of the point. The
first part of this statement is also corroborated by the conditions needed for the con-
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vergence proof in Appendix 4.5, cf. Assumption 9.

4.5 Theoretical Analysis

In this section, we prove the convergence behaviour of the derived observer. We start
with the assumptions required to do so.

Assumptions

The following list of assumptions are needed in the subsequent proof in order to
ensure asymptotic convergence of a point estimate defined by (4.5) to the actual
scene X. However, this does not mean that the listed assumptions are the weakest
possible to ensure asymptotic convergence.

In order to avoid unnecessary discussions of the subtleties of solution concepts for
differential equations with discontinuous right hand side [24], we assume existence
and uniqueness of absolutely continuous solutions of (4.5) for all initial conditions.
This will be the case for reasonable camera trajectories.

We denote the topological closure of a set S ∈ R3 by cl(S).

Definition 8. The set C+(B, P̂) is the positive half-cone with apex P̂ ∈ R3 spanned by the
bounded convex set B ⊂ R3, where P̂ 6∈ B, see Fig. 4.6. Formally, it is the set of P̂′ ∈ R3

for which there exists a point c′ ∈ B and an α > 0 such that P̂′ − P̂ = α(P̂− c′). The set
C+(B, P̂) is open whenever B is, does not contain the apex P̂, and extends to infinity. We
denote C+

0 (B, P̂) = C+(B, P̂) ∪ {P̂}. The negative half-cone, C−(B, P̂), is defined as the
set of P̂′ ∈ R3 \ cl(B) for which there exists a point c′ ∈ B and an 0 < α < 1 such that
P̂′ − P̂ = −α(P̂− c′). The set C−(B, P̂) is open whenever B is, does not contain the apex P̂,
is bounded and sits atop the base B.

The following constant defines the minimum depth a point has if the image of
that point lies between the focal lens and the pupilar plane:

∆min :=
1

inf`∈L∗(η(`) · ν)
max

(
F,

DF
F− D

)
.

Assumption 6. ξt is continuous in t and there exists an open ball B ⊂ Ξ centred at
0 in reference frame O such that both the optical centre ct and the bounded cone {Q ∈
C+(L∗t , ct) |Q · νt ≤ ∆min} are contained within B for all t ≥ 0.

This assumption ensures that the camera moves in a continuous fashion and never
gets too close to the scene, allowing us to pick initial conditions of at least distance
∆min away from the focal lens of the camera.
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Assumption 7. Let P, x1, x2 ∈ X. If

||x1 − P|| > ||x2 − P||

then
||β(x1)− β(P)|| > ||β(x2)− β(P)||

.

This assumption states that the colouring is monotonic. This is one assumption
which may potentially be weakened in future work.

Assumption 8. The scene X is a convex surface.

This assumption may be weakened in future work to the scene being a star-
shaped surface3 with respect to B from Assumption 6.

It is convenient in the following proof to define the set of times for which a given
point estimate P̂t is seen by the camera.

Definition 9. Given an initial condition P̂0 of the system (4.5), define T(P̂0) to be the set of
times t > 0 for which πξt(P̂t) ∈ L∗t and P̂t · νt > 0.

Note that t ∈ T(P̂0) implies that P̂t ∈ C+(L∗t , ct) and ˙̂Pt = −∇1ε(P̂t · ηt(`t), `t)ηt(`t),
where `t = πξt(P̂t) ∈ L∗t .

Lastly, we wish to ensure that there is always a future interval of time for which
a given point estimate, and a neighbourhood around it, will be seen by the camera.
Let Br(P) ⊂ R3 denote the open ball of radius r > 0 centred at P ∈ R3.

Assumption 9. There exists a ρ > 0 and a ∆t > 0 such that for a given initial condition
P̂0, and all times t > 0 there exists a t+ > t such that πξs(cl(Bρ(P̂s))) ⊂ L∗s and P̂′ · νs > 0
for all P̂′ ∈ cl(Bρ(P̂s)) and for all s ∈ [t+, t+ + ∆t]. In particular, [t+, t+ + ∆t] ⊂ T(P̂0).

Cone Geometry

Proposition 8. Let B be a bounded convex set and P̂ 6∈ cl(B). Then P̂′ ∈ C+(B, P̂) if and
only if P̂ ∈ C−(B, P̂′).

Proof. If P̂′ ∈ C+(B, P̂) then there exists an c′ ∈ B and an α > 0 such that P̂′ − P̂ =

α(P̂− c′) which implies P̂− P̂′ = −α
1+α (P̂′ − c′) and hence P̂ ∈ C−(B, P̂′). Conversely,

if P̂ ∈ C−(B, P̂′) then there exists an c′ ∈ B and an 0 < α < 1 such that P̂ − P̂′ =
−α(P̂′ − c′) which implies P̂′ − P̂ = α

1−α (P̂− c′) and hence P̂′ ∈ C+(B, P̂).
3By a convex or star-shaped surface we mean that the set is the boundary of a convex or star-shaped

set respectively. Remember that a set X is called star-shaped with respect to a point Q if for every point
P ∈ ∂X, the ray segment extending from Q though P only intersects ∂X at P. In contrast, a convex set
X is one that is star-shaped with respect to every point Q in X.
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C+(B, P̂ ′)

C+(B, P̂ )

B
P̂ ′

P̂

ηη

Figure 4.6: A Planar cut through B that contains both P̂ and P̂′.

Proposition 9. Let B be an open ball. If P̂′ ∈ C+(B, P̂) then cl(C+(B, P̂′)) ⊂ C+(B, P̂).
Furthermore, if P̂′ ∈ C+(B, P̂) and P̂′ + η ∈ C+(B, P̂′) then P̂ + η ∈ C+(B, P̂). If P̂′ ∈
C+

0 (B, P̂) then C+(B, P̂′) ⊂ C+(B, P̂).

Sketch of Proof. Picture a planar cut through B that contains both P̂ and P̂′ (see Fig.
4.6) and note that C+(B, P̂) is on the opposite site of P̂ to B. Since P̂′ is inside the
open cone C+(B, P̂), the opening angles of C+(B, P̂′) are strictly smaller than those
of C+(B, P̂) and the first result follows. Translating the cone C+(B, P̂′) to C+(B, P̂′)−
P̂′ + P̂ results in a cone with apex P̂ which has smaller opening angles than C+(B, P̂)
and is therefore a subset of it, giving the second result. The third result follows from
the first observing that C+(B, P̂′) = C+(B, P̂) if P̂′ = P̂.

Proposition 10. Let B be an open ball. If P̂ ∈ C−(B, P̂′) then C−(B, P̂) ⊂ C−(B, P̂′).

Sketch of Proof. Picture a planar cut through B that contains both P̂ and P̂′ (see Fig.
4.6) and note that both C−(B, P̂) and C−(B, P̂′) are bounded by the spherical base
B. Since P̂ is inside the open cone P̂ ∈ C−(B, P̂′), the opening angles of C−(B, P̂)
are strictly larger than those of C−(B, P̂′) and hence the cone C−(B, P̂) touches the
spherical base inside C−(B, P̂′). The result follows.

Proposition 11. Suppose 0 6∈ Br(c). There exists a c ∈ (0, 1) such that C+(Br(c), 0) =

{P̂ ∈ R3 : −P̂ · c > c
∣∣∣∣P̂∣∣∣∣ ||c||}, see Fig 4.7.

Proof. If P̂ ∈ C+(Br(c), 0) then P̂ 6= 0 because by definition C+(Br(c), 0) is open and
does not contain its apex. Hence the statement that P̂ ∈ C+(Br(c), 0) is equivalent
to stating the existence of a line segment passing from P̂ through 0 which intersects

Br(c). This is equivalent to stating that
∣∣∣∣ P̂
||P̂|| · c

∣∣∣∣2 − ||c||2 + r2 > 0, and so |P̂·c|2
||P||2||c||2 >

1− r2

||c||2 . Letting c2 = 1− r2

||c||2 , noting that r < ||c|| and observing that by definition

−P̂ · c > 0, the conclusion follows.
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0
C(B, 0)

ζ
P̂

B
x

x′

Figure 4.7: A cone generated by Br(c) through 0. There is a scalar 1 > c > 0 and
a unit vector ζ through the centre axis of the cone for which the dot product of any
P̂ ∈ C+(B, 0) with ζ is at least c

∣∣∣∣P̂∣∣∣∣.
Proposition 12. Let C be a right-angled cone with base radius b and height h. Let x be the
apex of the cone. Then C ⊂ Bρ(x) where ρ = 2

√
b2 + h2.

Sketch of proof. This follows from taking a planar cut of the cone containing its central
axis, resulting in an isosceles triangle, and representing points in this triangle as a
convex sum of the corners.

Error Function

In the following, we prove that for each lenslet `, the local error function ε(∆̂, `)
defined by (4.3) has a unique minimum at ∆̂ = ∆, where ∆ is the true distance of the
scene in direction η(`) and the first argument of ε is restricted to (∆min, ∞).

Lemma 13. Let ε be the error function defined by (4.3). Let ∆ be the true distance of the
scene X in direction η(`). Then ε(∆, `) = 0 and if ∆min < ∆̂1 < ∆̂2 < ∆ or ∆min < ∆ <

∆̂2 < ∆̂1, we have that ε(∆̂1, `) > ε(∆̂2, `) > 0.

Proof. Denote P = ∆η(`) and Q = ι(P), see Fig. 4.2. Firstly, if ∆̂ = ∆, then transform-
ing the integral in (4.3) through the inverse projection map transforms the plenoptic
disc W(∆̂, `) to a single point P̂ = P on the scene, and so the error is 0 in this case.

Let A denote the focus lens, which is a disc of radius A (where A is the aperture)
normal to ν. If Q̂ is an image point estimate, and a ∈ A , then let πQ̂(a) denote the
perspective projection of the point a through Q̂ onto the pupilar plane L .

Note that πQ̂(a) = a + D
Q̂z

(
a− Q̂

)
, where Q̂z = Q̂ · ν. Therefore,

∣∣∣det DπQ̂(a)
∣∣∣

only depends on Q̂ and is given by
∣∣∣det DπQ̂(a)

∣∣∣ = (1 + D
Q̂z

)2
.

Now, consider ε(∆̂1, `)− ε(∆̂2, `), and note that in either case we have that
∣∣∆̂1 − ∆

∣∣ >



§4.5 Theoretical Analysis 93

∣∣∆̂2 − ∆
∣∣. Then we have that

ε(∆̂1, `)− ε(∆̂2, `)

=
∫

W(∆̂1,`)
e(`′, ∆̂1, `)

(
1 +

D
Q̂z

1

)−2

d`′

−
∫

W(∆̂2,`)
e(`′, ∆̂2, `)

(
1 +

D
Q̂z

2

)−2

d`′

=
∫

A

∣∣∣∣∣∣β(P)− β(π−1
P̂1
(a))

∣∣∣∣∣∣2 da

−
∫

A

∣∣∣∣∣∣β(P)− β(π−1
P̂2
(a))

∣∣∣∣∣∣2 da

> 0.

Here we have used Assumptions 7 and 8 and the fact that if the scene is convex
then the further a point estimate P̂ is from the scene, the further the projection of a
point on the focus lens through P̂ will be from the true point P.

Point Trajectories

The first observation is that if P̂ ∈ X is a point on the scene then vτ(P̂) = 0 for all
t by Lemma 13. This means that P̂t = P̂ for all t is a trajectory of (4.5), and hence
P̂t = P̂ for some t implies P̂t = P̂ for all t because solutions of (4.5) are assumed to be
unique.

The following result additionally states that if the point estimate lies in Ξ for
some time t, it stays in Ξ for all future times, and if it lies in Ξc = R3 \ cl(Ξ) it stays
there.

Proposition 14. If P̂t ∈ X then P̂τ ∈ X for all τ. If P̂t ∈ Ξ then P̂τ ∈ Ξ for all τ ≥ t. If
P̂t ∈ Ξc then P̂τ ∈ Ξc for all τ ≥ t.

Proof. We have already shown the first statement at the beginning of Section 4.5.
Assume P̂t ∈ Ξ and assume for a contradiction that P̂τ 6∈ Ξ for some τ > t. Because
P̂ as defined by (4.5) is continuous, there exists an s ∈ [t, τ] such that P̂s ∈ X = ∂Ξ.
By the first statement it follows that P̂s′ ∈ X for all s′, a contradiction to P̂t ∈ Ξ. The
case P̂t ∈ Ξc follows from a similar argument.

The goal of the remainder of this section is to establish that if a point estimate P̂
with initial condition P̂0 ∈ Ξ has a limit point Q, then that limit point cannot be in
C+(B, P̂0)∩Ξ. A similar statement holds for the case where P̂0 ∈ Ξc with the obvious
modifications to all the intermediate statements and proofs.
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We separate the following into three subsections. In the first subsection, we in-
vestigate general properties which must be true of any solution of (4.5) with P̂0 ∈ Ξ.
In the second subsection, we show that every accumulation point of the trajectory
P̂ is a limit point. In the third subsection, we establish that the assumption that the
limit point of the trajectory P̂ is in C+(B, P̂0) ∩ Ξ results in a contradiction.

Properties of Point Estimates

We begin by investigating the time set T(P̂0) from Definition 9.

Proposition 15. T(P̂0) is open.

Proof. Let t > 0 and express the point estimate P̂t in frame C as CP̂t. Let Cπ0 be
the perspective projection of points in front of the camera through the optical centre
expressed in frame C (in which it has constant coordinates 0) onto the pupilar plane
CL which is constant in the frame C, as is CL∗. Then, CP̂t = ξ−1

t P̂t, which is contin-
uous with respect to t since P̂t and ξt are, the latter by Assumption 6. Since Cπ0 is
continuous, Cπ0(CP̂t) is continuous with respect to t, and if Cπ0(CP̂t) ∈ CL∗, there
is a time interval (at, bt) containing t such that Cπ0(CP̂τ) ∈ CL∗ for all τ ∈ (at, bt).
Now, T(P̂0) =

⋃
t∈T(P̂0)

(at, bt) which is open.

The following proposition shows that for t ∈ T(P̂0) the vector field in (4.5) points
into the interior of a cone with apex P̂t spanned by the ball B from Assumption 6.

Proposition 16. Let t ∈ T(P̂0) and P̂t ∈ Ξ and P̂t ∈ B, where B is from Assumption 6.
Then P̂t +

˙̂Pt ∈ C+(B, P̂t).

Proof. Let `t = πξt(P̂t) then ˙̂Pt = −∇1ε(P̂t · ηt(`t), `t)ηt(`t) and ∇1ε(P̂t · ηt(`t), `t) < 0
by Lemma 13. Therefore, ˙̂Pt is a positive multiple of ηt(`t) in this case and P̂t +

ηt(`t) ∈ C+(B, P̂t) implies P̂t + h ˙̂Pt ∈ C+(B, P̂t) for all h > 0 as C+(B, P̂t) is a cone.

The following proposition gives the existence of some time interval (t, t + ε) for
which the trajectory of a point estimate then remains within the cone C+(B, P̂t) for
all times within the time interval (t, t + ε). This is important for establishing the
existence of a limit point for the trajectory.

Proposition 17. Let t ∈ T(P̂0) and P̂t ∈ Ξ and P̂t 6∈ B, where B is from Assumption 6.
Then there exists an ε > 0 such that P̂t+h ∈ C+(B, P̂t) ∩ Ξ for all 0 < h < ε.

Proof. By Prop. 16, P̂t +
˙̂Pt ∈ C+(B, P̂t). Since C+(B, P̂t) is open, there exists a δ > 0

such that Bδ(P̂t +
˙̂Pt) ⊂ C+(B, P̂t). But then Bδh(P̂t + h ˙̂Pt) ⊂ C+(B, P̂t) for all h > 0

since C+(B, P̂t) is a cone.
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As t is in T(P̂0) and T(P̂0) is open by Prop. 15, we have ˙̂Pt = limh→0
P̂t+h−P̂t

h . Hence
there exists an ε > 0 such that for all 0 < h < ε, we have

∣∣∣∣∣∣P̂t+h − (P̂t + h ˙̂Pt)
∣∣∣∣∣∣ < δh.

It follows that P̂t+h ∈ C+(B, P̂t) and by Prop. 14 also P̂t+h ∈ Ξ for all 0 < h < ε.

The following proposition uses the previous proposition to produce a stronger
result: that for every time t ∈ T(P̂0) and every time τ > t, the point estimate P̂τ is
contained in the cone C+(B, P̂t).

Proposition 18. Let t ∈ T(P̂0) and P̂t ∈ Ξ and P̂t 6∈ B where B is from Assumption 6.
Then P̂τ ∈ C+(B, P̂t) ∩ Ξ for all τ > t.

Proof. Assume, to arrive at a contradiction, that there exists τ > t with P̂τ 6∈ C+(B, P̂t)∩
Ξ. By Proposition 17, P̂t+h ∈ C+(B, P̂t) ∩ Ξ for h > 0 sufficiently small. Since P̂ is
continuous in t, there is a smallest time b ∈ (t, τ) such that P̂b ∈ ∂(C+(B, P̂t) ∩ Ξ)
and P̂s ∈ C+(B, P̂t) ∩ Ξ for all s ∈ (t, b). By Prop. 14, P̂b ∈ Ξ and hence P̂b ∈
∂(C+(B, P̂t) ∩ Ξ) ∩ Ξ = ∂C+(B, P̂t) ∩ Ξ. In particular, P̂b 6∈ C+(B, P̂t).

If b ∈ T(P̂0) then there exists a nonempty open interval (a, b) ⊂ (t, b) such that
(a, b) ⊂ T(P̂0) as T(P̂0) is open by Prop. 15. If b 6∈ T(P̂0) then s 6∈ T(P̂0) and
therefore ˙̂Ps = 0 for all s ∈ [b′, b], where b′ = sup{s ∈ T(P̂0) | s < b}, and there
exists a nonempty open interval (a, b′) ⊂ (t, b′) such that (a, b′) ⊂ T(P̂0). But then
P̂b′ = P̂b ∈ ∂(C+(B, P̂t) ∩ Ξ) and b′ = b as b was minimal. It follows that there exists
a nonempty open interval (a, b) ⊂ (t, b) such that (a, b) ⊂ T(P̂0) also in this case.

In both cases we then have that there exists a nonempty open interval (a, b) ⊂
T(P̂0) such that P̂s ∈ C+(B, P̂t) ∩ Ξ for all s ∈ (a, b). By Prop 16, it follows that
P̂s +

˙̂Ps ∈ C+(B, P̂s) for all s ∈ (a, b), and by Prop. 9, P̂t +
˙̂Ps ∈ C+(B, P̂t) for all

s ∈ (a, b). Recall that P̂b 6∈ C+(B, P̂t).

For the remainder of the argument we change coordinates such that P̂t = 0. This
is so we can apply Proposition 11. In the new coordinates ||c|| > r > 0, where c is
the centre of the ball B of radius r, by our assumption that P̂t 6∈ B. We now have
P̂a ∈ C+(B, 0) and ˙̂Ps ∈ C+(B, 0) for all s ∈ (a, b) but P̂b 6∈ C+(B, 0). Because P̂ is
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absolutely continuous on the interval [a, b] we have:

−P̂b · c = − P̂a · c +
∫ b

a
− ˙̂Ps · c ds

> c ||c||
∣∣∣∣P̂a

∣∣∣∣+ ∫ b

a
c ||c||

∣∣∣∣∣∣ ˙̂Ps

∣∣∣∣∣∣ ds

≥ c ||c||
∣∣∣∣P̂a

∣∣∣∣+ c ||c||
∣∣∣∣∣∣∣∣∫ b

a

˙̂Ps ds
∣∣∣∣∣∣∣∣

= c ||c||
∣∣∣∣P̂a

∣∣∣∣+ c ||c||
∣∣∣∣P̂b − P̂a

∣∣∣∣
≥ c ||c||

∣∣∣∣P̂b
∣∣∣∣

which implies P̂b ∈ C+(B, 0) by Proposition 11 (note the > sign on the second line).
This is a contradiction to P̂b 6∈ C+(B, 0) and it follows that P̂τ ∈ C+(B, P̂t) ∩ Ξ for all
τ > t.

The following two results are the main results of this subsection.

Proposition 19. Let P̂t ∈ Ξ and P̂t 6∈ cl(B) where B is from Assumption 6. Then P̂τ ∈
C+

0 (B, P̂t) ∩ Ξ and C+(B, P̂τ) ⊂ C+(B, P̂t) for all τ ≥ t.

Proof. Clearly P̂τ ∈ C+
0 (B, P̂t) implies C+(B, P̂τ) ⊂ C+(B, P̂t) by Prop. 9, and P̂τ ∈ Ξ

for all τ ≥ t by Prop. 14. Hence we only need to prove P̂τ ∈ C+
0 (B, P̂t) for all τ ≥ t.

The case τ = t is immediate, so let τ > t for the remainder of the proof. Let t ∈ T(P̂0)

then the statement follows from Prop. 18. Let t 6∈ T(P̂0) then s 6∈ T(P̂0) and therefore
˙̂Ps = 0 for all s ∈ [t, t′], where t′ = inf{s ∈ T(P̂0) | s > t}. Note that t′ is finite by

Assumption 9. It follows that P̂s = P̂t for all s ∈ [t, t′] and there exists a nonempty
open interval (t′, b) ⊂ T(P̂0). The case τ ≤ t′ is now immediate, so assume τ > t′ for
the remainder of the proof.

Recall P̂t′ = P̂t 6∈ cl(B). Since P̂ is continuous, there exists b′ ∈ (t′, b) such that
P̂s 6∈ cl(B) for all s ∈ (t′, b′). Now, we have two cases: either τ ∈ (t′, b′) or t 6∈ (t′, b′).

Assume τ ∈ (t′, b′) for now, recall that P̂′t = P̂t and assume for a contradiction
that P̂τ 6∈ C+

0 (B, P̂t′). Then P̂t′ 6∈ C−(B, P̂τ) by Prop. 8. Furthermore, P̂τ ∈ C+(B, P̂s)

for all s ∈ (t′, τ) by Prop. 18, and hence P̂s ∈ C−(B, P̂τ) for all s ∈ (t′, τ) by Prop.
8. Since P̂s is inside the open cone C−(B, P̂τ) and P̂t′ 6∈ C−(B, P̂τ) and P̂t′ 6∈ cl(B), it
follows that there exists δ > 0 such that

∣∣∣∣P̂′ − P̂t′
∣∣∣∣ ≥ δ for all P̂′ ∈ C−(B, P̂s).

Repeating the argument, by Prop 18, P̂s ∈ C+(B, P̂s′) for all s′ ∈ (t′, s), and hence
P̂s′ ∈ C−(B, P̂s) for all s′ ∈ (t′, s) by Prop. 8. This implies

∣∣∣∣P̂s′ − P̂t′
∣∣∣∣ ≥ δ for all

s′ ∈ (t′, s) and hence lims′→t′
∣∣∣∣P̂s′ − P̂t′

∣∣∣∣ ≥ δ, which contradicts continuity of P̂ at t′.
Therefore, if τ ∈ (t′, b′) then P̂τ ∈ C+

0 (B, P̂t′) = C+
0 (B, P̂t).
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For the second case, if τ 6∈ (t′, b′), then we take any τ′ ∈ (t′, b′), and conclude
using the previous argument that P̂τ′ ∈ C+

0 (B, P̂t). Using Prop. 18 we have that
P̂s ∈ C+(B, P̂τ′) for all s > τ′, and this latter set is contained in C+(B, P̂t) by Prop. 9,
and therefore P̂τ ∈ C+

0 (B, P̂t) also in this case.

Proposition 20. Let P̂t ∈ Ξ and P̂t 6∈ B where B is from Assumption 6. Then there exists a
t+ > t such that P̂τ ∈ C+(B, P̂t) ∩ Ξ for all τ > t+.

Proof. By Assumption 9 there exists a t+ > t such that t+ ∈ T(P̂0). By Prop. 19,
P̂t+ ∈ C+

0 (B, P̂t)∩ Ξ and hence P̂t+ ∈ Ξ and P̂t+ 6∈ B. By Prop. 18, P̂τ ∈ C+(B, P̂t+)∩ Ξ
for all τ > t+. By Prop. 19, C+(B, P̂t+) ⊂ C+(B, P̂t) and the result follows.

P̂0
B

P̂t
ξtL∗t C+(B, P̂0)

C+(Lt, ct)

vt(P̂0)

X

Figure 4.8: A initial point estimate P̂0 ∈ Ξ, P̂0 6∈ B has its trajectory P̂ contained in
the pointed cone C+

0 (B, P̂0). The observer produces a vector field vt which always
points away from the optical centre of the camera. The set of points for which the
vector field can be non-zero is the cone C+(L∗t , ct), where ct is the optical centre.

We have now established that if P̂0 ∈ Ξ and P̂0 6∈ B then P̂t ∈ C+
0 (B, P̂0) ∩ Ξ for

all t ≥ 0, see Fig. 4.8. Since the trajectory P̂ is contained in a bounded set, it is
a simple consequence of the Bolanzo-Weierstrass theorem that the trajectory has an
accumulation point in the closure of that set.

Accumulation points are limit points

The following two propositions establish that any accumulation point4 of the trajec-
tory P̂ must be a limit point.

4To avoid confusion with differing conventions, in this work we explicitly define the convention that
for the trajectory P̂ : R → R3, a point Q is an accumulation point if for every δ > 0 and every t+ > 0
there exists a τ > t+ such that

∣∣∣∣P̂τ −Q
∣∣∣∣ < δ. This is in contrast with a limit point Q that must satisfy

for every δ > 0 there exists a t+ > 0 such that for all τ > t+ we have that
∣∣∣∣P̂τ −Q

∣∣∣∣ < δ.
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Proposition 21. Let P̂0 ∈ Ξ and P̂0 6∈ B where B is from Assumption 6. If Q is an
accumulation point of the trajectory P̂ then Q ∈ C+(B, P̂t) for all t ≥ 0.

Proof. Suppose for a contradiction that there were a t ≥ 0 such that Q 6∈ C+(B, P̂t).
By Prop 20 there exists a t+ > t such that P̂τ ∈ C+(B, P̂t) for all τ > t+. By Prop.
9, cl(C+(B, P̂τ)) ⊂ C+(B, P̂t) for all τ > t+ and since the latter set is open, Q 6∈
C+(B, P̂t) has a strictly positive distance from all the former sets. In particular, there
exists a δ > 0 such that for all τ > t+, we have

∣∣∣∣Q− P̂τ

∣∣∣∣ > δ, which contradicts the
assumption that Q is an accumulation point.

θ
b

||P̂t −Q||

Q

P̂t

C−(B, Q)
C+(B, P̂t)

C−(B, Q) ∩ C+(B, P̂t)

Figure 4.9: The cones C−(B, Q) and C+(B, P̂t) and their intersection are illustrated.
In the darker grey shaded region is a right-angled cone containing the intersection
with base radius b and height

∣∣∣∣P̂t −Q
∣∣∣∣.

Proposition 22. Let P̂0 ∈ Ξ and P̂0 6∈ cl(B) where B is from Assumption 6. Any accumu-
lation point Q of the trajectory P̂ is a limit point.

Proof. Fix t ≥ 0. By Prop. 19, P̂t ∈ C+
0 (B, P̂0) ∩ Ξ and hence P̂t ∈ Ξ and P̂t 6∈ cl(B).

Again by Prop. 19, P̂τ ∈ C+
0 (B, P̂t) for all τ > t. By Prop. 21, Q ∈ C+(B, P̂τ) which

by Prop. 8 implies P̂τ ∈ C−(B, Q), for all τ ≥ t. Therefore, P̂t ∈ C−(B, Q) and
Q ∈ C+(B, P̂t), see Fig. 4.9, and P̂τ ∈ C−(B, Q) ∩ C+

0 (B, P̂t) for all τ > t.
Let θ be the opening angle of the cone C−(B, Q). The set C−(B, Q) ∩ C+

0 (B, P̂t)

is contained in a right-angled cone of base radius b =
∣∣∣∣P̂t −Q

∣∣∣∣ tan θ and height∣∣∣∣P̂t −Q
∣∣∣∣ because

∣∣∣ Q
||Q|| · (P̂t −Q)

∣∣∣ ≤ ∣∣∣∣P̂t −Q
∣∣∣∣, see Fig. 4.9 and recall that B is

centred at 0.
By Prop. 12, this right-cone is contained in an open ball around Q of radius

2
√

1 + tan2 θ
∣∣∣∣P̂t −Q

∣∣∣∣. Thus
∣∣∣∣P̂t −Q

∣∣∣∣ < δ implies
∣∣∣∣P̂τ −Q

∣∣∣∣ < 2
√

1 + tan2 θ · δ for
all τ > t.
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This implies that Q is a limit point, because given ρ > 0 there exists a t ≥ 0
such that

∣∣∣∣P̂t −Q
∣∣∣∣ < ρ/(2

√
1 + tan2 θ) since Q is an accumulation point, and hence∣∣∣∣P̂τ −Q

∣∣∣∣ < ρ for all τ > t.

The limit point can not be in C+(B, P̂0) ∩ Ξ

P̂t

X
Q

P̂t++∆t

P̂t+
n

ξt+

ξt++∆t

r
Br(Q)

Figure 4.10: There is an open ball of radius r > 0 around a limit point Q ∈ Ξ for
which point estimates entering the ball eventually leave. In this diagram, the vector
field v is shown for two different times shown in red and blue. There is a vector n
and a c > 0 for which each of the vectors vτ(P̂′) assigned to a point P̂′ in the ball at
a time τ ∈ [t+, t+ + ∆t] satisfies n · vτ(P̂′) ≥ c.

The following proposition implies that if the trajectory P̂ enters a certain nonempty
open ball around the limit point Q it will eventually leave that ball, see Fig. 4.10.

Proposition 23. Let P̂0 ∈ Ξ and P̂0 6∈ B where B is from Assumption 6. Let Q ∈ Ξ be
a limit point of the trajectory P̂, and let ∆t be the length of time from Assumption 9. Then
there exists a direction n, a c > 0, an r > 0, and a sequence (t+i )

∞
i=1 of times with t+i > 0 for

all i ∈ N and limi→∞ t+i = ∞, such that for all i ∈ N and for all times τ ∈ [t+i , t+i + ∆t]
and all points P̂′ ∈ Br(Q), n · vτ(P̂′) ≥ c.

Proof. Let ρ > 0 be the radius from Assumption 9 and choose 0 < r < ρ
2 such

that Br(Q) ⊂ Ξ and Br(Q) ∩ B = ∅. Such an r exists since Ξ is open and Q has
a positive distance from B by Prop. 21. Because B and Br(Q) are both convex and
non-intersecting, there exists a separating hyperplane P between them. Let n be the
unit normal vector to this hyperplane pointing in the direction of Q.

Since Q is a limit point, there exists a time t ≥ 0 such that P̂τ ∈ Br(Q) for all τ > t,
and by Assumption 9, there exists a sequence (t+i )

∞
i=1 with t+i > t ≥ 0 for all i ∈ N
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and limi→∞ t+i = ∞, such that πξτ
(Bρ(P̂τ)) ⊂ L∗τ for all i ∈ N and τ ∈ [t+i , t+i + ∆t].

Because r < ρ
2 , this implies πξτ

(cl(Br(Q))) ⊂ L∗τ for all i ∈N and τ ∈ [t+i , t+i + ∆t].

Now fix P̂′ ∈ cl(Br(Q)), i ∈ N and τ ∈ [t+i , t+i + ∆t] and let `τ = πξτ
(P̂′). Then

`τ ∈ L∗τ and hence vτ(P̂′) = −∇1ε(P̂′ · ητ(`τ), `τ)ητ(`τ). Because ητ(`τ) points from
`τ ∈ B into the direction of P̂′ ∈ cl(Br(Q)) on the other side of the hyperplane P, and
because ∇1ε(P̂′ · ητ(`τ), `τ) < 0 by Lemma 13, it follows that n · vτ(P̂′) > 0.

Changing coordinates to the main lens A as in the proof of Lemma 13 gives

∇1ε(∆̂, `) =
∫

A
D∆̂

∣∣∣∣∣∣β(P)− β(π−1
∆̂η

(a))
∣∣∣∣∣∣2 da, (4.6)

where η = η(`) and π−1
∆̂η

(a) is the perspective projection from A through P̂ = ∆̂η(`)

to X. Note that the integrand is defined as the derivative of the sum of absolute differ-
ences of a composition of perspective projections and the smooth colouring β, and so
the expression on the right hand side of (4.6) is a continuous function F of ∆̂ and η, as
long as η points away from the main lens and towards P. It follows that −F(∆̂, η)η · n
attains its minimum c > 0 on the compact set {(∆̂, η) | ∆̂η ∈ cl(Br(Q)) and P̂0 + η ∈
cl(C+(B, P̂0))}. Here we have used that n points towards Q and Q ∈ C+(B, P̂0) by
Prop. 21.

Since P̂′ ∈ cl(Br(Q)) and P̂0 + ητ(`τ) ∈ cl(C+(B, P̂0)) by Prop. 19, it follows that
n · vτ(P̂′) = −∇1ε(P̂′ · ητ(`τ), `τ)ητ(`τ) · n ≥ c.

It now follows that there can not be a limit point of the trajectory P̂ in C+(B, P̂0)∩
Ξ.

Lemma 24. Let P̂0 ∈ Ξ and P̂0 6∈ B where B is from Assumption 6. Then the trajectory P̂
has no limit point in the set C+(B, P̂0) ∩ Ξ.

Proof. Suppose for a contradiction that the point Q ∈ C+(B, P̂0)∩Ξ were a limit point
of the trajectory P̂.

Let ∆t be the length of time from Assumption 9. By Prop. 23 there exists a
direction n, a c > 0, an r > 0, and a sequence (t+i )

∞
i=1 of times with t+i > 0 for all

i ∈ N and limi→∞ t+i = ∞, such that for all i ∈ N and for all times τ ∈ [t+i , t+i + ∆t]
and all points P̂′ ∈ Br(Q), n · vτ(P̂′) ≥ c.

Pick r′ < min{r, c·∆t
2 } then there exists a time t ≥ 0 such that P̂τ ∈ Br′(Q) for

all τ > t because Q is a limit point. Pick i ∈ N with t+i > t then P̂t+i +∆t 6∈ Br′(Q)

because n · vτ(P̂′) ≥ c for all τ ∈ [t+i , t+i + ∆t] and all P̂′ ∈ Br′(Q) ⊂ Br(Q), a
contradiction.
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Convergence of Point Estimates to the Scene

Theorem 25. Let P̂0 ∈ Ξ and P̂0 6∈ cl(B), where B is from Assumption 6. Then there exists
a point P ∈ X such that limt→∞ P̂t = P.

Proof. By Prop. 19, P̂t is contained within C+
0 (B, P̂0) ∩ Ξ for all t ≥ 0. The Bolanzo-

Weierstrass theorem implies that the trajectory P̂ has an accumulation point Q within
the closure of that set. By Prop. 22, Q is a limit point. By Lemma 24, Q 6∈ C+(B, P̂0)∩
Ξ but by Prop. 21, Q ∈ C+(B, P̂0). Therefore, P̂t has a limit on ∂Ξ = X.

The case P̂0 ∈ Ξc follows along the same lines, replacing positive cones with
negative cones where appropriate. The case P̂0 ∈ X follows trivially from Prop. 14.
Note that it is quite difficult to add further details about the properties of the point P
that the point estimate P̂ converges to. This is because the point P that the estimate
P̂ converges to depends on the trajectory of the camera. Referring back to (4.3), we
find that any point estimate P̂ on the scene will have a correct range estimate ∆̂ that
will result in the photometric error being 0. This is because when the range estimate
∆̂ is correct, we have that the pairwise lenslet error e(`′, ∆̂, `) = 0. Thus, any point on
the scene is potentially a limit point of the point estimate P̂.

Further note that Theorem 25 is a theoretical result based on perfect measure-
ments of the gradient of the the error, as described by (4.4). When these gradients
cannot be computed exactly, the point estimate cannot converge exactly to the scene.
However, it is expected that the point estimate will still move to within some distance
of the scene, where the distance depends on the noise in the error gradient. An exact
analysis of the behaviour of the point estimate in the presence of noise in the error
gradient calculation is a topic of future work.

4.6 Conclusion

In this chapter, an observer was developed that uses known camera trajectories and
light-field measurements to produce estimates of depth maps. The proposed ob-
server exploits the concept of plenoptic cameras as continuous sets of pinhole cam-
eras to derive an innovation term given by the gradient of an integral error term.
The asymptotic convergence of a point estimate to the true scene is proven for scenes
satisfying some basic assumptions. The correctness of the observer algorithm is il-
lustrated using a simulation of a simple scene. Future work includes experimentation
with different, more robust error functions and experimentation with real light-field
video camera data.
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Chapter 5

An Observer for Estimating an
Implicit Scene Representation

This chapter proposes a method of reconstructing the dense structure of scenes from
visual or depth sensors that provably converges in finite time. We represent the
scene as a superlevel set of a function that resides within some potentially infinite-
dimensional function space. The observer state is determined by the parameters of
the function that represents the scene. In experiments, we show that the observer
exhibits convergence behaviour on a variety of different function spaces both in sim-
ulation and with real light-field camera data. This content of this chapter is based on
the paper [76].

5.1 Background

The vast majority of the literature on the subject of estimating scenes and objects
comes from the computer vision community. In that community, the goal is typi-
cally to produce dense reconstructions of objects from their sparse point-cloud rep-
resentations, and the topic is known as 3D reconstruction or surface reconstruction.
Typically, the point clouds that these methods use must be oriented, so that they
specify positions in space and corresponding directions normal to the surface to be
estimated. The points are assumed to lie on the boundary of the set representing the
object and each direction specifies the direction of the gradient of the characteristic
function of the set at the corresponding point. The approach introduced by Kazhdan
et al.[48], known as Poisson surface reconstruction, then solves Poisson’s equation
using this gradient information in order to estimate the characteristic function. Later
work exploits this information in order to simplify estimates of coefficients of Fourier
series, as in Kazhdan et al.[47], or wavelet representations as in Manson et al.[65]. Re-
cently, in Mescheder et al.[70], neural networks have been trained on large datasets
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in order to produce a measurement-dependent characteristic function that takes as
input a point and a measurement and returns a likelihood that the point is occupied
given that measurement. All of the mentioned techniques take hours of computation
time on dedicated hardware.

The robotics community has also developed techniques for solving this problem
over the last few decades. A standard technique, known as occupancy grid mapping
was introduced by Thrun and Bü [105]. This technique studies the assignment of
function values to discrete voxels. Typically these techniques have a Bayesian flavour,
coming from the perspective of machine learning, and the functions being estimated
are conditional probability distributions. While the majority of these methods esti-
mate functions defined on a regular voxel grid, recent progress has been made on
continuous occupancy mapping techniques [89, 94]. Again, the literature on this
topic comes from a probabilistic perspective. Although the experimental results of
these methods are promising, theoretical guarantees of the correctness of 3D recon-
struction or occupancy mapping techniques are not provided in these papers.

To the authors’ knowledge, it has not before been recognised that occupancy grid
mapping techniques are observers, albeit observers with trivial state dynamics. The
ramifcations of this observation include potentially adding internal models to these
techniques in order to produce online dense 4D reconstructions of evolving environ-
ments. 4D reconstruction is yet another developing topic within computer vision
that concerns estimation of the dense geometry of a scene together with its time evo-
lution. Most published methods on 4D scene reconstruction are performed offline
in post-processing [73]. As with the occupancy mapping approaches, there is good
experimental evidence that these methods produce accurate results, but theoretical
proofs of convergence are not supplied.

In this chapter, we derive an observer that estimates characteristic functions of
scenes, in a way that does not depend on the function class of which the characteris-
tic function is assumed to be a member. We prove that the derived observer exhibits
point-wise finite-time convergence from dense measurements of the scene, such as
those that may be obtained from a light-field camera or laser range finder, under cer-
tain assumptions. We further show that interpretation of the function values should
not help with the analysis, and that any update function with the right properties
will result in a converging scene estimate. Finally, we demonstrate that the derived
observer works in simulation and on real light-field camera data.

The remainder of this chapter is structured as follows: in Section 3.1 we develop
a theoretical framework for the observer, starting with implicit representations of
scenes using extended characteristic functions, parametrisations of the space of func-
tions used to represent the scenes, errors of scene estimates, and measurements of



§5.2 Notation and Terminology 105

scenes. In Section 5.3 we develop a general observer for scene reconstruction that
applies regardless of the scene representation chosen, and derive different instances
of the observer for several chosen function classes: voxels, wavelets, and neural net-
works. In Section 5.4 we demonstrate that the observer exhibits convergence be-
haviour both in simulation and with real light-field camera data. In Section 5.5 we
prove that this observer can estimate points on the scene in finite time, even if the
function class chosen to represent scenes itself is infinite dimensional.

5.2 Notation and Terminology

P

(s′, t′) = π(P )

γ(s′, t′) = γ(π(P ))

∂X

(u,v)

LP

(s, t)

(0, 0)

Q

Figure 5.1: Light-field geometry: a point P is imaged by lenslets (s, t) and (s′, t′).
Since the ray that passes through (s′, t′) and P passes through the optical centre of the
focus lens, it has offset (0, 0) and we set π(P) = (s′, t′). The ray that passes through
the lenslet (s, t) is refracted by the focal lens and appears in the subimage produced
by the lenslet (s, t) at pixel (u, v). The depth γ(s′, t′) assigned to lenslet (s′, t′) is the
depth of the point Q on the scene surface ∂X. Observe that CPz < γ(π(P)) as the
point P is in front of the scene.

Much of the notation used in this chapter was covered in Chapters 1 and 2. How-
ever, some additional concepts are introduced in this chapter which require separate
notation and terminology, which will be introduced in this section.

In this chapter, we assume that the scene X is contained in some larger superset
M ⊂ R3. We represent the scene X implicitly as the zero superlevel set of some
function χ : M → R, and the scene surface ∂X by the zero level set of the same
function. By zero superlevel set, we mean the set of all points P ∈ M such that
χ(P) ≥ 0. We call the function χ an extended characteristic function. However, as
a result of this representation method, there are likely to be many functions χ that
represent the same scene because they have the same zero superlevel set and the same
zero level set. Thus, there is an equivalence relation χ1 ∼ χ2 if χ−1

1 (R+) = χ−1
2 (R+)

and χ−1
1 (0) = χ−1

2 (0). Every element in the equivalence class [χ] represents the same
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scene X = χ−1(R+).

We exploit our representation of the scene as a function, and define the distance
between a scene estimate X̂ ⊂ M and the true scene X ⊂ M with extended charac-
teristic functions χ̂ and χ, respectively as:

E([χ̂], [χ]) :=
∫

M
||sgn(χ̂(P))− sgn(χ(P))||2 dP. (5.1)

Note that the value of this error does not depend on which representatives χ̂ or χ of
the equivalence classes [χ̂] and [χ] are used, and so this distance is well-defined as a
distance on equivalence classes of extended characteristic functions.

The observer derived in this chapter uses light-field measurements. For conve-
nience, an illustration of the relavant light-field notation is provided in Figure 5.1.
The coordinates used for lenslet-pixel pairs in this chapter are the (s, t, u, v) coordi-
nates, cf. Section 2.5. It was shown in Section 2.5 that disparity may be estimated
from raw light-field data very efficiently, and the depth estimates used in this Chapter
are extracted from raw light-field images using techniques described in that section.

We also parametrise depth maps with respect to the lenslet coordinates (s, t).
In this notation, the depth-map γ : L → R+ is a map that takes the lenslet with
coordinates (s′, t′) and returns the depth CQz expressed in the body-fixed frame C
of the camera of the first point Q on the scene surface ∂X that lies along the ray
with coordinates (s′, t′, 0, 0), see Figure 5.1. It is also useful to define the centre
perspective projection π that maps a point P in front of the camera to the location of
the lenslet (s′, t′) for which the ray (s′, t′, 0, 0) passes through P, see Figure 5.1. The
coordinates (s′, t′) may or may not correspond to an actual lenslet in L . If they do,
i.e. if π(P) ∈ L , then CQz = γ(π(P)) is the depth of the scene in direction of P.

Although the experimental results presented in this chapter use depth measure-
ments obtained from light-field camera data, the design of this observer is applicable
to other sensors, and it is not necessary that depth is explicitly computed. What
is important is that the obtained measurements can be used to derive a parameter
update with the correct properties. So long as the measurement µ can be used to
define an update with the properties described in Section 5.3, the derived observer
will produce an estimate of the extended characteristic function χ that asymptotically
converges to the equivalence class [χ].

5.3 Observer design

In this section, we derive a class of observers for estimating implicit representations
of scenes from depth measurements. The problem that we propose a solution to in
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this section is: given the time-varying depth measurements γt and the pose trajec-
tory of the sensor ξt, find at time t an estimate of the parameters θ̂t of the implicit
representation χθ̂t

so that χ−1
θ̂t
(R+) converges to the true scene X.

We assume that the true scene X actually resides within our scene class X, so that
there are parameters θ such that χ−1

θ (R+) = X. We assume that the scene is station-
ary in our experiments and analysis. While an assumption of a stationary scene is
a standard one in most SLAM and 3D reconstruction algorithms, our observer ap-
proach allows the introduction of non-trivial dynamics into the model. However, in
this chapter we assume that the parameters that represent the true scene are constant,
that is

θ̇t = 0. (5.2)

At time t, we receive a partial measurement of the scene surface in the form of a
depth-map γt that is computed from the light-field measurement µt. At time t, we
also have a parameter estimate θ̂t that determines a scene estimate X̂t = χ̂−1

θ̂t
(R+).

From the depth measurement γt, we may compute the error of the current parameter
estimates given the current depth estimates by computing what the sign of the cur-
rent extended characteristic function estimate is, and what the depth measurement
says the sign of the function value should be:

ε(θ̂t, γt) :=
∫

π−1
t (L)

(sgn(χ̂θ̂t
(P))− sgn(CPz − γt(πt(P))))2dP. (5.3)

Ideally, the observer dynamics would be written in the standard innovation term
form ˙̂θt = −∇1ε(θ̂t, γt), where the internal model term is zero according to (5.2).
The gradient of the integrand may not be well-defined due to the presence of the
‘sgn’ function, however, we still pursue the idea of updating θ̂t in the direction that
minimises the error ε(θ̂t, γt). One potential alternative approach that may circumvent
the issue of the ‘sgn’ function in the gradient that warrants further investigation is to
use a Clarke derivative instead. However, this idea is left as future work.

To do this, we initialise the extended characteristic estimate so that

χθ̂0
(P) = 0 for all P ∈ M. (5.4)
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and calculate ˙̂θt, so that the following is satisfied:

sgn(χ̇θ̂t
(P)) =

sgn(CPz − γt(πt(P))) πt(P) ∈ L

0 otherwise
(5.5)

Note that this is not a definition for a single observer, but a constraint that defines an
entire class of observers. In this chapter, we consider any system such that ˙̂θt satisfies
(5.5), rather than defining a single system that is uniquely determined by some given
error dynamics. Under certain mild conditions (see Section 5.5), any observer χθ̂t

that satisfies (5.5) will converge in finite-time (see Prop. 27).

The way in which the derivative of the parameters is computed depends on the
choice of representation used. In this chapter, we test this method using voxel,
wavelet, and neural network representations and show that there are practical ways
of implementing this method for each of these choices. Sometimes, in the case where
the relationship between the parameters and function outputs is trivial as in voxels,
or linear as in wavelets, there are techniques for simplifying the calculation of new
parameters from the old parameters. However, even when the relationship between
the parameters and function outputs is nonlinear, as in neural networks, there are
still techniques for easily computing the update of the parameters. Further note
that any actual implementation of such an observer will be finite-dimensional as real
computers only have a finite amount of memory to store the parameters. However,
by proving convergence for the infinite-dimensional case in Section 5.5, we show that
there is no upper bound on the number of parameters or level of detail that may be
desired in practice.

5.3.1 Voxel Representation

In this section, we demonstrate the estimation of an extended characteristic func-
tion using a voxel representation. In this case, the set of functions is given by
{χ : M → R}, and M is a discrete grid of 3D points P = (i, j, k) ∈ Z3 where
imin ≤ i ≤ imax, jmin ≤ j ≤ jmax, kmin ≤ k ≤ kmax. A function χ ∈ F is determined
by the parameters θP := χ(P) where P ∈ M. In this case, the extended characteristic
function is updated directly with

˙̂θP :=

sgn(CPz − γt(πt(P))) πt(P) ∈ L

0 otherwise.
(5.6)
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5.3.2 Curvelet Representation

Curvelets were constructed with the goal of finding sparse representations of func-
tions that have discontinuities along C2-curves, as is common in image processing
and computer vision tasks. Whereas classical wavelets are functions that, under
translation and scaling, form a basis of L2(R), curvelets are functions that under
translation, parabolic scaling, and rotation form a Parseval frame of L2(R2). A Parse-
val frame for L2(R2) is a family of functions {φi}∞

i=1 that satisfy Parseval’s identity,
namely that for all ψ ∈ L2(R2) we have that ∑∞

i=1 |〈ψ, φi〉|2 = ||ψ||2 . In the curvelet
literature, curvelets are often said to form a tight frame, however this is not to be
confused with other notions of a tight frame which only require Parseval’s relation
to hold up to a constant scale (see [17]).

We will not give a complete description of how a curvelet is constructed in this
chapter, a more comprehensive overview of curvelets is provided by Candes et al.[13].
Curvelets are typically constructed by taking a mother curvelet ϕ, and defining the
curvelet family ϕj,k,l , that depends on the parameters j ∈N, l ≤ 2j ∈N, and k ∈ Z2.
The family of functions ϕj,k,l(x) := 23j/2ϕ(DjRj,lx− kδ), where Dj is a parabolic scal-
ing matrix, Rj,l is a rotation matrix, and kδ is a translation depending on a prede-
termined fixed parameter δ form a Parseval frame of L2(R2). This notion may be
extended to construct a Parseval frame of L2(R3), for more details see [123].

To use a curvelet representation, consider an extended characteristic function χ ∈
L2(M), where M is some rectangular prism in R3. Since χ ∈ L2(M), it has a curvelet
expansion

χ(P) = ∑
j,k,l

θj,k,l ϕj,k,l(P). (5.7)

The parameters of the extended characteristic function χ in this representation are
the coefficients

θj,k,l =
∫

M
χ(P)ϕj,k,l(P)dP. (5.8)

In order to update these coefficients given a depth measurement γt, we approxi-
mate the coefficients ∆θ̂t of χ̇θ̂t

by computing the ‘update’ function

vt(P) :=

sgn(CPz − γt(πt(P))) πt(P) ∈ L

0 otherwise.
(5.9)

By taking the curvelet transform of (5.9), we obtain a sequence of curvelet coefficients
∆θ̂t that may be added to the coefficients θ̂t in order to update them. We exploit
the sparsity of the coefficients for real scenes, by keeping only the N most significant
coefficients in the state after applying the update, and setting the rest to 0, which
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filters the effects of high-frequency noise that may be present in the measurements
(see Section 5.4.1).

5.3.3 Neural Network Representation

A feed-forward neural network is a function χ : Rm → Rn that is a finite iterated
composition of functions of the form

P 7→ σl(Al P + bl),

where {σl}L
l=1 are nonlinear functions known as activation functions, Al is a matrix

and bl is a vector. Let
fl(P) := σl(Al P + bl),

then the neural network function is given by

χ(P) := ( fL ◦ · · · ◦ f1)(P).

The number of functions in the composition is L and is known as the depth of the
network. Given that the activation functions σl are chosen beforehand, the parame-
ters of the neural network function are given by the sequence of matrices and vectors:
θ := (Al , bl)

L
l=1.

The parameters of this representation are updated by taking a random sample S
of points in π−1

t (L), pairing each P ∈ S with an ideal value y(P), and performing
back-propogation on the training pairs {(P, y(P))}P∈S for a small number of training
steps using the error

ε̃(θ̂t, γt) := ∑
P∈S

∣∣∣∣∣∣χθ̂t
(P)− y(P)

∣∣∣∣∣∣2 ,

where χθ̂t
denotes the function that is computed by a neural network with parameters

θ̂t.
In effect, this process will approximate −∇1ε̃(θ̂t, γt) and update the parameters

in the direction of this gradient. The ideal value y(P) assigned to point P will depend
on the choice of activation functions used. For example, if the activation function on
the final layer is σL(h) = 2σ̃(h)− 1, where σ̃ is a sigmoid function, then the range of
the neural network function is (−1, 1), in which case letting

yt(P) =

sgn(CPz − γt(πt(P))) πt(P) ∈ L

χ̂θt(P) otherwise
(5.10)

will result in an update that approximates (5.5). The parameters θ̂t of the neural
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network χθ̂t
are updated by training the neural network on the new target function

defined by (5.10) for a small number of steps.

5.4 Experiments

In this section, we provide both simulated and experimental evidence for the cor-
rectness of our approach. The simulated scene is a 3D model of a bas-relief obtained
from Maier et al.[63]. This dataset is chosen in our simulation because it best reflects
the theoretical assumptions on the scene given in Section 5.5. This data is provided
in a point cloud format, from which a triangle mesh is computed. The domain M is
chosen so that the triangle mesh divides the domain into two halves, and from this
the true characteristic function can be computed.

We also test the observer on a real scene using data produced by a Lytro Il-
lum camera. However, since ground truth is not available, error trajectories are not
practical to compute for this data. The final 3D reconstructions of the observer are
provided instead for visual inspection. A sample central sub-aperture image of the
scene is shown in Fig 5.4 for comparison. The scene consists of an object to be re-
constructed and a checkerboard. The checkerboard is used to calibrate the camera,
providing both estimates of the camera intrinsic parameters φ and of the pose of the
camera ξ for each frame. A total of 101 frames are used in this experiment.

For each simulated frame, an error comparing the estimated characteristic func-
tion with the true characteristic function based on the known scene geometry is
reported. This error is defined on the output of the function, not on the parameters
of the function. Given a regularly sampled voxel grid G on the input space M, we
compute at each time step the approximate error

Ẽ([χ̂t], [χ]) :=
1
2 ∑

P∈G
||sgn(χ̂t(P))− sgn(χ(P))||2 .

Graphs of these errors for each of the representation methods are shown in Fig 5.2.
Final reconstructions of the simulated scene are shown in Fig 5.3.

We represent the extended characteristic functions in several different ways in
order to demonstrate that our approach is not limited to a specific function class or
representation. For the voxel representation, the resolution used is 128× 128× 128.
For the curvelet representation, we utilize the Curvelab toolbox [14] to implement
a discrete curvelet transform. At each timestep, we progressively increase the num-
ber of parameters used. The maximum number of parameters used in the curvelet
representation is 10000, that is 209 times lower than what is required for the voxel
representation. At each timestep, after the update is applied, the most significant
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(a) Error for voxel representation

(b) Error for curvelet representation

(c) Error for neural representation

Figure 5.2: Error graphs for each representation of the simulated scene.

coefficients are extracted from the current scene estimate using a method described
in Starck et al.[98]. In our experiments, we do not use curvelets of scaling depth
greater than 8. The neural network used in the simulations is a fully-connected neu-
ral network with 4 hidden layers, each layer consisting of 100, 50, 20 and 10 neurons,
respectively. For the neural network representation, the number of training update
steps at each time step is 20, and the activation function used at each layer is a sig-
moid function. This update is fast enough to be performed online (on average 0.7
seconds per frame) for a small neural network of 6693 parameters. The parame-
ters for this representation are not initialised to zero, as in the other methods, but
assigned randomly.

In the simulations, the camera trajectory consists of 75 frames and is chosen so
that every point on the scene is within the field of view of the camera at least once.
By frame 20, each portion of the scene has been seen. The trajectory consists of a
fast scan of the entire scene with minimal overlapping between frames followed by a
slower scan of the scene for the remaining frames.



§5.4 Experiments 113

(a) Ground truth geometry (b) Voxel reconstruction

(c) Curvelet reconstruction (d) Neural reconstruction

Figure 5.3: Comparison of final reconstructions of a simulated scene shown with
ground truth.

The trajectory for the real data is taken by hand, and is constrained more by
keeping the checkerboard in view and in focus in order to achieve good calibration
results for the data. These calibration results are used to extract pose estimates for
the camera. The focal plane for the light-field camera is set to roughly 30 cm.

5.4.1 Discussion of results

In Fig. 5.2 we show the error trajectories for the simulated data. It can be seen that
the neural network method exhibits a steeper initial descent than the other methods,
but the voxel and curvelet trajectories converge much faster than the neural network
representation and have a lower final noise floor, as well as less variability at this
noise floor. It can be seen that for the voxel and curvelet methods, the estimate ap-
proaches the noise floor by the time the fast pass over ends at frame number 12. For
the neural network method, there is a brief period where the error does not decrease.
This is likely due to some time being required before the parameters of the neu-
ral network represent a significantly different state to the inital state. Additionally,
the neural network method exhibits oversmoothing and much of the finer details of
the bas-relief are lost. The difference between the voxel and curvelet representation
graphs is striking, and demonstrates that the parameter thresholding in the curvelet
representation results in significant noise reduction.

Fig. 5.3 presents the final reconstructions of the simulated scene for each of
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(a) Example subaperture image (b) Voxel reconstruction

(c) Curvelet reconstruction (d) Neural reconstruction

Figure 5.4: Final reconstructions using real light-field camera data from a Lytro Illum
camera.

the methods together with the ground truth data. The final results for the voxel
and curvelet methods are similar despite the latter using 200 times fewer parame-
ters. The neural network method exhibits oversmoothing, but still produces a good
approximation of the scene. It is likely that different activation functions and more
sophisticated network architectures would produce superior results in this approach.

Fig. 5.4 presents the final reconstructions of the real data together with a sub-
aperture image of the scene. Although ground truth for this scene was not available,
the shape and texture of the reconstructed scene is plausible. The curvelet method
seems to reduce noise when compared to the voxel method, but can result in artifacts
towards the edges of the bounding box. This is a known phenomenon in the curvelet
literature [13]. As with the simulated data, the neural network method seems to
exhibit excessive smoothing.
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5.5 Theoretical Analysis

In this section, we prove that the observer converges point-wise in finite time, despite
the fact that the state is infinite-dimensional, if we can update the output values of
the characteristic function directly. Further analysis of the behaviour of the observer
when only the parameters may be updated is the subject of future work. We also
show that the observer can be implemented using light-field measurement data.

Notation

In this section, we use the following notation for line segments. For two distinct
points P1, P2 ∈ R3, let [P1, P2] denote the line segment starting at P1 and ending at P2,
that is

[P1, P2] := {P′ ∈ R3 : P′ = P1 + α(P2 − P1) : α ∈ [0, 1]}.

We denote the set of positions assumed by the lenslets of the camera by K, so that if
Lt ⊂ R3 denotes the embedded lenslet plane at time t, then K =

⋃
t∈R+ Lt.

Assumptions on the scene

There are several assumptions that are necessary in order to prove convergence of
the scene estimate to the true scene. The first assumption we need is that we are
estimating the portion X of some larger star-shaped scene X′ that is contained within
a rectangular prism M. The assumption that X′ is star-shaped may be weakened
slightly but results in a more complicated proof.

Assumption 10. The portion X of the scene that is to be estimated is given by X = X′ ∩M,
where X′ is star-shaped and M is a rectangular prism.

The next assumption is necessary in order for several of the maps used in the
proof to be differentiable, as well as to guarantee boundedness of the depth map.

Assumption 11. The total scene surface ∂X′ is a manifold that is diffeomorphic to the sphere
S2.

Since ∂X′ is diffeomorphic to the sphere, the Jordan-Brouwer separation theorem
says that R3 \ ∂X′ is equal to the disjoint union of two separated sets called the
interior I which is bounded, and the exterior E.

Assumptions on the camera trajectory

The following assumption is a persistency of excitation condition, and is a constraint
on the camera trajectory.
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Assumption 12. For all P ∈ M there exists a t > 0 and a positive number δ > 0 such that
πs(P) ∈ L for all s ∈ (t, t + δ).

That is: for each point that point is updated at least once, continuously for some
interval of time. We also assume that every point in M is always in front of the
camera.

Assumption 13. The depth of every point P ∈ M satisfies CPz > 0 for all times t ≥ 0.

Finally, we assume that every point of the total scene surface ∂X′ is visible from
the position of the camera at every time.

Assumption 14. K is contained in the kernel of the interior I of ∂X′.

Proof of convergence

The proof of convergence uses the following approach. Firstly, we show that any
point P ∈ M can be unambiguously said to be in front of, behind, or on the scene
in a way that does not depend on a particular choice of perspective ` ∈ K (Proposi-
tion 26). Then we note that for points in front of the scene the characteristic value
can only decrease, for points behind the scene the value can only increase, and for
points on the scene the value is always zero. This leads to our point-wise finite-time
convergence result (Proposition 27).

Proposition 26. Use Assumptions 10, 11, and 14, and let

1. M− be the set of points P ∈ M such that for all ` ∈ K the line segment [`, P] does not
intersect ∂X′ (the visible set), and

2. M+ be the set of points P ∈ M such that for all ` ∈ K the line segment [`, P] does
intersect ∂X′ (the occluded set).

Then M \ ∂X = M− ∪M+.

Proof. By Assumptions 10, 11 and 14, the total scene ∂X′ is star-shaped and K is
within the kernel of the interior I. Let M− and M+ be the sets defined in the state-
ment of the proposition.

Let P ∈ (M \ ∂X) ∩ E and let ` ∈ K. Since ` ∈ I and P ∈ E, and I and E
are separated, then because [`, P] is connected, it contains a point that is in neither
set. Since ∂X′ = (I ∪ E)c, we have that there is some x ∈ [`, P] such that x ∈ ∂X′.
Therefore, [`, P] ∩ ∂X′ 6= ∅ for all ` ∈ K and all P ∈ (M \ ∂X) ∩ E. Therefore
(M \ ∂X) ∩ E ⊂ M+.
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Let P ∈ (M \ ∂X) ∩ I and let ` ∈ K. Assume, to arrive at a contradiction, that
[`, P] ∩ ∂X′ 6= ∅. Since `, P ∈ I, the line segment [`, P] must cross through the
boundary ∂X′ at least twice, but this is not possible because I is a star-shaped set
and ` is in the kernel of I. It follows that [`, P] ∩ ∂X′ = ∅ for all ` ∈ K and all
P ∈ (M \ ∂X) ∩ I. Therefore (M \ ∂X) ∩ I ⊂ M−.

Note that the sets (M \ ∂X)∩ I and (M \ ∂X)∩ E partition M \ ∂X because I ∪ E =

R3 \ ∂X′ and ∂X = M ∩ ∂X′. Also note that P ∈ M+ implies P 6∈ M− and vice
versa simply by the definitions of these sets. Therefore, (M \ ∂X) ∩ E = M+ and
(M \ ∂X) ∩ I = M−. This shows that M \ ∂X = M− ∪M+.

Proposition 27. Let χ̇θ̂t
(P) be an integrable function satisfying Eqns. (5.4) and (5.5). Use

Assumptions 10, 11, and 14, and let M− and M+ be the sets defined in Proposition 26. Then,
under Assumptions 12 and 13 all of the following hold:

1. For all P ∈ M− there exists a time T ≥ 0 such that χθ̂τ
(P) < 0 for all τ > T,

2. For all P ∈ M+ there exists a time T ≥ 0 such that χθ̂τ
(P) > 0 for all τ > T,

3. For all P ∈ ∂X, we have that χθ̂t
(P) = 0 for all t ≥ 0.

Proof. The third statement follows immediately from χ̇θ̂t
(P) = 0 for all t ≥ 0 and all

P ∈ ∂X, and the fact that χθ̂0
(P) = 0.

To show the first statement, let P ∈ M−. Then there exists a time t > 0 and a
δ > 0 such that πs(P) ∈ L for all s ∈ (t, t + δ) (Assumption 12).

For a given s ∈ (t, t + δ) let ` ∈ Ls ⊂ K denote the embedded location of πs(P) ∈
L and let Q ∈ ∂X′ be the point that lies on the half-line starting at ` and passing
through P (Assumptions 10 and 14). Since P ∈ M− the line segment [`, P] does not
intersect ∂X′ hence the distance of P from ` is less than the distance of Q from `.
Now, due to Assumption 13, we have that the depth CPz of point P is also less than
the depth CQz = γs(πs(P)) of point Q.

Therefore, the value of CPz− γs(πs(P)) is negative on the interval (t, t + δ). Now,
since πs(P) ∈ L for s ∈ (t, t + δ), the derivative χ̇θ̂s

(P) of χθ̂s
(P) is negative on this

interval. Therefore, we have that χθ̂t+δ
(P) = χθ̂t

(P) +
∫ t+δ

t χ̇θ̂s
(P)ds < χθ̂t

(P) because
the integral is negative.

But since the derivative of χθ̂t
at P is always either negative or zero, and χθ̂0

(P) =
0, we have that χθ̂t

(P) ≤ 0 to begin with. Therefore, χθ̂t+δ
(P) < 0. Let T := t + δ and

note that for all future times τ > T, we have that χ̇θ̂τ
(P) ≤ 0 and hence χθ̂τ

< 0.
The statement for P ∈ M+ follows along the same lines.

A careful inspection of the previous proof shows that if Assumption 12 is strength-
ened to require the existence of a finite time Tmax > 0 such that for all P ∈ M the
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corresponding t + δ < Tmax then the entire scene estimate converges in finite time
Tmax. More generally, any portion of the scene is reconstructed as soon as it has been
seen continuously for some time.

5.6 Conclusion

In this chapter, we represent a scene as the superlevel set of an extended characteristic
function. We then use dense measurements of the scene that are known to correlate
with depth, such as those obtained from a light-field camera or laser range finder, in
order to update the parameters of the extended characteristic function. We prove that
using ideal light-field data, we may in principle perfectly reconstruct a scene under
certain mild assumptions using this observer. Regardless of the dimensionality of the
representation, the observer estimate converges to the true scene in finite time under
the same assumptions.



Chapter 6

Conclusion

This thesis has adopted the perspective of systems theory to develop observers
for scene reconstruction using the novel imaging technology of light-field cameras.
Several contributions to the understanding of light-field cameras were developed
throughout the course of this study. This included the development of a novel point-
projection model for light-field cameras that was subsequently used to obtain state-
of-the-art results for a camera calibration technique that exploited this model through
use of robust feature-extraction of plenoptic discs. The relationship between this
point-projection model and a ray-projection model was found, providing an explicit
translation between the two models. The relationship between plenoptic disc radii
and disparity were uncovered, and further investigations led to the derivation of a
partial differential equation that all disparity fields obey. An examination into the
limitations of depth and disparity estimation were conducted and concluded neces-
sary and sufficient conditions that a coloured scene must satisfy in order for depth
estimation from light-field gradients to be possible.

These investigations into pure light-field geometry were applied to develop new
observers for scene reconstruction. The first of these techniques involved the deriva-
tion of a photometric error function based upon the idea of plenoptic discs intro-
duced in earlier chapters. The gradient of this error function, together with the pose
of the camera, determined the velocities of point estimates and the trajectories of
these point estimates were proven to have the true scene as a limit set. In this way,
the state estimate – which took the form of an explicit point-cloud representation –
was shown to converge to a subset of the true scene without knowing which sub-
set that was. A different approach was taken in the subsequent chapter in which
an implicit scene representation was used. An implicit representation was shown to
simplify theoretical analysis of the state estimate significantly by avoiding complex
topological considerations and by using the fact that such a state converges if the
extended characteristic values for points not on the scene diverge from 0. This is a far
weaker statement to prove logically, and allows us to conclude finite convergence of
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the scene estimate through the additional fact that if the scene is compact, then the
entirety of it can be viewed in finite-time because it has a finite subcover.

6.1 Future Work

This thesis has spawned several dozen additional ideas that were not fully realised.
In this section, some of these ideas will be discussed.

6.1.1 Observers for Sparse SLAM Using Light-Field Video

One avenue for future work is to extend the results of Chapter 4 to include an es-
timate of the camera pose through the application of recent work in equivariant
observer design [62]. As a preliminary survey, an gradient-based observer for esti-
mating visual odometry is provided here.

While light-field cameras are able to reconstruct depth maps from a single image,
the reliability of these depth maps may be low in regions of little texture. Nonethe-
less, this suggests two methods of visual odometry: 1) we track the 3D positions of
only the points that have high texture and use these estimated positions to recover
the camera pose, 2) we estimate the entire depth map, generate a point cloud from
that and use the iterative closest point algorithm to perform point-set registration in
order to localise the camera. In this section we describe an approach to light-field
SLAM adopting the former method.

Section 2.3.1 gives a precise equation relating plenoptic disc features with 3D
points in the body-fixed frame of the camera. One application of this is pose estima-
tion. For some specified points OPi where i = 1, ..., 4, let

P :=
(

OP1
OP2 OP3 OP4

)
and for the plenoptic discs θi corresponding to these points when the camera is is
some unknown pose ξ, let

Θ :=
(

λ1θ1 λ2θ2 λ3θ3 λ4θ4

)
where the constants λi are equal to (ξOPi)

z, and therefore

λi = −
rK2

rK1 + Ri
. (6.1)
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Since equation (2.11) holds for any P, we have that

Θ = HξP (6.2)

Therefore, given known essential matrix H, known points OPi and plenoptic discs θi

corresponding to these points, we have that:

H−1ΘP−1 = ξ. (6.3)

The matrix consisting of the four points OPi in homogenous coordinates as column
vectors is invertible if and only if

det P 6= 0

which means that each of the OPi do not all lie on the same plane.

A first formulation of a pose observer using these equations can be derived by us-
ing the known dynamics of the camera. We can use (6.3) to construct a best estimate
of ξt by finding the least-squares solution to (at time t using the feature estimates
Θt):

ξ∗t = argmin
ξ

∣∣∣∣∣∣ξ−1P− H−1Θt

∣∣∣∣∣∣2 . (6.4)

We could also turn this into an innovation term used in an observer framework.
Defining

ε(ξ̂t, Θt; P, H) =
∣∣∣∣∣∣ξ−1P− H−1Θt

∣∣∣∣∣∣2
and assuming that we have right-invariant system dynamics

ξ̇t = Utξt,

we get the observer dynamics:

˙̂ξt = Ut ξ̂t −∇1ε(ξ̂t, Θt; P, H). (6.5)

Some preliminary results for visual odometry produced by simulating the static
estimation approach (6.4) and the observer approach (6.5) are shown in Figs. 6.1 -
6.2, respectively.

This implementation currently requires known world features, although pose rel-
ative to an initial estimate of the features from the first frame of camera data may



122 Conclusion

Figure 6.1: Error of pose estimates using static estimator given by (6.4).

Figure 6.2: Error of pose estimates using observer given by (6.5).

be performed, better results in practice will result from updating the estimate of
these world feature locations simultaneously. The path to extending these results
to sparse visual SLAM requires several additional developments. Firstly use of a
robust feature-matching technique for plenoptic cameras. Feature extraction from
light-field data is a topic that has produced promising recent results [21] that may
prove useful to plenoptic SLAM. Recent developments of equivariant observers have
introduced the SLAM manifold [62], which formulates the state-space of the SLAM
problem geometrically. The combined use of light-field feature extraction and equiv-
ariant observers is a clear path towards future publication.

6.1.2 Equivariant Observers for Implicit Dense SLAM

Chapter 5 proposed an observer for estimating dense scenes represented implicitly.
There are many exciting questions that arise from the use of observers for estimating
implicit representations of scenes. Suppose that we have some function class F
inducing a scene class X through an implicit representation χ, so that X consists of
the set of scenes X where there is a θ ∈ Θ such that X = χ−1

θ (R+
0 ). As observed

in Section 5.2, there is an equivalence relation ∼ on F . What was not noted in that
chapter, however, is that this induces an equivalence relation on the parameter space
Θ as well. If χ : Θ → F is a representation of the function space F then there is an
induced equivalence relation ∼ on Θ defined by θ1 ∼ θ2 if χθ1 ∼ χθ2 . One problem,
then, is to investigate the structure Θ/ ∼ in order to provide unique coordinates to
each scene in the scene class X, and determine whether there is some natural way
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of updating these coordinates directly given a measurement of the scene. Because
this clearly depends on how the function space is represented, this also leads to the
question of what kind of representation is best suited for scene reconstruction.

A second extension of Chapter 5 is a method for estimating the combined state
of the scene together with the pose of the sensor imaging that scene. If we repre-
sent a scene implicitly by the function χθ ∈ F for some function space F and some
representation χ and the pose as an element ξ ∈ SE(3), then the total space of the
dense slam problem is the set T = Θ× SE(3). It is attractive, then, to consider the
equivalence relation ' defined as (θ1, ξ1) ' (θ2, ξ2) if there is a H ∈ SE(3) such that
χ−1

θ1
(R+) = Hχ−1

θ2
(R+), χ−1

θ1
(0) = Hχ−1

θ2
(0), and ξ1 = Hξ2, meaning: the scene-pose

pair represented by (θ1, ξ1) is simply a rigid body transformation of the scene-pose
pair represented by (θ2, ξ2). Following the approach of Mahony and Tamel [62], one
aveneue of future work is to determine whether the structure T / ' has a nice geom-
etry, how this structure depends on the choice of representation, whether there is a
symmetry group acting on this structure, and whether the dense SLAM problem can
be posed on this group instead. Clearly such a structure will depend on the choice of
representation used, and it is conceivable that some representations are better suited
to such an approach than others, and since the function space is typically infinite-
dimensional, techniques from infinite-dimensional analysis and geometry are likely
to prove useful. Such a project would be a longer-term endeavour, but many smaller
preliminary results could also result from such a study.

6.1.3 Necessary and Sufficient Conditions on Scenes for Optic Flow and
Structure-from-Motion

Sections 2.5.3 and 2.5.4 provide a proof of the necessary and sufficient conditions
required for depth estimation from first-order light-field properties. This theoretical
result may be extended in several ways. Firstly, the proof provided relies on several
assumptions which are likely either not necessary or consequences of the other as-
sumptions. The first of these is the assumption that the scene class contains all of
the fronto-parallel planar scenes. This assumption is likely not necessary because the
embedded tangent planes of the scenes in the scene class already allow us to perform
a similar analysis. It is noted that some of the current assumptions and definitions
may constrain the topology of the scene significantly. Extending this work to addi-
tional dimensions of the scene and colour space may resolve some of these issues. It
is also acknowledged that this result may be extended to optic-flow based structure-
from-motion. Light-field geometry extends to the data produced by monocular video
and the level-sets in a monocular video also correspond to points in a Lambertian
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scene. This property is exploited in optic-flow algorithms to associate points between
frames. It is likely the case that a scene being textured and Lambertian is not only
sufficient to obtain structure-from-motion using optic flow, but also necessary.
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