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Abstract

This honours project develops a framework to integrate dynamic motion information

in a Simultaneous Localisation and Mapping (SLAM) algorithm. The purpose of the

framework is to track moving objects in a robot’s environment and integrate their

motion information in a SLAM algorithm. Our expectation is that integrating the

motion information of objects in a robot’s environment increases the SLAM solution

accuracy.

The framework has a front end that can generate simulated data with motion

information according to several types of motion models, and a back end that pro-

cesses the data through our SLAM solver algorithm to produce the final estimate.

I contributed to the development of the front-end, and used the framework to test

the validity, accuracy, and improvement in the SLAM estimation of these motion

models.

The results show that integrating the motion estimation of objects in a robot’s

environment improves the estimation accuracy of the constructed map and robot’s

position within it, however only for cases where the motion model used by the solver

is an accurate representation of the actual motion. The most robust and realistic

motion estimation from the models tested is constant motion. Tests on the algorithm

with the constant motion estimation showed that it consistently improves the SLAM

final estimate of the robot’s localisation and map.
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Chapter 1

Introduction

1.1 Context

Autonomous machines and devices have become ubiquitous in the past few decades,

leading to increases in productivity and the capability to execute high precision

and specialised application tasks. Robots in particular have been extensively de-

veloped to replace previously human-controlled functions ranging from cleaning to

aerial imaging and surveying. Robotic devices typically utilise a multiple types of

sensors such as inertial measurement units (IMU), RGB cameras, depth cameras,

ultrasound, LIDAR, and many others. The sensors gather data on the environment

which a microcontroller processes to obtain information needed to perform higher

level tasks, for example feedback and control of actuators, navigation, and path

planning, which are required for the robot to fulfil its application.

For mobile robots, knowledge of the robot’s environment and its location within

it is required for operational tasks such as navigation, path planning and steering.

To operate in an unknown environment, a robot needs to incrementally build a map

of their environment while localising itself within that map. This problem is known

in the robotics field as Simultaneous Localisation and Mapping (SLAM) [3].

Detailed information about a robot’s environment (e.g. structure, appearance

and position of objects such as buildings) can be acquired from robot sensor data

and used to accurately model the real world, which in the computer vision field is

referred to as Structure from Motion (SfM) or 3D reconstruction. Improving the map

estimate also involves improving the robot localisation, therefore both SLAM and

SfM are essentially the same problem: that of creating an abstract representation of

an environment while also localising the sensors that obtained the environment data.

Currently, SLAM is extensively used in Virtual and Augmented Reality applications

in devices such as the Microsoft HoloLens and Google Pixel.

Robots are increasingly being deployed in cluttered environments where the ma-

jority of objects that can be sensed are dynamic, not static. Dynamic is defined

here as having motion, so that the position and orientation of the object can change

with time. Current state of the art SLAM applications are predominantly designed

to work in static environments, and employ a static assumption of features tracked

1



Chapter 1 Introduction 1.2 Project Scope

in the environment while the robot moves. Some SLAM implementations estimate

whether a tracked feature has motion, and rejects the feature from the SLAM solu-

tion system as an outlier. However for a highly dynamic environment this reduces

the quantity of repeated measurements of tracked features which leads to reduced

accuracy of the map and robot localisation estimate.

The Australian Centre for Robotic Vision (ACRV) at the ANU is actively in-

volved in research that fuses advances made in both the computer vision and robotics

fields. This project is part of a research program that is researching a framework for

dynamic SLAM, where dynamic information of the robot’s environment are used in

the SLAM algorithm, unlike traditional SLAM implementations that assume static

environments.

This framework, known as Dynamic Object SLAM (DO-SLAM) can do the fol-

lowing:

1. Generate data of an simulated environment containing both static and dy-

namic objects with structure.

2. Process the simulated environment data or real world data through a special-

ised sensor code to form a SLAM system consisting of the robot trajectory,

map objects, and motion/structure information of these objects for solution.

3. Solve this SLAM system for the robot trajectory and map estimate using a

square root smoothing and mapping algorithm [4].

Integrating the motion of dynamic objects in the SLAM algorithms is expected

to have the following benefits:

1. Increased robustness of the SLAM algorithm in highly dynamic environments.

2. Localisation and tracking of moving objects, which can assist in other high-

level robot tasks such as navigation and collision avoidance.

3. Improved accuracy of the SLAM estimation of the robot’s trajectory and en-

vironment.

Testing the third claim is a main objective of this project, and investigating all three

benefits is the objective of the research program I am part of.

1.2 Project Scope

The scope of this project is to develop a simulation framework to test algorithms

for SLAM and tracking of dynamic objects. The deliverables include:

2



Chapter 1 Introduction 1.3 Thesis Contributions

1. A front-end simulator which can create an environment consisting of simple

primitives with structure and motion behaviour.

2. Sensors that can process simulated or real world data to create measurements

of the robot odometry, sensing of objects and their structure/motion, to form

a factor graph.

3. Solver implementation that can parse the factor graph and solve for the robot

poses and map using non-linear least squares optimisation.

1.3 Thesis Contributions

My contributions towsards the development the DO-SLAM framework are the fol-

lowing:

1. Conceptualisation of the Object Oriented Programming (OOP) framework

implementing the method including the simulated environment, sensor types,

and SLAM solver, known as Dynamic Object SLAM (DO-SLAM) (section 4.1

and chapter 5).

2. Implementation of this framework in MATLAB, including:

(a) Development of functionality in the simulated environment to represent

structured objects (such as primitives) with points (that abstract tracked

features on an object), and motion (subsection 5.1.4).

(b) Development of a Simulated Environment Sensor that can model occlu-

sion (section 4.4), and create measurements of objects and points with

their associated motion measurement or estimations (subsection 5.1.5).

3. Creating testing environments and using them to validate and test the accur-

acy of motion estimation and constraint models (chapter 6).

4. Contributing to the simulation section of a paper submission to the Interna-

tional Conference of Robotics and Automation 2018 (ICRA’18) [2].

The MATLAB parent class implementation for the front end is due to Montiel

Abello, and my work builds on that foundation by writing inheriting classes im-

plementing specific types of trajectories, environment utils and sensors, along with

modifications to the original code that adds required functionality.

The graph and solver implementation is based on a previous iteration of the

framework known as Dynamic SLAM which is due to Mina Henein and Montiel

Abello [5]. Implementation of the measurements and constraints in the graph and

3



Chapter 1 Introduction 1.4 Thesis Structure

solver back-end classes is due to Mina Henein. The conceptualisation of the overall

structure of DO-SLAM and dynamic SLAM methodology is due to Viorela Ila with

input and guidance from Jochen Trumpf and Robert Mahony.

1.4 Thesis Structure

This thesis begins with an introduction (chapter 1) which outlines the context for de-

veloping a framework to solve SLAM with incorporation of dynamic motion inform-

ation (DO-SLAM), and briefly summarises its developments and my contributions

within the project scope.

Chapter 2 provides a literature review of some of the previous developments in

SLAM and in particular, dynamic SLAM that are relevant to the research in this

honours thesis.

Chapter 3 is the background theory, which describes some of the common geo-

metric representations used in the robotics field to represent positions and poses in

3-D space, and the general SLAM problem formulation as a joint probability, factor

graph and non-linear least squares problem.

Chapter 4 on method has a detailed conceptual explanation of the design of DO-

SLAM framework and how it abstracts of environment information, and formulates

it as a SLAM problem by incorporation of motion measurements and constraints.

Chapter 5 on implementation provides a description of the OOP aspects of the

DO-SLAM framework’s code structure and functionality.

Chapter 6 contains the results of the applications used to test the SLAM al-

gorithms, including details on the experimental setup and an evaluation of the per-

formance of different motion models with respect to chosen error measures.

Chapter 7 is the conclusion which summarises the key findings from this honours

research project and future work in this subject.

4



Chapter 2

Literature Review

2.1 Previous Work in SLAM

Two approaches developed to solve the SLAM problem are filtering and global op-

timisation. Both methods use model the robot state(s), environment, and measure-

ments as probabilities. Filtering methods use the current and previous time step for

estimation, thereby previous states of the robot and map are not stored and used.

The Extended Kalman Filter (EKF) is the most common method of solving stand-

ard SLAM problems, which contains the robot pose at the current time step and

all of the detected landmarks in the environment [3]. EKF estimation requires that

non-linear state transition and measurement models have to be linearised around

the current estimate values, which over time results in increasing error in the robot

and map estimation. Furthermore, the EKF matrices are dense and computation

time for the matrix operations in the filter update increases significantly as the size

of the map grows [4].

On the other hand, global optimisation methods for SLAM use the entire robot

trajectory up to the current time in its solution, and minimise the error for joint

probability of all the robot poses and sensor measurements. In linear algebra based

global optimisation, a non-linear least squares problem is formed from the meas-

urements of the entire robot trajectory and the map, and the linearisation points

of the system are recalculated for each iteration of the solution algorithm which

avoids the error accumulated by locking them at every time step. Non-linear least

squares matrices also have the advantage of having sparser matrix structures than

filters, which reduces computation time for large systems. The DO-SLAM frame-

work solver uses a global optimisation algorithm known as Square Root Smoothing

and Mapping [4], which is explained in detail in section 3.2.

The multiple robot problem is the converse to dynamic SLAM it tracks land-

marks in the environment over multiple moving robots rather than tracking multiple

moving objects from a single robot. DDF-SAM is a method of solving the multiple-

robot problem by fusing distributed data from multiple robots to build a decent-

ralised and concurrent map of the environment [6, 7]. Factors are shared between

robots to form a consistent neighbourhood graph that finds the joint probability

5



Chapter 2 Literature Review 2.2 Dynamic SLAM

estimate for all of the measurements taken from the different robots. The system

is incrementally solved for the robot and neighbourhood graphs, with only inform-

ation of relevant landmark variables passed between both graphs (factor graphs are

explained in subsection 3.2.2). Although this problem tracks landmarks observed

by multiple dynamic robots, it does not use the augmented neighbourhood graph

to improve estimation of the robot trajectories, therefore there are the DDF-SAM

algorithm does not have any significant aspects that can be adapted to DO-SLAM.

Grouping points in the scene with structure is an important aspect of estimating

rigid body motion for objects in an environnment. SLAM++ is an algorithm to solve

SLAM problems in structured indoor environments containing repetitive objects

[8]. Its approach is to detect and associate object features with an internal 6-DOF

representation of object structure, which allows for a more compact representation

and additional structural information which improves the map estimate. In DO-

SLAM we assume that the point-object data association problem has been solved

and directly calculate the motion of points on moving objects, however the ability

to estimate the pose of a rigid body through fitting structure to points can help us

adapt our algorithm for other motion models apart from constant motion.

2.2 Dynamic SLAM

Dynamic changes to a robot’s environment can be classified into two types: long-

term and short-term. Long-term changes imply that the landmarks in a robot’s

environment can be assumed to be static compared to the speed of the robot. Short-

term dynamic changes imply that the landmarks’ velocity is at the same order of

magnitude as the robot, so its motion must be accounted for during the robot’s

sensor data collection and the map estimation.

The authors in [9] develop a method to distinguish long-term dynamic changes

in an environment as part of the map estimation. The research uses pose-graph

optimisation techniques (Dynamic Pose Graph SLAM) to solve for the static and

moving landmarks between separate passes of the environment in order to maintain

an efficient and up-to-date map.

SLAMIDE [10] is an algorithm that distinguishes between dynamic and static

landmarks in an environment for short-term dynamic changes. It does this by im-

plementing reversible model selection and reversible data association, done by a

generalised expectation maximisation algorithm on the state information matrix for

a sliding window of previous time steps. Both dynamic motion information and

static measurements can be incorporated in the same Bayesian network with data

association that differentiates between static and dynamic landmarks and applies

6



Chapter 2 Literature Review 2.2 Dynamic SLAM

appropriate motion models in the SLAM solver.

Distinguishing between static and moving objects is assumed to be solved in

the current state DO-SLAM solver, and both approaches in [9] and [10] could be

incorporated in our framework to make our algorithm more robust in real world

environments. SLAMIDE is more suitable as it estimates the motion behaviour of

landmarks simultaneously with the robot pose estimation, which is more suited for

estimating short-term dynamic changes.

SLAMMOT [11] is a framework that includes tracking of moving objects in a

scene. The authors present two approaches: the first approach modifies the gener-

alised SLAM algorithm to model and solve the motion of all objects in the scene to-

gether, however the researchers claim this is computationally infeasible. The second

version separates the estimation of static and dynamic objects into two separate

estimators, which reduces the dimensionality of the SLAM system. SLAMMOT is

similar to DO-SLAM in that it integrates object tracking and motion estimation

for dynamic objects in the SLAM algorithm. However, DO-SLAM solves for both

static and dynamic objects in the same solver in a computationally feasible way.

7



Chapter 3

Background Theory

3.1 Geometric Representations

3.1.1 Position

The map is defined as the abstract representation of the robot environment. It

consists of points that represent features in the environment that can be tracked by

a sensor, and objects that groups points together with structure. Points and objects

exist spatially with respect to an inertial frame. Geometric representations are used

to quantify the properties of objects and associated points in the map.

The map in this framework is a 3-dimensional Euclidean geometry space. The

most utilised geometric representation of position in this space is R3 rectangular

coordinates x,y and z:

t =

xy
z

 (3.1)

An alternate representation of this coordinate space is using spherical coordin-

ates, which treats the position of a point as lying along the surface of a spheroid

centred on the reference frame origin, with coordinates radius, azimuth and eleva-

tion. The radius r is the euclidean distance of the position in R3 from the origin

of the reference frame. To find the azimuth and elevation, we find the ray vector

between the position’s R3 coordinates and the origin. The azimuth θ is the anti-

clockwise angle of that ray in the x-y plane from the positive x-axis. The elevation

φ is the angle between that ray and x-y plane. The conversion between R3 and

spherical coordinates is (3.2), illustrated in Figure 3.1.rθ
φ

 = f(t)


√
x2 + y2 + z2

arctan( y
x
)

arctan( z
x2+y2

)

 (3.2)
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Chapter 3 Background Theory 3.1 Geometric Representations

Figure 3.1: Graphical explanation of position as expressed in spherical coordinates.

Source: [1]

3.1.2 Rotation Matrices

For any position represented using R3 a 3×3 transformation matrix R maps between

any two elements in R3, t1 and t2:

t2 = Rt1 (3.3)

The set of all invertible matrices forms the General Linear Group, and can rotate,

reflect, and skew a point about the reference frame origin. Within this group, the set

of orthogonal matrices form the Orthogonal Group O(3). These have the following

properties [12]:

• RRT = RTR = I3×3, meaning that the determinant is ±1.

• Any matrix product of two elements in O(3) is also an element of it.

• Preserve the distance between both points (isometry).

The sub-group of proper orthogonal transformations are those with determinant

+1, and is known as the Special Orthogonal Group SO(3). These are pure rotations

in R3 that move a point or rotate the reference frame along a spherical manifold.

3.1.3 Euler Angles

Rotations can also be represented more intuitively using Euler angles. These are

rotations about individual axes of the frame applied in a sequence, for example zyx

(also known as yaw-pitch-roll). Applying an Euler angle rotation is equivalent to

applying the SO(3) matrix product of all three single-axis rotations. However, note

that the sequence of axes in the Euler angle rotations changes the final transform-

ation as matrix operations are not commutative, and each singular axis rotation

modifies the orientation of the reference frame.

9
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The rotation matrices for rotation through angles α, β and γ which are anti-

clockwise about the z, y and x axes, respectively, are as follows:

Rz =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 (3.4)

Ry =

 cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

 (3.5)

Rx =

1 0 0

0 cos(γ) − sin(γ)

0 sin(γ) cos(γ)

 (3.6)

Which leads to the combined matrix product rotation matrix for order zyx:

R = RzRyRx (3.7)

Successive applications of Euler angle rotations modify the frame for each trans-

formation. Applying the previous zyx rotations in (3.7), for example, applies a

rotation through an angle of α about the z-axis z1, then rotates through an angle

of β about the rotated y-axis y2, and finally applies a rotation through an angle of

γ about the twice-rotated x-axis x3. While Euler Angles can be used to represent

orientation, the mapping between any set of Euler Angle rotations α, β and γ and

SO(3) rotation matrix is not unique. Furthermore, rotations of 180 degrees on any

axis cause gimbal lock [12].

3.1.4 Axis-Angle Representation

According to Euler’s rotation theorem, any rotation in R3can be represented by a

rotation about a single axis through a fixed point (in this case the origin of the

reference frame). The axis is known as an Euler axis and will be denoted as the

normalised angular velocity vector ω̃ orthogonal to the plane of rotation. Its product

with the rotation angle θ is known as the Axis-Angle representation of rotation, ω.

The rotation matrix for an Axis-Angle rotation representation is efficiently computed

through the Rodrigues’ rotation formula (3.8).

R[ω]×(θ) = e[ω]×θ = I3×3 + [ω]× sin θ + [ω]×
2(1− cos θ) (3.8)

Where [ω]× is the skew-symmetric matrix, formed from the angular components

10



Chapter 3 Background Theory 3.1 Geometric Representations

defined in the angular axis vector ω̃ as follows (3.10):

ω̃ =

ωxωy
ωx

 (3.9)

[ω]× =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (3.10)

3.1.5 The Special Euclidean Group SE(3)

Representing a rigid body in the Euclidean space requires information on both po-

sition and orientation, known collectively as pose. The orientation can be thought

of as the rotation that acts on the rigid body to rotate its reference frame from

alignment with the world frame. A 4 × 4 transformation matrix H maps from the

world frame to the rigid body frame, and is composed of the SO(3) rotation matrix

R and the position vector t:

H =

[
R t

01×3 1

]
(3.11)

The fourth dimension represents the transformation in homogeneous coordinates,

which is required for the matrix to both rotate and translate positions represented

homogeneously in a reference frame. The homogeneous coordinate representation

of a position in R3adds a fourth dimension ’1’ to the original t vector. The set of

defined transformation matrices H containing proper rotations in SO(3) form the

Special Euclidean Group SE(3).

3.1.6 Exponential and Logarithmic Maps of SO(3) and SE(3)

Corresponding to SO(3) and SE(3) are their Lie Algebras which are the tangent

spaces at the identity element. The logarithm map is the mapping between the Lie

Group and Lie Algebra, and is used as a more compact representation for a SO(3)

and SE(3) matrix as it uses the same number of elements as degrees of freedom which

reduces redundant matrix entries. The mapping from the Lie Algebra back to the Lie

Group is known as the exponential map. Operations in Lie Algebra spaces involve

more complex algebra than for the corresponding Lie Group Spaces (which can be

calculated by purely using matrix operations). For this reason transformations on

pose and positions are commonly applied on the Lie Group representations after

converting from the Lie Algebra.

11
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The Lie Algebra representation of SO(3) is denoted as so(3), and is equivalent

to the Axis-Angle representation of the rotation. The R3 position and so(3) vec-

tors together form the R3 × so(3) pose representation, which is composed of the

translation vector t and Axis-Angle product representation ω:

x =

[
t

ω

]
(3.12)

The logarithm map ln : SO(3) 7→ so(3) can be efficiently computed using the

inverse of the Rodrigues rotation formula in (3.8). If the rotation matrix R is the

identity matrix there are infinite solutions of θ = 0 angle rotations and any axis

vector. If tr(R) ≥ −1 there are two solutions for π = 0, which are ω̃ and −ω̃, and

one of the two must be chosen arbitrarily. If 3 > tr(R) > −1, the solution is unique

for the range −π < θ < π (3.14).

θ = acos
tr(R)− 1

2
(3.13)

ω̃ =
1

2 sin θ

R(3, 2)−R(2, 3)

R(1, 3)−R(1, 3)

R(2, 1)−R(1, 2)

 (3.14)

The exponential map expanding the R3 × so(3) pose representation to an SE(3)

matrix can be efficiently computed using the t vector component (first 3 entries of

the R3 × so(3) pose) and expanding the Axis-Angle representation into the SO(3)

matrix using the Rodrigues Rotation Formula (3.8).

The Lie Algebra for a SE(3) matrix (denoted here as Log(SE(3)) or se(3)) is

defined as the following vector representation, where t′ is the translation component

and ω is the rotation component:

v =

[
t′

ω

]
(3.15)

We define a 4×4 matrix A(v) as the following, where [ω]× is the skew symmetric

matrix in (3.10):

A(v) =

[
[ω]× t

01×3 1

]
(3.16)

The exponential map se(3) 7→ SE(3) is fully defined for all of the domain of se(3)

and has a closed form. It is found using the exponential of A(v) [12].

ev ≡ eA(v) =

[
e[ω]× Vt

01×3 1

]
(3.17)

V = I3×3 +
1− cos θ

θ2
[ω]× +

θ − sin θ

θ3
[ω]2× (3.18)

12



Chapter 3 Background Theory 3.2 Simultaneous Localisation and Mapping

The logarithm mapping SE(3) 7→ se(3) in (3.15) is composed of the axis-angle

representation of the 3 × 3 upper left SO(3) rotation matrix, found using the log-

arithm map SO(3) 7→ so(3) in (3.13). The translational component v is found by

applying the inverse of V from (3.18):

t′ = V−1t (3.19)

3.2 Simultaneous Localisation and Mapping

3.2.1 Probabilistic Representation

The objective of solving the fundamental SLAM problem is to maximise the joint

probability of the robot’s trajectory and map given the robot initial state and sensor

measurements obtained at each step. This can be represented a Bayesian belief net of

conditional probabilities, where we estimate the current state of the robot (posterior)

from the conditional probabilities of sensor measurements and robot control input

given the initial state probability (prior). In global optimisation methods, all of the

previous robot poses and sensor measurements constitute a joint probability [4].

The state constitutes the robot poses at each step, and the positions of points

sensed and tracked in the environment. As is standard for SLAM algorithms, the

variables in the state are modelled as being random. The robot poses at time step k

is defined as a multivariate Gaussian random variable with mean values vector µxk
and covariances Σxk (3.20).

xk ∼ N (µxk ,Σxk) (3.20)

Objects in the robot map are represented by points which are abstract repres-

entations of features on an object that can be sensed. Each point is variable z

with index i in the map. These are also modelled as multivariate Gaussian random

variables with mean vector µzi and covariance Σzi

zi ∼ N (µzi ,Σzi) (3.21)

Measurements are relationships between the state variables, modelled as con-

ditional probabilities. In the standard SLAM algorithm, there are two types of

measurements, which are the odometry and point measurements. The odometry is

the transformation between two robot poses for time step k and k − 1 from motion

input ok with independent zero-mean Gaussian noise vk that has covariance Σvk .

vk ∼ N (0,Σvk) (3.22)

xk = f(xk−1, ok) + vk (3.23)
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The conditional probability of a robot’s pose xk given the previous pose xk−1,

using the odometry ok as a measurement is as follows 3.24:

P (xk|xk−1, ok) ∝ exp−1

2
||fi(xk, xk−1)− ok||2Σvk

(3.24)

Measurements of a point zik are taken from a robot state xk. The measurement

model is a conditional probability of based on the current point estimation and

the measurement value lik, and the noise is also modelled as a zero-mean Gaussian

random variable wik with covariance Σwk
):

zik = hi(xk, l
i
k) + wik (3.25)

P (zik|xk, lik) ∝ exp−1

2
||hk(xk, lik)− zk||2Σwk

(3.26)

The joint probability model for all of the robot state transitions and point meas-

urements is the product of all the conditional probabilities given a prior P (x0):

P (X,L, Z) = P (x0)
mk∏
k=1

P (xk|xk−1, ok)
mi∏
i=1

P (zi|xk, lik) (3.27)

3.2.2 Factor Graphs

A factor graph is a graphical representation of the probability distribution. It is

composed of variables, and functions between the variables (called factors). Any

variable can be expressed as a function its factors which are the functional relation-

ships between it and other variables. Factor graphs are bipartite, meaning that all

the variables can be divided into two independent sets with conditional dependencies

between variables in both sets.

In the type of factor graph used in this SLAM problem, a vertex is a random

variable that is part of the state. An edge is a factor that denotes a conditional

probability between sets of vertices, such as a an odometry measurement (3.24) or

point measurements (3.26). The edge type represents the function. The graph is

constructed by first initialising all the vertexes from measurements, then finding

the Maximum A Posteriori estimate for the joint probabilities model. An example

factor graph for a map with three robot state and two points in the map is shown

in Figure 3.2.

3.2.3 Non-Linear Least Squares (NLS) Optimisation

To find the Maximum A Posteriori estimate for the entire robot trajectory and

environment point locations, we maximise the joint conditional probabilities of all

14
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𝑥1

𝑙1
𝑙2

𝑥2 𝑥3𝑝0

Figure 3.2: Factor Graph representation for the standard SLAM problem. Black

circles indicate vertexes, and lines are edges. Red nodes are measurement factors,

and blue odometry.

the robot poses X, and point locations L and robot-point sensor measurements L,

which is P (X,L, Z) (3.27). The log of P (X,L, Z) is minimised instead as it is

an easier computation, which yields the non-linear least squares problem in (3.28),

where Θ∗ is the vector of unknowns in (X,L).

Θ∗ = argmin
Θ

mk∑
k=1

||fk(xk, xk−1)− ok||2Σvk
+

mi∑
i=1

||hi(xk, lik)− zk||2Σwk
(3.28)

The non-linear least squares problem is solved using iterative optimisation al-

gorithms such as Gauss-Newton or Levenberg-Marquardt. The system represented

by the factor graph is linearised for each iteration of the algorithm to form a linear

least squares problem that is solved for in closed form by matrix factorization. Each

iteration of the solution starts at a linearisation point at the current estimate Θ0

and computes a small correction δ towards the solution. For a small enough ||δ||
Taylor series expansion is used to linearly approximate the neighbourhood of Θ∗.

The linearisation is done for each iteration of the non-linear least squares al-

gorithm about a linearisation point by computing the Jacobians for each of the edges

in the graph. (3.29) is the linearisation of (3.23), where (3.30) is the Jacobian, δxk−1

and δxk are the linearisation steps, and ak is the odometry prediction error between

the predicted motion input and the actual odometry reading ak , xk − f(xk−1, ok).

fk(xk−1, ok)−xk ≈ {fk(x0
k−1, ok)+F k

k−1δxk−1}−{x0
k+δxk} = {F k−1

k δxk−1−δxk}−ak
(3.29)

F k
k−1 ,

[
∂fk(xk−1, uk)

∂xk−1

]
x0k−1

(3.30)

The measurement model is linearised similar to (3.25), where zik is the measured
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value, and cik is the measurement prediction error (3.31).

hi(xk, l
i
k)− zik ≈ hi(x

0
k, l

0
ki

) +H i
kδxk + J ikδl

i
k − zik = H i

kδxk + J ikδl
i
k − cik (3.31)

H i
k ,

[
∂hi(xk, l

i
k)

∂xk

]
x0k,l

0
ki

J ik ,

[
∂h−1

i (xk, l
i
k)

∂lik

]
x0k,l

0
ki

(3.32)

Replacing the original non-linear least squares functions with the linearised func-

tions in (3.28) yields the linear least-squares optimisation:

δ∗ = argminδ

{
M∑
i=1

||F k
k−1δxk + F k−1

k δxk−1 − ak||2Σk
+

K∑
k=1

||H i
kδxk + J ikδl

i
k − cik||2Σwk

}
(3.33)

The Square Root Smoothing optimisation method developed by Dellaert et. al [4]

integrates Σk from (3.33) into the Jacobian matrix by pre-multiplying the Jacobian

Matrices and residuals vector in the sums with the matrix square root transpose of

its covariances Σ
−>/2
k and Σ

−>/2
wk . We then collect the Jacobians in a matrix A and

the prediction errors at the current linearisation point into a residual vector b, to

obtain the standard least squares optimisation problem:

δ∗ = argmin
δ
||Aδ − b||22 (3.34)

As A has dimensionality m ≥ n, the unique least squares solution can be found

by solving the normal equations to compute the correction δ:

δ∗ = argmin
δ
||A>Aδ − A>Ab||2Σ (3.35)

A is a matrix representation of the factor graph of the SLAM system. Each

block in the matrix corresponds to a single edge between the relevant entries in

its column and row indexes. Each set of rows in the residuals vector is the error

adjustment for a vertex. At the end of each iteration, the vertex and edge values

for the factor graph are recomputed, and a new linearisation point is determined by

Θk+1 = Θk + δ. The system is iterated until the norm of the increment ||δ∗|| falls

below a threshold.

The computing time for the solution depends on the sparsity and ordering of

the matrix. A good variable ordering that maintains the sparsity of the matrix

greatly improves the efficiency of the solver operation. This is usually done during

the construction of the linear system Jacobian matrix A.
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Chapter 4

Method

4.1 Concepts in DO-SLAM

The DO-SLAM Framework has two distinct parts that are separated conceptually,

which are the front-end and the back-end.

The front end is the data generation or collection part of the DO-SLAM frame-

work, which creates sensor measurements of the environment in a text format con-

taining the measurements for the factor graph of the SLAM problem.

The back end is the solution part of the DO-SLAM framework, which constructs

a graph representation of the SLAM problem consisting of vertices and edges from

the graph file (explained in subsection 3.2.2), and uses non linear least squares

optimisation to solve for the final estimate (see subsection 3.2.3).

Simulated 
Environment

Environment Primitives
Environment Points

Sensor
Sensor/Robot trajectory

Sensor Objects
Sensor Points

Graph File
Vertices
Edges

Solver System
𝛿∗ = argmin𝛿 A𝛿 − 𝐛 Σ

2

Point visibility
Primitive/Point trajectories

Measurements & Constraints from Sensor Data

Construct Non-Linear Least 
Squares System

Figure 4.1: The DO-SLAM structure for the data generated by the simulated envir-

onment. The front end is the simulated environment and sensor. The back end is

the graph file and solver.

Some key concepts required to understand the remainder of this chapter are

explained in subsection 4.1.1.

4.1.1 Explanation of Key Terms in DO-SLAM

Front-end Generates data through a simulated environment or collects it from

a real dataset, and processes it through an abstract sensor implementation
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Chapter 4 Method 4.1 Concepts in DO-SLAM

to create graph files: one with the noise-added measurements for the SLAM

solution, and second with the fully constructed ground truth solution without

noise (if possible).

Simulated Environment An abstract representation of the real world implemen-

ted purely through software, that can create simulated data to be read as

sensor data for testing purposes. Consists of environment primitives and points

that can model environment structure and have their own motion for the sim-

ulation time.

Primitive Abstract 2D or 3D shapes that model the real world, such as rectangles,

planes or ellipsoids. They have a structure which is represented either through

geometric properties (such as width, height or radius) or a mesh, and motion

which is provided by a trajectory.

Mesh Models the surface of a primitive as 3D triangles that are used by the sim-

ulated environment sensor to implement occlusion between primitives in the

simulated environment.

Robot Travels through the environment, and uses sensors to measure its own move-

ment (known as odometry) and observe properties of objects and points in the

environment (such as position, structure or motion).

Sensor Abstract representation of sensor device on a robot that is specialised to

read information from a specific type of data source, for example the simulated

environment or a depth camera, and create measurements for the graph file.

The sensor has its own internal representation of the environment consisting

of sensor objects and sensor points. For the simulated environment these are

created by simulating a moving robot with sensor travelling through the sim-

ulated environment and creating sensor points and sensor objects from the

environment primitive and environment point information. These are used

along with the robot trajectory and sensor properties to construct measure-

ments for the graph file.

Point Abstraction of a feature in the environment that can be sensed and tracked

by a sensor. Points are initialised within the simulated environment or are

extracted from real world data by the specialised sensor. If a point is static, it

is represented as a single vertex in the factor graph with measurements from

each robot pose where the point is visible in the robot sensor. If a point is

dynamic, it is represented as a vertex for each step where it is observed with

additional motion measurements or estimation between vertexes in successive

steps.
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Chapter 4 Method 4.2 Modelling of Dynamic Rigid Bodies

Object Exists in the simulated or real environment and has features on its surface

that are abstracted as points. Points on an object can be observed and tracked

by a sensor to construct measurements, and additional information on the

properties of an object or its relationship to associated points can be observed

by a sensor and implemented as a constraint in the factor graph.

Graph File The text form of a factor graph for the SLAM system constructed

from sensor measurements, consisting of an initial estimate for vertices which

are variables in the environment, and measurement edges that are factors that

have sensor noise.

Measurement The conditional probability of a sensor reading between two or more

variables in the robot state, implemented as an edge in the factor graph. It

has a value and covariance corresponding to the sensor noise. Measurements

constructed by the sensor for the simulated environments have simulated noise.

Ground Truth The true data of the environment as a factor graph (vertices and

edges), with no noise. This is created to evaluate the accuracy of the algorithm

for the noisy sensor measurements and compare different point and motion

models.

Constraint Additional information of the relationships between variables in the

robot state, implemented as factors between their respective vertexes in the

factor graph. DO-SLAM can implement structure constraints, such as associ-

ating static points to a plane [5], or in the context of this project associates

points in different time steps to an estimated average velocity or constant

motion (further explained in section 4.3).

Solver The non-linear least squares optimisation solution algorithm for the SLAM-

system constructed from the factor graph.

The simulated environment, sensor, graph file and solver are separate abstract

entities of their own, i.e. in a code implementation they are self-contained and

encapsulate all the necessary information without requiring any external methods

(the details on the implementation are in chapter chapter 5).

4.2 Modelling of Dynamic Rigid Bodies

A rigid body is defined as an object where the deformation of the internal structure

of the body is non-existent or negligible, i.e. all points existing on the rigid body

are fixed with respect to the object-fixed reference frame. We model a rigid body
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as a reference frame in R3existing within the map and relative to the inertial frame.

Let {0} denote the inertial frame, and 0Xk and 0Ljk the robot pose and an object

pose with respect to the inertial frame respectively, where k is the time step, and

j is the index of the object. 0Xk and 0Ljk in SE(3) is also the transform mappings

between the inertial frame and the robot/object frames.

Modelling the motion of a rigid body is done by applying the relative SE(3)

transform of the object between time steps k and k− 1 in the object fixed reference

frame for time step k, denoted as
k

k−1H
j
k. The object pose in the inertial frame for

time step k is obtained from the previous pose for time step k − 1 and the motion

input (4.1). This is also applicable for the robot where the motion is an odometry

measurement represented in SE(3), which is the relative pose transform in the robot

frame k
k−1H

x
k (4.2).

0Ljk =
0
Ljk−1

k

k−1H
j
k (4.1)

0Xk = 0Xk−1
k

k−1H
x
k (4.2)

The transformation between any two poses in the inertial frame with respect

to the first pose is given by the ‘Absolute to Relative Pose’ Transform. This is

illustrated for an object observed in the robot frame 0X (4.3). The motion input

for an object between two time steps k− 1 and k is another applied case (4.4). The

odometry measurement for the robot is the same operation, for the robot poses 0Xk

and 0Xk−1.

XLjk = 0Xk
−1 0Ljk (4.3)

k

k
Hj
k+1 = 0Ljk−1

−1 0Ljk (4.4)

The R3 position of a point existing on an object in its object reference frame is

notated as Llik, where L is the frame of whatever object the point is part of (omitting

the object index j), and i is the point index (which is unique for all the points in an

environment). This is a homogeneous R3 position, to allow for matrix multiplication

with the homogeneous SE(3) pose representation (see subsection 3.1.5). Its position

in the inertial frame is obtained by applying the transform mapping between it and

the object frame, which we will call ‘Relative to Absolute Position’ (4.5).

0lik = 0Ljk
Llik (4.5)

Similarly the point position in another non-inertial frame can be found from its

equivalent inertial frame representation by applying the inverse of the object pose,

called ‘Absolute To Relative Position’, shown in (4.6) for the object frame.
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Chapter 4 Method 4.3 Measurements and Constraints

Llik = 0Ljk
−1 0lik (4.6)

These geometric relationships are summarised visually in Figure 4.2, for a single

object with frame L.

{0}

{Xk−1}
{Xk}

{Xk+1}

0Lk−1 0Lk

0Lk+1

0lik−1
0lik

0lik+1

k−1
k−1Hk

k
kHk+1

Llik−1

Llik

Llik+1

1

Figure 4.2: Representative coordinates of the rigid body in motion. The points Lli

are represented relative to the rigid body centre of mass L at each step. Source: [2]

4.3 Measurements and Constraints

We now link the transformations described in section 4.2 to the Factor Graph rep-

resentation described in subsection 3.2.2 in order to implement the non-linear least

squares algorithm shown in subsection 3.2.3. Points and robot poses are vertices of

the factor graph, with values in R3 and R3×SO(3) (which is converted to SE(3) for

operations) respectively. Measurements are edges between vertices, where the type

encodes particular factor or function between the vertices and value is the measured

value which includes the noise from the sensor creating the measurement.

Vertices and edges have covariances as they are multivariate Gaussian probabilit-

ies. Each edge type has a corresponding Jacobian function for the factor functions it

implements, which is needed to linearise the measurement models when constructing

the linear system.

The basic implementation of the DO-SLAM framework has two types of vertices:

robot pose and point. A robot pose has a R3×SO(3) representation which is con-

verted into its SE(3) matrix equivalent using (3.8) and (3.11) for calculations. It

has a 6× 6 covariance matrix for the combinations of its 6 R3×SO(3) value entries.

A point is in R3, with a 3 × 3 covariance matrix. The edge covariances have the

dimensionality of the factor function.
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A basic SLAM algorithm only has 2 types of measurements, 1) an odometry

measurement which is a relative pose (4.3) for k
k−1Xk), and 2) a static point being

sensed by the robot. The latter is the position R3 position in the robot-frame,

and is obtained by applying (4.6) for the specific case of a point observed in the

robot frame (4.7). The Jacobian matrix for a relative pose measurement (4.3) is

numerically approximated by applying a small perturbation motion input ε and

computing the pose differences divided by the perturbation input.

kyik = 0Xk
−1 0lik (4.7)

Every measurement in the factor graph has Gaussian noise added it according

to the covariance matrix of the edge type. This is added after the measurement

is created from the applying the function on the actual point or pose values, as

the noise for a measurement is independent from previous measurements taken.

Dynamic motion of points are implemented as additional vertices with edges between

the vertices belonging to the moving point in consecutive time steps, and the values

are the residuals of the cost minimization for the motion measurement function.

The error of a static points’ estimation is reduced over time through multiple sensor

measurements of it in different time steps, which creates additional edges between

robot poses and itself. For a point on a dynamic rigid body object, separate vertices

are required for each time step, and more information is added in the form of motion

measurements, which are explained in section 4.5.

4.4 Visibility Modelling

For the front-end simulated environment in the DO-SLAM framework, the meas-

urements of points from a robot sensor in the simulated environment depend on

whether they are visible in the sensor model. The base simulated sensor model is

that of a visual and depth camera that provides direct R3 position of a point in

the environment in the robot-frame. The position of the point is then converted to

spherical coordinates (3.2) Points are deemed ‘visible’ if they are within the set field

of view for the camera (given as spherical coordinate ranges in azimuth, elevation

and radius).

The second stage of development for this sensor models occlusion done by rigid

body objects in the simulated environment. This includes an abstract appearance

model for a rigid body, and a technique to implement intra and inter object occlusion.

In an environment primitive, the structure of its surface is represented as a mesh

of 3D-triangles, where each triangle is composed of 3 corners which are positions

in R3 (similar to points) expressed in the object frame. For a mesh, each triangle
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Figure 4.3: An environment primitive. The green wireframe shows the mesh, and

black dots are points on the primitive that exist in the environment and are sensed.

is a set of the 3 corners, set when the structure of the primitive is initialised (the

details on the implementation are explained in subsection 5.1.4). Points exist on

this surface either at the same position as corners or along the planar surface of the

triangles. This is illustrated graphically in Figure 4.3.

To set visibility, all of the points within the sensor field of view are ray-intersected

with the all of the triangles for rigid bodies also within the sensor field of view. If

the ray of the point to the camera intersects any of the triangles and the intersection

position is behind the triangle, the point is deemed not visible.

First, the position of corners for the triangles in a mesh are converted from the

object-frame to the robot-frame, where pn is a corner for n = 1 : 3 belonging to

any triangle in an object j’s mesh. Note that a point in the mesh structure pn does

not necessarily exist in the environment as a sensed point lj, however it does exist

within the rigid body object appearance model for the purpose of occlusion. (4.8)

is the mesh corner position in the inertial frame given the pose of its parent object

j at time step k, Ljk. Note that this results in the corner having a time index k as

its inertial frame position is not constant due to the movement of its object. (4.9)

is the corner position in the robot-frame.

0pnk = 0Ljk
Lpn (4.8)

kpnk = 0Xk
−1 0pnk (4.9)

These equations extract the robot-frame positions of all 3 corners in a mesh triangle,

which will be notated as p1, p2 and p3 from here on. A point in the environment

with index i sensed by the robot sensor in the robot-frame,
k
lik, an has a ray to the

sensor position q - this is the same as the R3 position vector itself as the origin of

the robot in its own frame is [0, 0, 0]>.
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For the 3 triangle corners p1, p2 and p3, and ray from the point to the camera q,

first check the intersection position p0 between the infinite plane of the triangle and

the point ray by finding the normal to the triangle, N :

N = (p2 − p1)× (p3 − p1) (4.10)

p0 = (p1 ·N)/((q ·N)× q) (4.11)

Then we check whether the point exists within the perimeter of the triangle, which

fulfils the following conditions:

((p2 − p1)× (p0 − p1)) ·N > 0 (4.12)

((p3 − p2)× (p0 − p2)) ·N > 0 (4.13)

((p1 − p3)× (p0 − p3)) ·N > 0 (4.14)

However this method of intersection also results in the conditions in (4.12) (4.13) and

(4.14) being ‘true’ for points in front of the triangle where the ray vector intersects

behind it. To check whether the point of intersection is in front of the point ray or

behind, we check whether the intersection position of the ray and the mesh triangle

is behind or in front of the triangle by comparing their euclidean distances from

the sensor frame origin. All of the steps mentioned earlier are summarised in the

following pseudo-code for a single time step k:

1. Iterate through all the mesh corners of the objects pn where n is the index of

a corner in an object. For every corner:

1.1. Find the positions of the corners in the robot frame kpn.

2. Compile all the sets of mesh corners belonging to the mesh-triangles in an

array m.

3. For every point in the environment observed in the robot-frame kpik:

3.1. Set visibility to ON.

3.2. Iterate though all the rows in array m (each being a mesh triangle),

comprising of 3 mesh corner positions p1, p2 and p3.

3.2.1. Find the normal to the triangle, N (4.10).

3.2.2. Intersect the ray between the sensor origin and point position q with

infinite plane of the triangle N (4.11) to find the intersection p0.

3.2.3. IF the point exists within the perimeter of the triangle, checked by

the conditions in (4.12) (4.13) (4.14):

3.2.3.1. Check the euclidean distances |p0| < |q|, set visibility to ‘OFF’ if

TRUE.

3.2.4. ELSE continue to next row in array m.
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Chapter 4 Method 4.5 Point Motion Measurements and Constraints

4.5 Point Motion Measurements and Constraints

The standard non-linear least squares based SLAM algorithm implements measure-

ment edges from multiple robot poses to a single point vertex as it assumes that

the points are static. However, this case breaks down in a dynamic environment

as points are also moving with respect to the inertial frame due to the movement

of objects they are part of. Therefore, each point estimation in the robot map is a

separate point vertex for the point’s R3 position at time step k. If the environment

consists of purely dynamic points, without any additional information in the Factor

Graph, no optimisation can be conducted on this system as the information mat-

rix A only has edges between consecutive poses and singular measurements of each

point for each time step from a pose.

The DO-SLAM framework tests methods of incorporating independent meas-

urement and estimation of the motion of points into the SLAM solver. These are

implemented as either motion measurements, which are edges between point ver-

texes, or motion estimations which are vertices. Five motion measurement types

and one estimation are tested in this honours thesis.

4.5.1 2-point Edge

𝑥1

𝑙1
1 𝑙1

2

𝑥2

𝑙2
1 𝑙2

2

𝑥3

𝑙3
1 𝑙3

2

𝑝0

Figure 4.4: Factor Graph for the 2-point edge. Black cirles are vertices and lines

are edges. The red nodes are odometry measurement factors, blue nodes are point

measurement factors, and green nodes are 2-point motion measurement factors.

We begin with the most specific measurement of the absolute motion of a single

point’s motion between any two time steps, which we will call the 2-point edge.

The 2-point edge is a motion measurement of the absolute position difference,

which is a vector in R3, between any two point vertices. In the context of the robot

map, this is the inertial frame motion difference d estimated between the positions

of a moving point from one time step to the next 0lk and 0lk−1. This point motion

measurement edge is independent from the robot-point sensor observation, and has

its own covariance, initialised as a diagonal of the variances for the motion in each

R3 dimension x, y and z. The value of the edge is the d vector between the point
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positions for time steps k and k − 1 (4.15). The factor graph for this measurement

is shown in Figure 4.4. The points are not associated to an object in this graph,

and data association between the point vertices for the consecutive time steps is

assumed.

d = 0lk − 0lk−1 (4.15)

The two edge Jacobians for this edge are the positive and negative linear identity

matrices:

∂d

∂0lk
= I3×3

∂d

∂0lk−1

= −I3×3 (4.16)

The 2-point edge is the first motion measurement we implement, and represents

the most unrealistic scenario where we do not assume any motion model for the

point trajectory, an an exact inertial frame measurement of a point’s translation

between two time steps can be provided by a sensor. We omit the scalar version of

this implementation (a point euclidean distance) due to the infeasibility of such a

sensor.

4.5.2 3-point Edge
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1 𝑙1
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Figure 4.5: Factor Graph for the 3-point edge. Black cirles are vertices and lines

are edges. The red nodes are odometry measurement factors, blue nodes are point

measurement factors, and green nodes are 3-point motion measurement factors.

The 3-point edge expands on the 2-point edge by making an linear motion as-

sumption for a point’s trajectory over three consecutive time steps. The measure-

ment minimises the difference in the motions between time steps (k, k − 1) and

(k − 1, k − 2), denoted here as d2 (4.17), i.e. assuming that the point has constant

linear motion. We also test this in its scalar form (4.18) which is the distance meas-

urement of the point’s motion for three consecutive time steps, d2. The scalar form

is a more realistic case of the sort of measurement a real motion sensor can provide

compared to the absolute inertial frame translation.
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The values for the edges are created from the point positions, and have noise

added independently of the sensor-point measurements. The factor graph is shown

in Figure 4.5. This type of measurement is also unrealistic from a real world sensor

point of view, but it allows us to test the validity of a rudimentary motion model

assumption.

(0lk − 0lk−1)− (0lk−1 − 0lk−2) = d2 (4.17)

||0lk − 0lk−1|| − ||0lk−1
0lk−2|| = d2 (4.18)

The Jacobians for (4.17) are shown in (4.19) and the Jacobians for (4.18) are

shown in (4.20).

∂d2

∂0lk
= I3×3

∂d2

∂0lk−1

= −2 · I3×3
∂d2

∂0lk−2

= I3×3 (4.19)

∂d2

∂0lk
=
[
−sgn(0lk − 0lk−1)

]> ∂d2

∂0lk−1

=
[sgn(0lk − 0lk−1)

−sgn(0lk−1 − 0lk−2)]
>

∂d2

∂0lk−2

=
[
−sgn(0lk−1 − 0lk−2)

]>
(4.20)

4.5.3 Velocity Vertex
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Figure 4.6: Factor Graph for the velocity vertex. Black cirles are vertices and lines

are edges. The red dots are odometry measurement factors, blue edges are point

measurement factors, and green are velocity-point position constraint factors.

The velocity vertex implements a constant average linear integrated velocity

measurement between 2 pairs of 3 consecutive time steps (k, k−1) and (k−2, k−3).

Each velocity vertex is an average integrated velocity vector or integrated speed (the

norm of the velocity) over 3 consecutive time steps, which is independently initial-

ised by taking the average integrated velocities of the point’s motion. Each edge has
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at least 3 vertices: the velocity vertex, and pairs of point vertices whose integrated

velocity is being estimated. The edge value minimises the residual of the constraint

d3.

The vector of the velocity is implemented as an R3 value (4.21), with the edges

constraining the position of the points 0lk,
0lk−1, and 0lk−2 by the estimated velocity.

The factor graph is shown in Figure 4.6.

v =
(0lk − 0lk−1) + (0lk−2 − 0lk−3)

2
(4.21)

v − (0lk − 0lk−1) = d3 (4.22)

v − (0lk−1 − 0lk−2) = d3 (4.23)

The scalar of the integrated velocity, that is average distance, is implemented as

the norm of the average integrated velocities.

v =
||(0lk − 0lk−1||+ ||0lk−2 − 0lk−3||

2
(4.24)

v − ||0lk − 0lk−1|| − v = 0 (4.25)

v − ||0lk−1 − 0lk−2|| = 0 (4.26)

The Jacobians for (4.22) and (4.23) are shown in (4.27). The scalar vertex

implementation (4.24) for the edges (4.22) and (4.23) Jacobians are shown in (4.28).

∂d3

∂v
= I3×3

∂d3

∂0lk
= −I3×3

∂d3

∂0lk−1

= I3×3 (4.27)

∂d3

∂v
= 1

∂d3

∂0lk
=
[
−sgn(0lk − 0lk−1)

]> ∂d3

∂0lk−1

=
[
sgn(0lk−1 − 0lk−2)

]>
(4.28)

4.5.4 Constant Motion

The point motion measurements and constraints described in subsection 4.5.1, sub-

section 4.5.2 and subsection 4.5.3 are all only applicable under a constant linear

motionassumption. For points on a moving rigid-body, this assumption is only valid

if the rigid body also has constant linear motion. We now expand the point motion

estimation to a more general case, that where the object has a constant motion

composed of a constant rotation and constant translation. The full derivation is in

[2]. The factor graph representing a SLAM problem which integrates a constant

SE(3) motion constraint is shown in Figure 4.8.
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Figure 4.7: Representative coordinates of the SLAM system. Blue represents state

elements and red the measurements. The relative poses have the corresponding

notation: a
bHc, meaning that the relative pose of frame c with respect to frame b

(the reference) is expressed in the coordinates of frame a. Source: [2].

Using (4.7), (4.5), and (4.4) we obtain the following relationship (for only one

object with frame L):

0
kXk

kyik = 0Lk+1
k
kHk+1

−1 Llik (4.29)

The pose change for the object can be obtained in the inertial frame through the

following relationship :

0
kHk+1 = 0Lk

k
kHk+1

−1 0Lk+1
−1

(4.30)

This object pose change in the inertial frame is used to obtain the point location

in the inertial frame:
0lik = 0

kH
−1
k+1

0lik+1 (4.31)

As we are assuming a constant motion model for the object it the object frame
k
k−1Hk = k

kHk+1 = C, this also translates into constant motion of the object in the

inertial frame:

0
kHk+1 = 0Lk C 0Lk

−1
(4.32)

The constant motion constraint function is (4.33), where 0uj = log(0Hj), 0Hj =

[0Rj 0tj], and qsj is the Gaussian distributed process noise.
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The relative motion between the same object seen at different
time steps is characterized by a relative pose k

kH i
k+1 ∈ SE(3)

represented in body fixed frame coordinates. Figure 2 shows
the ith point on a moving object seen at three time instances.
The point measurements at each instance can be expressed
as:

kȳi
k = 0X−1

k
0 l̄i

k , (1)

where we use the .̄ notation for homogeneous coordinates.
Figure 1 shows that a point on the rigid body in motion can
be represented in the coordinates of the rigid body L.

0 l̄i
k = 0Lk

L l̄i
k . (2)

Using (1) and (2) we obtain:
0
kXk

kȳi
k = 0Lk

L l̄i
k . (3)

The relative motion of the rigid body (Figure 1) is given by:
0Lk = 0Lk+1

k
kH−1

k+1 . (4)

From (2), (3) and (4) we obtain:
0
kXk

kȳi
k = 0Lk+1

k
kH−1

k+1
L l̄i

k . (5)

We assume rigid body, which means that the point relative
to the object centre remains the same at each time step,
L l̄i

k =
L l̄i

k+1 =
0 L−1

k+1
0 l̄i

k+1. With that and (1) we obtain:

0 l̄i
k = 0Lk+1

k
kH−1

k+1
0L−1

k+1
0 l̄i

k+1 (6)

In [18], the authors explain how the pose changes can
be represented either in the body fixed frame or any other
arbitrary observer frame. With that in mind, the motion in
the inertial frame is defined as: 0

kHk+1 =
0Lk+1

k
kHk+1

0L−1
k+1.

This can be used in (6) to obtain the point motion model in
the inertial frame:

0 l̄i
k = 0

kH−1
k+1

0 l̄i
k+1 . (7)

Note that a constant motion model k
k−1Hk =

k
k Hk+1 =C

translates to a constant motion in the inertial frame
0
k−1Hk =

0
k Hk+1 = H. This can be observed from:

0
kHk+1 = 0Lk+1 C 0L−1

k+1 with 0Lk+1 =
0 Lk C

0
kHk+1 = 0Lk C 0L−1

k = H (8)

and will be used in the formulation of our SLAM system.

B. Measurements and object motion constraints

Two types of measurements, the odometry obtained by
robot’s proprioceptive sensors and the observations of the
landmarks in the environment obtained by processing the
images from an on-board camera are typically integrated into
a visual SLAM application. Let f (xk−1,xk) be the odometry
model with Σvk , odometry noise covariance matrix:

ok = f (xk−1,xk)+ vk , with vk ∼N (0,Σvk) (9)

and o = {o1...omi} being the sequence of odometric measure-
ments. Similarly, let h(xk, li

k) be the 3D point measurement
model with Σwk , the measurement noise covariance matrix :

zi
k = h(xk, li

k)+wi
k , with wi

k ∼N (0,Σwk) (10)

where z = {z1...zmk}, zk ∈ IR3 is the set of all 3D point
measurements.

Figure 2 shows those measurements in red. For consis-
tency, in here we show all the coordinates and relative
motions in SE(3), however, in the actual state vector we use
the corresponding logarithm map of an SE(3) element, e.g.
the vector form of 0u j = log(0H j) will be the corresponding
state variable, where j ∈ 1...no and no is the number of
moving objects. With this, we define the constant motion
constraint function as:

g(li
k, l

i
k+1,

0 u j) = 0R j> 0li
k+1− 0R j> 0t j−0 li

k +qs j (11)

where [0R j,0 t j] =0 H j and qs ∼N (0,Σq) is normally dis-
tributed zero-mean Gaussian noise.

p0 x0 x1 x2

l1
0 l1

1 l1
2

0u1

Fig. 3: Factor graph representation for SLAM problem with
an SE(3) motion vertex and its edges. Superscripts represent
the same landmark at different time steps.

The factor graph representing a SLAM problem which
integrates a constant SE(3) motion constraint is shown in
Fig. 3. This factor graph representation helps us to formulate
the non-linear least square problem that minimises all the
residuals defined by the integration of the dynamic informa-
tion into the estimation problem:

θ
∗ = argmin

θ

1
2

{
mi

∑
i=1
‖ fk(xk−1,xk)−ok‖2

Σvk
+

mk

∑
k=1
‖hk(xi, li)− zk‖2

Σwk
+

ms

∑
i, j
‖g(li

k, l
i
k+1,

0 u j)‖2
Σq

}
(12)

where mi, mk and ms are the number of odometric measure-
ments, point measurement and motion observations.

Iterative methods such as Gauss-Newton (GN) or
Levenberg-Marquard (LM) are used to find the solution of
the NLS in (III-B). An iterative solver starts with an initial
point θ

0 and, at each step, computes a correction δ towards
the solution. For small ‖δ‖, a Taylor series expansion leads
to linear approximations in the neighborhood of θ

0 and a
linear least-squares (LS) problem in δ is solved at each
iteration [?]:

δ
∗ = argmin

δ

1
2
‖A>Aδ −A>b‖2

Σ , (13)

where A gathers the derivatives of the residuals in (III-B)
with respect to variables in θ weighted by the block-diagonal
matrix , Σ that gathers all the square rooted, inverse covari-
ances of all the observations; and b is the residual evaluated
at the current linearization point. The new linearization point
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Figure 4.8: Factor Graph for the Constant Motion Vertex. Black cirles are vertices

and lines are edges. The red nodes are odometry measurement factors, blue nodes

are point measurement factors, and green nodes are motion-point position constraint

factors. Source: [2].

g(lik, l
i
k+1,

0uj) = 0Rj>0lik+1 − 0Rj>0tj − 0lik + qsj (4.33)
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Implementation

5.1 DO-SLAM Front End

DO-SLAM is implemented in MATLAB using Object Oriented Programming (OOP)

Principles. Each part of the framework shown in Figure 4.1 and described in sec-

tion 4.1 is implemented as its own abstract parent class. Child classes inherit from

these parent classes to implement specific functionalities, and these are used in the

high-end application of the frameworks. Additional supporting ‘utils’ are provided

that abstract common shared properties and behaviours of entities existing within

these classes.

The following sections discuss the properties and methods contained in the classes

coded as part of DO-SLAM. All the classes exhibit encapsulation, where all of

the required interaction with that class can be obtained through calling specialised

methods, and the class is able to provide information in different formats as required

by the invocation of those methods to make it robust for different uses.

A key property of all of the classes in the following sections is inheritance from

the class ‘ArrayGet&Set’. This class sets common ‘get’ and ‘set’ methods that are

robust to the type of property. The first argument provided when calling the ‘get’

method is the property called, and the remaining arguments are the specific input

arguments required for that property. For properties that are arrays in MATLAB,

‘ArrayGet&Set’ is able to take the indexes of array entries required as input and

output them as an object array. ‘ArrayGet&Set’ calls a ‘getSwitch’ method that

exists in each inheriting class when it does not have the functionality to provide

the desired property called, and allows for the inheriting class to provide its own

additional ‘get’ functionality on top of the generic functionality provided by it. The

main benefit of this class is that a particular type of get method can be applied to

multiple class instances that are part of an object array and all of their respective

values for the property queried can be obtained simultaneously.
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5.1.1 Config

The ‘config’ class contains the standard information required by both the front-end

and back-end to generate a simulated environment, create sensor measurements of

it, output ground truth and sensor measurements graph files, read these graph files

and solve the system. It has no direct methods of its own, however its properties

are used as input by other classes. Key properties of ‘config’ include:

Filepaths and names ‘measurementFileName’ and ‘groundTruthFileName’ which

are graph files that the sensors output to, and the back-end reads.

Pose Parametrisation named ‘poseParameterisation’. The representation used

for poses in euclidean space, which is currently either R3×so(3) (set as string

value ‘R3xso3’) or se(3) (set as string value ‘LogSE3’).

Transform Function Handles These provide the function inputs for the trans-

forms defined in section 4.2 based on ‘poseParameterisation’, which are ‘abso-

luteToRelativePoseHandle’ (4.3), ’absoluteToRelativePointHandle’ (4.6), ’rel-

ativeToAbsolutePoseHandle’ (4.2) and ’relativeToAbsolutePointHandle’ (4.5).

Labels These are the labels of the different vertexes and edges in the graph file

created by the abstract sensor and read by the graph class, named in the

format ‘ Label’. For example, the label for a point vertex is ‘pointVertexLabel’

and edge between a robot pose and a point (which is a robot camera sensor

measurement) is ‘posePointEdgeLabel’.

Standard Deviations and Covariances The standard deviations of the Gaus-

sian noise for edges, named ‘std ’. They are column arrays with the dimen-

sionality of the value of the edge. For example, the robot odometry edge

standard deviation is a 6 × 1 vector ‘stdPosePose’. Covariance matrices are

automatically constructed from these standard deviations (with the assump-

tion of independence between different dimensions), and stored as dependent

properties ‘cov ’.

Point Motion Model named ‘pointMotionMeasurement’, sets the type of point

motion measurement or estimation for the sensor and solver, as explained in

section 4.5. ’motionModel’ determines whether the edges and vertices imple-

mented are scalar (‘speed’) or vectors (‘velocity’).

Solver Settings which are ‘solverType’, ‘solveRate’, ‘threshold’ which is the norm

of the residual vector that determines convergence of the solution, ‘max-

Iterations’ for the solver before it stops the NLS optimisation algorithm,
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‘maxNormDX’ which is the maximum value of the residuals vector norm ||δX||
(indicating divergence form the solution).

Camera Settings these are the camera field of view and range in spherical co-

ordinates.

Dimensionality of points ‘dimPoint’ and poses ‘dimPoint’, used to initialise the

empty Jacobian matrix A before vertices and edges are populated.

5.1.2 Geometric Representations

These implement representations described in section 3.1. The class abstracting

any generic pose is “GP Pose” and a point is “GP Point”. These two classes hold

the base functionality for the implementation of environment points, environment

primitives, sensor points and sensor objects.

GP Pose can take an input pose in R3×so(3), se(3), or SE(3) representation,

and output in those representations or give the axis-angle vector or rotation matrix

as specified by the arguments provided in the ‘get’ or ‘set’ call. We define ‘absolute

pose’ as the pose of a robot or object in the environment with respect to the inertial

frame, and ’relative pose’ as the relative transform between any two poses in the

inertial frame, with respect to the first frame. The method ‘AbsoluteToRelativePose’

gives the relative pose between the GP Pose and another GP Pose given as input.

The method ‘RelativeToAbsolutePose’ gives the absolute pose of the input GP Pose

argument with the invoking GP Pose instance acting as a relative pose.

GP Point is the position of any generic point in R3 with respect to the inertial,

robot or object frames. It has a method to output its position with respect to the

inertial frame if it is specified in a different frame through the ‘RelativeToAbso-

lutePosition’ method (4.1). It can also output its position in another frame if its

position has been specified in the inertial frame by the ‘AbsoluteToRelativePosition’

method (4.6).

Both GP Pose and GP Point can add noise to their value properties according to

the noise settings in the config. The current implementation only includes Gaussian

noise.

5.1.3 Trajectories

Trajectories are used to model the motion of an object, point or the robot. They en-

capsulate all of the motion information required to model a primitive, point or object

and create sensor measurements from it. The abstract parent class is simply called
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“Trajectory” and its properties are inherited by its child classes “PoseTrajectory”

and “PointTrajectory”.

“PoseTrajectory” models a moving object with its own frame in the world, as

described in section 4.2. It can be queried to obtain the pose of the object at an

input time through the ‘get’ method, and give that pose with respect to any other

input frame as a relative or absolute pose. It can also output the inertial frame

relative transform between poses in two time steps (4.32). Pose Trajectory has a

‘plot’ method which shows the trajectory for the input time steps as a dotted line

and axes. “PoseTrajectory” is not directly instantiated and acts as the abstract

parent class containing necessary functionality for implementations of specific types

of trajectories.

“PositionModelPointTrajectory” is a child class of “PoseTrajectory” that inter-

polates a continuous trajectory for a given input R3 waypoints over specified time

steps. It fits a curve to the input time (t) and R3 coordinate positions using the

MATLAB curve fitting toolbox, and calculates the orientation according to an as-

sumed model where the trajectory frame x-axis points in the direction of motion

and the z-axis is aligned to be as slose to normal to the yz-plane as possible. When

a pose for an input time is queried by the ‘get’ method, the pose is interpolated

according to the curve fitting the waypoints, therefore the pose can be queried for

any time value.

“DiscretePoseTrajectory” is a child class of “PoseTrajectory” which stores GP Poses

for discrete time steps. Its main application is to implement a constant motion model

for objects, which is done by its child class “ConstantMotionTrajectory” that takes

in input a vector of time steps, an initial pose, and a constant motion transform

(represented in R3×so(3), se(3), or SE(3)). It applies the constant motion trans-

form successively for each time step, and stores it in an array. Constant SE(3)

motion models are difficult to interpolate or integrate continuously, so storing the

trajectory as discrete poses simplified this process.

“PointTrajectory” is similar to “PoseTrajectory” but only implements motion as

R3 position without orientation. It is used to model the motion of points existing in

the environment which may or may not pertain to objects. “PositionModelPoint-

Trajectory” is the same as “PositionModelPoseTrajectory” but does not estimate

any orientation. “DiscretePointTrajectory” is similar to the pure position data of

“DiscretePoseTrajectory”.

Trajectories can also be relative to another pose trajectory, which can model

points associated to objects in the environment. “RelativePointTrajectory” is a

child of “PointTrajectory” that takes a GP Point relative position in the parent

object frame, and the pose trajectory of that object as input. Its output poses are

given as inertial frame positions of the point for the time step queried by applying

34



Chapter 5 Implementation 5.1 DO-SLAM Front End

(4.5). Similarly “RelativePoseTrajectory” takes a parent object trajectory and a

object frame pose as input, and outputs the inertial frame poses of the point for the

queried time step by applying (4.1).

Static objects and points have “StaticPoseTrajectory” and “StaticPointTraject-

ory” as their trajectory property, which gives the same pose or position for any

queried time step. They are interacted with using the same ‘get’ method calls as

dynamic trajectories.

5.1.4 Simulated Environment

The simulated environment consists of environment points and environment primit-

ives (which are defined in section 4.1). Each environment point has a unique index

in the environment, and can be associated to a primitive with its own unique index.

These indexes are set when primitives and points are instantiated as part of the

environment.

The “EnvironmentPoint” class has properties ‘index’ (of itself in the environ-

ment, which is unique for all points), ‘trajectory’ which holds the point trajectory

and ’primitiveIndexes’ for its associated primitives (if any).

The parent “EnvironmentPrimitive” class has properties ‘index’ (of itself in the

environment, unique for all primitives), ‘trajectory’ and ‘pointIndexes’ which are

the environment indexes of points belonging to it in the environment. Primitives

and points are added with automatic indexing in the environment when methods

creating primitives are called in the environment class.

Of interest in this project are the rigid body environment primitives, which are

called ’EP Default’. They also have te additional properties ‘MeshPoints’ which

are the corners for the triangles representing the mesh, and ‘MeshLinks’ which are

the indexes for sets of point belonging the 3D triangles representing the surface of

the primitive. EP Default has methods that find the mesh corners in their object

frame or the inertial frame for a given time step, and compile them as an array of

GP Points for output. Similarly it can do the additional step of outputting an array

of mesh triangles, where each row contains the corner positions in a triangle (see

section 4.4).

Specific types of primitives are instances of ‘EP Default’ instantiated using spe-

cialised methods in the environment. The two implemented in this project are

Ellipsoid and Cube. The methods “addEllipsoid” instantiates an ellipsoid according

to the input parameters as its EP Default and Environment Point class instances in

the environment. The input is [x, y, z] radii, resolution n, and trajectory, to create

an EP Default using the following steps:

1. Generate the ellipsoid surface corners with the radii and resolution input ar-
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guments by using the Matlab ellipsoid function. This is a meshgrid output.

2. Find all of the corners for the mesh and the ‘meshLinks’ for the triangles

through Delaunay triangulation (the Matlab function ‘delaunay’) on the pos-

itions generated by the meshgrid.

3. Create an array of GP Points from all of the mesh corner positions, and sample

20% of them to abstract features on the surface that are part of the environ-

ment as EnvironmentPoint class instances.

4. Set the corner position GP Point class array as the ‘meshPoints’ property

and sets of index corners for mesh triangles as ‘meshLinks’ property in the

primitive.

5. Create the ’RelativePointTrajectory’ based on the input trajectory for all of

the environment points.

6. Set environment indexes for the primitive and its points and add to the en-

vironment class properties ‘environmentPoints’ and ‘environmentPrimitives’

(done via a private method called on self ‘addPrimitiveAndPoints’).

EP Default also has an internal plot method that displays its mesh as a 3D wire-

frame for the input time step. This is used for viewing the simulated environment

(Figure 4.3).

The environment also has plot methods for itself, which calls the EP Default plot

method and plots the environment points. It can animate the figure by sequentially

plotting the environment for an input array of time steps.

5.1.5 Sensors

The abstract parent class for all of the specialised sensor implementations is called

“Sensor” and has a property ‘trajectory’, and is typically set as the trajectory of the

sensor travelling through the simulated environment, which is a “RelativeTraject-

ory”’ class instance initialised from the relative pose of the sensor with respect to the

robot frame and the robot trajectory. The base sensor to read simulated environment

data is called “SimulatedEnvironmentSensor” and inherits from “Sensor”. “Sensor”

and its child classes contain “SensorObjects” and “Points” which are the sensor’s

internal abstract representations of objects and points in the real environment, or

environment primitives and environment points in the simulated environment.

For the purposes of generating simulated data, the structure and properties of

environment points and primitives are similar to that of sensor points and objects,

in that they have the same unique indexing and properties to reference associations
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between each other. The ‘addEnvironment’ method takes an environment instance

as input and creates sensor objects and points from the environment points and

primitives, creating an internal sensor representation of the environment. Different

primitive types are read into their appropriate sensor object class type by checking

the primitive class types and calling the specialised method for it. The “SensorOb-

ject” class has subclasses “GeometryObject” and “RigidBodyObject”. EP Defaults

are used to construct “RigidBodyObject” class instances when the simulated en-

vironment is read into the sensor. The sensor object subclasses are abstract rep-

resentations of objects in the environment, and sensors operating on different data

sources will have their own specialised functions to create these sensor objects from

the data.

“Points” in the sensor have properties ‘index’, ‘trajectory’, ‘objectIndexes’ and

‘vertexIndexes’, which are the same as environment points (described in subsec-

tion 5.1.4). The ‘vertexIndexes’ property stores the indexes of the vertices in the

graph file during measurements generation. Indexing from the environment points

to sensor points and from environment primitives to sensor objects is identical for

the convenience of implementing occlusion in the “SimulatedEnvironmentOcclusion-

Sensor”.

The sensor class also has properties ‘pointVisibility’ and ‘objectVisibility’, which

store whether an point or object is visible for a time step. This is to model a depth

camera sensor with a range and field of view, and occlusion caused by environment

primitives. The base “SimulatedEnvironmentSensor” needs to run the ‘setVisibility’

method before generating measurements. This method checks the points for their

visiblity in field of view of the camera for each time step and sets the values in

‘pointVisibility’, where the columns are points and rows are time steps. The “Sim-

ulatedEnvironmentOcclusionSensor” overloads the ‘setVisibility’ method to add oc-

clusion implementation, and takes the environment it is constructed from as input.

Occlusion is caused by the surfaces of rigid body primitives (“EP Default” class

instances with meshes), using the method outlined in section 4.4.

The sensor points and objects are finally used to generate a graph file consisting of

measurements, through the ‘generateMeasurements’ method. It outputs two .graph

format text files - a ground truth file consisting of the vertexes of the graph without

any noise, and ‘measurements’ graph file that only has the edges of the graph. In the

‘measurements’ file, the vertex associations are provided as indexes but the vertices

themselves are initialised by the graph class when the file is read to construct the

SLAM factor graph. When ’generateMeasurements’ is called it constructs the graph

files by running the following process for every time step set in the ‘t’ property of

the config for the simulation:
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1. Generate robot pose vertexes and odometry edges. Output the pose vertexes

to ground truth graph file and the odometry edges to the measurements graph

file.

2. Generate point observations from the robot sensor for the sensor points:

2.1. Check whether the point is visible for the current time step and run the

following steps if it’s corresponding ‘pointVisibility’ entry is 1:

2.1.1. If it is a static point, create a single vertex and store its value, unless

the config property ‘staticDataAssociation’ is turned off, in which

create a new vertex if the point was not observed in the previous time

step. Create a measurement edge from the current time step robot

pose to the most recent point vertex initialised in the measurements

graph file.

2.1.2. If it is a dynamic point, create a new vertex, and a measurement edge

from the current time step robot pose vertex to the point vertex.

3. Generate point motion measurement according the config properties ‘point-

MotionMeasurement’ and ‘motionModel’. This is a switch case for each type

of motion measurement or estimation described in section 4.5.

The sensor can also dynamically plot itself, with the sensor shown as a camera

and visible points indicated in red, and unobserved points in black, with the same

plotting styles as environment.

The .graph file text format contains lines where each line is a vertex or edge,

identified by its corresponding label set in the config (for example, ‘POSEVERTEX’

for a robot pose or ‘POSEPOSEEDGE’ for robot odometry), value for that variable

or measurement, and covariance upper triangular matrix.

5.2 DO-SLAM Back End

5.2.1 Graph

The graph class implements the factor graph by reading the graph file and creating

instances of edge and vertex classes. Graphs are used to construct the solver system,

and measure error between the ground truth graph and SLAM final estimate graph.

The “Vertex” class is generic for all types of vertices and has a property ‘type’

which distinguishes its type, for example ‘pose’, ‘point’ or ‘motion’. It has a value

and covariance for the Gaussian probability.
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The “Edge” class is generic for all types of edges, however the ‘type’ property

indicates what its input and output edges should be, which is used to select the

correct Jacobian calculation function. “Edge” also has the ‘covariance’ which is the

measurement error, and ’value’ which is the value of its corresponding factor.

The graph is solved by running the ‘process’ method, which constructs the initial

vertices of the factor graph from the measurements, forms the SLAM system consist-

ing of Jacobian matrices and covariances, and conducts the non-linear least squares

optimisation (explained in subsection 3.2.3). For every iteration of the SLAM solver,

it computes the increment δ∗ and updates the vertex and edge values in the graph,

until the residual falls below the threshold set in config.

5.2.2 Solver

The SLAM solver is implemented by the “System” class and the “NonLinearSolver”

class. The “System” class is the matrix representation of the “Graph” class factor

graph. It constructs the information Jacobian matrix A by linearising the system

based on the functions for graph edge type Jacobians, and the residuals vector b from

the vertex prediction error values. The system is solved incrementally as mentioned

in the previous section, using the method implementing the solution algorithm set in

the config ‘solverType’ property. The correct operation of the motion measurements

Graph and Solver is tested with the unit tests shown in section A.1.

5.3 Applications

An application a script of a full simulation of the environment with graph construc-

tion, solution and error calculation that tests our algorithms. The process followed

in an application is as follows:

1. Setup a config with all of the labels, error settings, point motion model settings,

filepaths, solver settings, camera parameters and other properties.

2. Instantiate an environment and add primitives and points to it by:

2.1. Creating trajectories, and using the environment add functions to create

ellipsoids, cubes or rectangles, OR

2.2. Creating a set of points and adding them statically to the simulated

environment.

3. Create a robot trajectory and sensor pose.
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4. Instantiate a ‘SimulatedEnvironmentSensor’ or ‘SimulatedEnvironmentOcclu-

sionSensor’ instance.

4.1. Instantiate sensor objects and points from a simulated environment by

running ‘addEnvironment’ with the environment as input.

4.2. Set visibility for the points, if ‘SimulatedEnvironmentOcclusionSensor’ is

used the environment is required as an input argument.

4.3. (Optional) Animate a plot of the sensor over time to observe the visibility

of points, and check the visibility of the points as set in ‘pointVisibility’.

4.4. Run ‘generateMeasurement’ to generate ground truth and measurements

graph files.

4.5. If the constant SE(3) motion vertex is used for point motion estimation,

an additional function ‘writeDataAssociationVerticesEdges’ needs to be

run to add the constructed motion vertex in the graph file.

5. Read the graph files as a cell array (‘graphFileToCell’ function).

6. Parse the cell array graph file into a Graph Class instance.

7. Run the ‘solve’ method on the graph to solve for the final SLAM estimate.

8. Save the solved results graph as a graph file using the ‘saveGraphFile’ method

in Graph.

9. Run ‘errorAnalysis’ function with the ground truth and results graph as input

to obtain accuracy values for the SLAM algorithm.

10. Plot the results and ground truth graph file (‘plotGraph’ or ‘plotGraphFile’

function).

An application can be run directly on the graph file by setting the appropriate

labels in the “Config” following the process from step 6 onwards.
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Results

6.1 General Setup

Applications are created to test the solution accuracy of the different point mo-

tion measurement and estimation models (described in section 4.5) in the SLAM

algorithm. Each application is a separate script with its own simulated environment

meant to model a simplified version of a real world scenario, and multiple types of

point motion measurements can be tested by repeating the simulation with different

‘pointMotionMeasurement’ and ‘motionModel’ settings (see subsection 5.1.1). All

of the remaining config settings such as noise, solver and pose parametrisation are

kept the same for all of the applications as summarised in Table 6.1.

The sensor noise is set based on realistic values for an abstract sensor that could

theoretically create these types of motion measurements. High noise settings make

the causes some of the solution estimates to move away from the local minimum

for the NLS optimisation. Setting the point motion measurement noise very high in

relation to the odometry (‘stdPosePose’) and camera sensor (‘stdPosePoint’) results

in the motion measurement having negligible impact on the final estimate, whereas

setting them too low causes the point trajectories to be become more innaccurate for

applications where the linear point motion measurements are applied on non-linear

motion as they cause a strong bias towards linear point motion trajectories.

Six measures of error are taken from the final SLAM estimate to observe the

accuracy of the motion model in the solver. These are abbreviated in the tables of

the results for every section in this chapter, and their full forms are explained here.

Absolute Trajectory Translation Error (ATE) The absolute (inertial frame)

error in the translational component of the robot trajectory, in metres. It is

a measure of how accurate the robot localisation with respect to th real or

simulated.

Absolute Trajectory Rotation Error (ARE) The absolute (inertial frame) er-

ror in the rotational component of the robot trajectory, in degrees. It is another

measure of how accurate the robot localisation is with respect to the real or

simulated environment.
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Table 6.1: Application config noise settings.

Label Error for Set as Value

stdPosePrior Prior for the sensor pose 0.01m position, 1 degree

in euler axis of rotation.

[0.01, 0.01, 0.01,

0.0173, 0.0176,

0.0173]’

stdPosePose Odometry/IMU 0.04m translation and 1

degree in each euler axis

of rotation.

[0.04, 0.04, 0.04,

0.0173, 0.0176,

0.0173]’

stdPointPrior Prior for initialising a

point

0.01m position error in

R3 (inertial frame)

[0.01, 0.01, 0.01]’

stdPosePoint Point measurement er-

ror in sensor frame co-

ordinates

0.04m position error in

R3 (sensor frame)

[0.04, 0.04 0.04]’

stdPointPoint 2-point edge motion 0.01m translation in R3 [0.01, 0.01, 0.01]’

std3Points

(speed)

3-point as a euclidean

distance

0.01m distance transla-

tion

0.01

std3Points (velo-

city)

3-point motion as a

translation vector

0.01m in R3 [0.01, 0.01, 0.01]’

std2PointsVelocity

(speed)

Average speed motion

model

0.01m euclidean dis-

tance

0.01

std2PointsVelocity

(velocity)

Average velocity motion

model

0.01m in R3 [0.01, 0.01, 0.01]’

std2PointsSE3Mo-

tion

Predicted motion posi-

tion & actual

0.05m in R3 [0.05,0.05,0.05]’

Absolute Structure Points Error (ASE) The absolute position error of points

in the environment, in metres. It is a measure of how accurate the map

estimation is with respect to the actual environment.

All-to-All Relative Trajectory Translation Error (allRTE) The error in all

of poses of the robot trajectory translational component with respect to each

other, in metres. It is a measure of the accuracy of the SLAM algorithm in the

robot’s internal estimation of its trajectory, and informs us of the improvement

in the SLAM localisation estimation from adding motion information.

All-to-All Relative Trajectory Rotation Error (allRRE) The error in all of

poses of the robot trajectory rotational component with respect to each other,

in degrees. It has the same purpose as allRTE.

All-to-All Relative Structure Points Error The error in the positions of the

points with respect to each other, in metres. It is a measure of the consist-
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ency of the robot’s internal estimation of the environment and the spatial

relationships between points within it, and informs us of the improvement in

the SLAM map estimation from adding motion information.

6.2 Application 1: One Primitive Linear Motion

6.2.1 Application 1 Experimental Setup

This application tests the linear point motion models (2-point edge, 3-point edge,

and velocity vertex) on an environment consisting of a single object with linear

motion, thereby validating the use of these models and allowing for a comparison of

their relative accuracy in solving a dynamic SLAM environment.

The simulation runs for 51 steps, set in simulated environment as 10 seconds. The

motion of the primitive is set with equally spaced linear waypoints, and interpolated

using a straight line fit, starting with an initial position of [20, 0, 0] with an inertial

frame waypoints [2.5, 1, 0.5]m apart per second. The robot tracks behind it with a

linear interpolated trajectory also set with waypoints. The plot for this environment

is shown in Figure 6.1. This application demonstrates the accuracy of the point

motion measurement types on a valid environment motion model, thereby allowing

us to directly compare their performance in improving the SLAM estimate.
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Figure 6.1: Application 1: One Primitive Linear Motion Environment simulated

environment sensor plots. Red points are visible in the sensor, black points are not.

6.2.2 Application 1 Results

Four observations can be made from the results shown in Figure 6.2 and Table 6.2. 1)

The velocity motion model (vector) measurements are more accurate than the speed

measurements for the 3-point edge, but less accurate for the velocity vertex. 2) The
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Figure 6.2: Application 1: One Primitive Linear Motion Results. Red is SLAM

solver final estimate and blue is ground truth. Circles with axes in them are robot

poses and dots are point positions.

most accurate solution is done by the 2-point edge, however it is also an unrealistic

model as in a real world sensor such measurements are difficult to collect. 3) The

velocity vertex is more accurate than the 3-point edge for pure linear motion. 4)

Implementing the linear motion model measurements increases the point position

estimate accuracy at the expense of increased error in the robot trajectory.
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Table 6.2: Application 1 Results

Test ATE

(m)

ARE (◦) ASE

(m)

allRTE

(m)

allRRE

(◦)

allRSE

(m×10−3)

No motion

edges

2.008 11.002 0.854 0.019 0.173 2.481

2-point edge 0.185 1.793 0.062 0.005 0.043 0.186

3-point edge

(speed)

1.585 10.937 0.742 0.018 0.156 2.137

3-point edge

(velocity)

0.635 5.279 0.188 0.008 0.078 0.543

Velocity vertex

(speed)

0.485 3.774 0.486 0.008 0.076 1.415

Velocity vertex

(velocity)

0.543 3.800 0.353 0.011 0.074 1.041

6.3 Application 2: Two Primitives Non-Linear

Motion

6.3.1 Application 2 Experimental Setup

We now test the effectiveness of the linear point motion measurements outside their

valid domain, i.e. for cases where the motion of the points is non-linear and includes

both translational and rotational components. Application 2 contains two moving

primitives, each with non-linear motion set through waypoints.

The waypoints are written here in MATLAB format with semicolons indicating

rows: the first row contains the time values, second row corresponding x values,

third row y values and fourth row z values. Primitive 1 waypoints are [0:2:10; 10,

20, 30, 35, 40 41; 0, 3, 5, -3, -5, -5; 0, 0, 0, 0, 0, 0] and Primitive 2 waypoints are

[0:2:10; 15, 20, 25, 27, 30, 35; -2, -4, -2, 0, 0, 1; 1, 0, 0, 1, 0.5, 0].

In total both primitives have 52 environment points that are sensed by the robot.

The simulation is run for 51 steps (10 seconds). The plots for step 1 and step 51 are

shown in Figure 6.3.

6.3.2 Application 2 Results

As shown in Figure 6.4 and Table 6.4, for the limited number of steps in this sim-

ulation, the error in the SLAM estimate does not increase drastically when a linear

motion model is applied to estimate non-linear point motion, as the time step size is

small (0.2s) and the relative motion between two time steps is small for each point.
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Figure 6.3: Application 2: Two Primitives Non-Linear Motion Environment simu-

lated environment sensor plots. Red points are visible in the sensor, black points

are not.

Table 6.3: Application 2 Results

Test ATE

(m)

ARE (◦) ASE

(m)

allRTE

(m)

allRRE

(◦)

allRSE

(m×10−3)

No motion

edges

2.039 11.111 0.949 0.021 0.175 1.985

2-point edge 0.278 1.907 0.203 0.006 0.042 0.429

3-point edge

(speed)

0.535 4.964 0.848 0.017 0.123 1.805

3-point edge

(velocity)

1.090 5.836 0.390 0.010 0.089 0.837

Velocity vertex

(speed)

0.657 8.170 0.455 0.010 0.093 0.996

Velocity vertex

(velocity)

0.668 4.215 0.334 0.011 0.073 0.701

In this application, the speed motion models perform better than the velocity mod-

els for both the robot trajectory and map estimate. One reason for this could be

the relative flexibility in the constraint implemented that makes no assumption on

the direction of motion for the point.
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Figure 6.4: Application 2: Two Primitives Non-Linear Motion Results. Red is

SLAM solver final estimate and blue is ground truth. Circles with axes in them are

robot poses and dots are point positions.

6.4 Application 3: One Primitive Non-Linear Mo-

tion + Static Points

6.4.1 Application 3 Experimental Setup

We expand the case in section 6.3 to include static points in the scene, that are

repeatedly observed from multiple robot posts in conjuntion with the dynamic points

47



Chapter 6 Results 6.4 Application 3: 1 Primitive NLM + SP

and their motion on the primitive. SLAM research literature shows that loop-closure

improves the SLAM estimation[13]. There are 126 points in this simulation, 100

static and 26 dynamic. Static points are initialised along planes modelling walls,

behind the primitive so that occlusion occurs. Primitive waypoints are set as (using

MATLAB notation as explained in subsection 6.3.1): [0:2:10; 10, 20, 25, 20, 10, 5; 0,

0, 10, 15, 15, 15; 0, 2, 1, 3, ,5 2]. The simulation is run for 51 time steps (simulation

time 10s). The plot of the environment at step 1 and 51 is in Figure 6.5.
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Figure 6.5: Application 1: Two Primitives Non-Linear Motion Environment simu-

lated environment sensor plots. Red points are visible in the sensor, black points

are not.

6.4.2 Application 3 Results

The results in Table 6.4 and Figure 6.6 illustrate that loop-closure from repeated

observation of static points increases the overall SLAM estimation accuracy. How-

ever, applying a linear motion model to non-linear motion can worsen the accuracy

of the SLAM estimate compared to if the system is optimised using repeat meas-

urements of static points alone, particularly for the 3-point edge and velocity vertex

scalar measurements. The 3-point edge (velocity) is the only measure that improves

SLAM estimate for both robot trajectory and point positions, however the exact

reason is difficult to determine.
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Figure 6.6: Application 3: One Primitive Non-Linear Motion + Static Points Res-

ults. Red is SLAM solver final estimate and blue is ground truth. Circles with axes

in them are robot poses and dots are point positions. Note subfigure (c) where the

SLAM estimate is noticeably made worse.
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Table 6.4: Application 3 Results

Test ATE

(m)

ARE (◦) ASE

(m)

allRTE

(m)

allRRE

(◦)

allRSE

(m×10−3)

No motion

edges

0.046 0.240 0.061 0.001 0.005 0.164

2-point edge 0.049 0.427 0.036 0.001 0.005 0.098

3-point edge

(speed)

3.813 14.428 0.079 0.029 0.144 0.216

3-point edge

(velocity)

0.026 0.177 0.061 0.001 0.005 0.164

Velocity vertex

(speed)

0.657 8.170 0.455 0.010 0.093 0.996

Velocity vertex

(velocity)

0.275 1.130 0.057 0.002 0.015 0.155

6.5 Applications 4 and 5: Constant Motion Prim-

itives

Applications 4 and 5 test the constant motion vertex, which is the most general

motion model and can estimate the point translation and rotation for the points

associated to an object, provided it is constant for the entire simulation. The en-

vironments in these applications model primitives with constant motion trajectories

and test the accuracy of the SLAM estimate with incorporation of the constant

motion. This is an estimation, where the motion vertex is initialised from the point

measurements by finding the inertial frame relative transform (4.32).

6.5.1 Application 4: Two Primitives Constant Motion Ex-

perimental Setup

In Application 4, the robot follows a figure of 8 trajectory in between 2 objects that

follow a circular trajectory, and observes points on the objects at various times.

The simulation is run for 120 seconds with 121 time steps. In Figure 6.7, primitive

1 (left) has a se(3) constant motion of u1 = [1.2226, 1.4476, 0, 0, 0, 0.105], and

primitive 2 (right) has a constant motion of u2 = [-1.2226, 1.4476, 0, 0, 0, -0.105].

The total number of points from both ellipsoids is 22.
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Figure 6.7: Application 4: Two Primitives Constant Motion Environment simulated

environment sensor plots. Red points are visible in the sensor, black points are not.

6.5.2 Application 5: One Primitive Constant Motion + Static

Points Experimental Setup

In Application 5, the environment consists of an object moving in a screw trajectory

in front of static points created along rectangles. The primitive has a se(3) motion

transform of u = [0.9938, -0.4028, -0.0013, 0.001, 0.0002, 0.06]. There are static

points and dynamic points in the environment. This simulation is also from t=0s

to t=120s with 121 time steps. Robot motion is set via waypoints tracking behind

the primitive. The plot for the environment is shown in Figure 6.8.

Application 5 is tested with and without loop closure. With loop closure, static

points in the environment are observed in the first and final time steps and associated

together. Without loop closure, the static points are not associated and new vertices

are created when the same point is observed again after losing track in the robot

sensor.

6.5.3 Application 4 and 5 Results

From Figures Figure 6.9 and Figure 6.10, and Table 6.5 it can be seen that im-

plementing the constant motion estimation of points in an environment, where the

motion model is valid, improves the general accuracy of the environment map. How-

ever, often there is a tradeoff between improving the map estimate and a less accurate

robot trajectory estimate.
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Figure 6.8: Application 5: One Primitive Constant Motion + Static Points simulated

environment sensor plots. Red points are visible in the sensor, black points are not.
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Figure 6.9: Application 4 solver results. Large dots represent robot positions and

small dots point locations. Green colour denotes ground truth, blue denotes SLAM

solution with the SE(3) transform and red denotes the SLAM solution without the

SE(3) transform.
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Figure 6.10: Application 5 solver results. Large dots represent robot positions and

small dots point locations. Green colour denotes ground truth, blue denotes SLAM

solution with the SE(3) transform and red denotes the SLAM solution without the

SE(3) transform.

Table 6.5: Application 4 and 5 Results ‘a’ and ‘b’ indicate the application results

with and without without application of the constant motion vertex respectively.

‘wolc’ means without loop closure, ‘wlc’ means with loop closure.

Application

Setup

ATE

(m)

ARE (◦) ASE

(m)

allRTE

(m)

allRRE

(◦)

allRSE

(m×10−3)

4-a 5.442 15.625 1.968 0.019 0.099 4.076

4-b 2.282 7.566 0.650 0.009 0.035 1.442

5-wolc-a 0.592 5.228 1.234 0.008 0.056 1.091

5-wolc-b 0.428 1.651 0.126 0.002 0.010 0.113

5-wlc-a 0.100 0.937 0.163 0.002 0.013 0.170

5-wlc-b 0.195 1.232 0.074 0.001 0.007 0.072
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Chapter 7

Conclusion

The goal of this honours thesis is to conceptualise and develop the front-end of

the DO-SLAM Framework (chapter 5), and use it to test the validity and accuracy

of different motion measurement and estimations models that are integrated in a

SLAM algorithm. I evaluate the performance of six theoretical motion measurement

and estimation models (section 4.5), which are tested on simulated data.

I also describe the Dynamic Object SLAM (DO-SLAM) framework which is the

broader subject of the research program I am a part of. DO-SLAM incorporates

methods of adding the structure [5] and motion [2] of objects in the environment in

order to improve the SLAM estimation. My contributions to this research program

include helping conceptualise the overall structure of the framework (section 4.1),

adding the functionality to create primitives with abstract surface representations

(subsection 5.1.4), designing and implementing occlusion (section 4.4) in the abstract

simulated environment sensors, adding functionality to create graph files with point

motion measurements and constraints, and testing of the algorithms on simulated

data (chapter 6).

From the results in chapter 6, we can see that in general adding more informa-

tion to the SLAM system for dynamic environments improves the SLAM estimate

accuracy, in particular for environments with only dynamic objects. However, the

improvement to the map and robot trajectory estimate is decreased in cases where

the solution motion model is not valid for the actual motion of the corresponding

points in the environment. The measurements created according to linear point

motion models are not robust in cases where they the object motion is actually

non-linear, and in some cases reduces the accuracy of the SLAM estimate, particu-

larly when used in conjunction with the conventional static point tracking and loop

closure methods (see sections section 6.2 and section 6.4).

The constant motion vertex is an improvement on the linear point motion as-

sumptions as it uses the SE(3) transformation of the object in the inertial frame,

and is the most generalised which results in consistent improvement in the SLAM

estimation when applied to points and objects where it is a valid model, as evid-

enced in subsection 6.5.3. Furthermore, through deriving geometric relationships we
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show that the constant motion transform in the inertial frame for a set of grouped

points moving in a 3D environment can be derived without explicitly requiring their

geometric relationship with their associated object (subsection 4.5.4), which ex-

pands the application potential of this method. As it is an estimation that provides

a structure to the already existing point measurements from the robot sensor, it

is applicable to a real-world environment in comparison to the linear point motion

models which all assume that there independent measurements of the point’s motion

or average velocity can be obtained.

To further develop this concept, the constant motion assumption needs to be fur-

ther developed as a derivation or in implementation to make it robust and applicable

in a real world environment. Segmenting the motion of a group of points by time

step and applying the constant motion assumption for a set of time steps instead of

the entire observation time is one possible method of doing this. Furthermore, we

assume that the data association problem is solved in the simulated environment,

however in the real world data association is a significant task and additional tech-

niques such as CNN based image recognition will need to be integrated on camera

sensor data to data associate and track objects. The current developed algorithms

also require a rigid body assumption to be a valid model the object, which needs to

be adapted further to operate with real world deformable bodies such as pedestrians

that commonly form part of a dynamic environment.
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Appendix A

Appendix 1

A.1 Unit Tests

The correct implementation of the point motion model in the solver algorithm is

demonstrated by unit tests, where we manually construct a simple system of 3

points moving over 3 time steps with a robot observing it, without using the front-

end of the framework. The motion of the points is set to be linear for the 2-point

edge, 3-point edge and velocity vertex motion measurements to test cases where the

algorithm’s motion model is valid.

The points are initialised as part of an object in the object frame. The constant

motion is applied to the object, and the point positions are found in the inertial frame

to construct the sensor measurement edges and motion measurement edges/vertices.

Error settings are in Table A.1 and results for all of the unit tests are in Table A.2,

where the error measures have been explained in section section 6.1. Figures A.2

and A.1 show the visual plot of the results.

Table A.1: Unit test config noise settings

Label Measure Set as Value

stdPosePrior Prior for the sensor pose

error

0.005m translation, 1

degree error in each

Axis-Angle dimension.

[0.0050, 0.0050,

0.0050, 0.0175,

0.0175, 0.0175]

stdPosePose Odometry/IMU pose

change error

0.04m translation and

2 degree in each Axis-

Angle dimension.

[0.0400, 0.0400,

0.0400, 0.0873,

0.0873, 0.0873]

stdPointPrior Prior for initialising a

point based on measure-

ments

0.01m position error in

R3 (inertial frame)

[0.01, 0.01, 0.01]

stdPosePoint Point measurement er-

ror in sensor frame co-

ordinates

0.04m position error in

R3 (sensor frame)

[0.04, 0.04 0.04]
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Table A.2: Unit test Results

Test ATE

(m)

ARE (◦) ASE

(m)

allRTE

(m)

allRRE

(◦)

allRSE

(m×10−3)

No motion

edges

0.206 2.507 0.778 0.116 1.254 147.086

2-point edge 0.245 3.015 0.260 0.132 1.489 46.009

3-point edge

(scalar)

0.169 2.932 0.741 0.086 1.443 139.250

3-point edge

(vector)

0.169 2.924 0.411 0.081 1.455 78.293

Velocity vertex

(scalar)

0.154 2.918 0.796 0.081 1.454 147.391

Velocity vertex

(vector)

0.177 2.838 0.411 0.085 1.409 77.127

Constant Mo-

tion Vertex

0.233 2.174 0.634 0.113 1.087 114.749

0

4

2

6
2

4

4

z

xy

0 2

6

-2 0

Figure A.1: Unit Test Results for the constant motion vertex explained in subsec-

tion 4.5.4. The motion input includes both translation and rotation. Red is final

solution estimate and blue is ground truth. Circles with axes are robot poses and

dots are point positions.
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Figure A.2: Unit Test Results for all of the linear point motion models implemented

in the solver. Red is final solution estimate and blue is ground truth. Circles with

axes are robot poses and dots are point positions.
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